An embedded device
Dependencies: Crypto
main.cpp
- Committer:
- estott
- Date:
- 2019-02-19
- Revision:
- 5:08f338b5e4d9
- Parent:
- 3:569b35e2a602
- Child:
- 10:a4b5723b6c9d
File content as of revision 5:08f338b5e4d9:
#include "mbed.h" //Photointerrupter input pins #define I1pin D6 #define I2pin D11 #define I3pin D12 //Incremental encoder input pins #define CHA D4 #define CHB D5 //Motor Drive output pins //Mask in output byte #define L1Lpin D9 //0x01 #define L1Hpin D10 //0x02 #define L2Lpin D1 //0x04 #define L2Hpin D2 //0x08 #define L3Lpin D0 //0x10 #define L3Hpin D3 //0x20 //Motor current sense #define MCSPpin A1 #define MCSNpin A0 //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed //Phase lead to make motor spin const int8_t lead = 2; //2 for forwards, -2 for backwards //Status LED DigitalOut led1(LED1); //Photointerrupter inputs DigitalIn I1(I1pin); DigitalIn I2(I2pin); DigitalIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); //Set a given drive state void motorOut(int8_t driveState){ //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState(){ return stateMap[I1 + 2*I2 + 4*I3]; } //Basic synchronisation routine int8_t motorHome() { //Put the motor in drive state 0 and wait for it to stabilise motorOut(0); wait(2.0); //Get the rotor state return readRotorState(); } //Main int main() { int8_t orState = 0; //Rotot offset at motor state 0 int8_t intState = 0; int8_t intStateOld = 0; //Initialise the serial port Serial pc(SERIAL_TX, SERIAL_RX); pc.printf("Hello\n\r"); //Run the motor synchronisation orState = motorHome(); pc.printf("Rotor origin: %x\n\r",orState); //orState is subtracted from future rotor state inputs to align rotor and motor states //Poll the rotor state and set the motor outputs accordingly to spin the motor while (1) { intState = readRotorState(); if (intState != intStateOld) { intStateOld = intState; motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive //pc.printf("%d\n\r",intState); } } }