An embedded device

Dependencies:   Crypto

main.cpp

Committer:
peterith
Date:
2019-03-06
Revision:
13:c51d828531d5
Parent:
12:899cd6bf9844
Child:
14:0481b606d10e

File content as of revision 13:c51d828531d5:

#include "mbed.h"
#include "Crypto.h"

//Photointerrupter input pins
#define I1pin D3
#define I2pin D6
#define I3pin D5

//Incremental encoder input pins
#define CHApin D12
#define CHBpin D11

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D1           //0x01
#define L1Hpin A3           //0x02
#define L2Lpin D0           //0x04
#define L2Hpin A6           //0x08
#define L3Lpin D10          //0x10
#define L3Hpin D2           //0x20

#define PWMpin D9

//Motor current sense
#define MCSPpin A1
#define MCSNpin A0

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};  
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
const int8_t lead = 2;  //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
InterruptIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);

int8_t orState = 0;
int8_t intState = 0;
int8_t intStateOld = 0;

//Set a given drive state
void motorOut(int8_t driveState){
    
    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];
      
    //Turn off first
    if (~driveOut & 0x01) L1L = 0;
    if (~driveOut & 0x02) L1H = 1;
    if (~driveOut & 0x04) L2L = 0;
    if (~driveOut & 0x08) L2H = 1;
    if (~driveOut & 0x10) L3L = 0;
    if (~driveOut & 0x20) L3H = 1;
    
    //Then turn on
    if (driveOut & 0x01) L1L = 1;
    if (driveOut & 0x02) L1H = 0;
    if (driveOut & 0x04) L2L = 1;
    if (driveOut & 0x08) L2H = 0;
    if (driveOut & 0x10) L3L = 1;
    if (driveOut & 0x20) L3H = 0;
}
    
//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState(){
    return stateMap[I1 + 2*I2 + 4*I3];
}

int8_t motorHome() {
    motorOut(0);
    wait(2.0);
    
    return readRotorState();
}

void push() {
    intState = readRotorState();
    if (intState != intStateOld) {
        intStateOld = intState;
        motorOut((intState - orState + lead +6) % 6); //+6 to make sure the remainder is positive
    }
}

int main() {    
    Serial pc(SERIAL_TX, SERIAL_RX);
    pc.printf("Hello Pete\n\r");
    
    orState = motorHome();
    pc.printf("Rotor origin: %x\n\r", orState);
    
    I1.rise(&push);
    I2.rise(&push);
    I3.rise(&push);
    
    I1.fall(&push);
    I2.fall(&push);
    I3.fall(&push);
    
    while(1) {
        SHA256 sha;
        uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64,
            0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73,
            0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E,
            0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20,
            0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20,
            0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20,
            0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
            0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
        uint64_t* key = (uint64_t*) ((int) sequence + 48);
        uint64_t* nonce = (uint64_t*) ((int) sequence + 56);
        uint8_t hash[32];
        
        Timer t;

        t.start();
        unsigned curr = 1;
        unsigned hashRate = 0;
        for (uint64_t i = 0; i <= 0b1111111111111111111111111111111111111111111111111111111111111111;  i++) {
            hashRate++;
            (*nonce)++;
            sha.computeHash(&hash[0], &sequence[0], 64);
            if (hash[0] == 0 && hash[1] == 0) {
                pc.printf("Successful nonce: %016x\n\r", *nonce);
            }
            if ((unsigned) t.read() == curr) {
                curr++;
                pc.printf("Hash rate: %d\n\r", hashRate);
                hashRate = 0;
            }
        }
    }
}