IOTON boards API using mbed SDK - http://ioton.cc/plataforma-ton
Dependents: ton-bot_teste ton-bot_seguidor_linha ton-bot_seguidor_parede
Fork of IOTON-API by
BMX055.h
- Committer:
- krebyy
- Date:
- 2016-12-20
- Revision:
- 2:b3c3bf0b9101
- Parent:
- 0:cbba28a205fa
File content as of revision 2:b3c3bf0b9101:
/* IMU chipset BMX055 Library * Copyright (c) 2016 Ioton Technology * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef BMX055_H_ #define BMX055_H_ /* Includes ------------------------------------------------------------------*/ #include "mbed.h" #ifndef M_PI #define M_PI 3.1415927f #endif // Accelerometer registers #define BMX055_ACC_WHOAMI 0x00 // should return 0xFA //#define BMX055_ACC_Reserved 0x01 #define BMX055_ACC_D_X_LSB 0x02 #define BMX055_ACC_D_X_MSB 0x03 #define BMX055_ACC_D_Y_LSB 0x04 #define BMX055_ACC_D_Y_MSB 0x05 #define BMX055_ACC_D_Z_LSB 0x06 #define BMX055_ACC_D_Z_MSB 0x07 #define BMX055_ACC_D_TEMP 0x08 #define BMX055_ACC_INT_STATUS_0 0x09 #define BMX055_ACC_INT_STATUS_1 0x0A #define BMX055_ACC_INT_STATUS_2 0x0B #define BMX055_ACC_INT_STATUS_3 0x0C //#define BMX055_ACC_Reserved 0x0D #define BMX055_ACC_FIFO_STATUS 0x0E #define BMX055_ACC_PMU_RANGE 0x0F #define BMX055_ACC_PMU_BW 0x10 #define BMX055_ACC_PMU_LPW 0x11 #define BMX055_ACC_PMU_LOW_POWER 0x12 #define BMX055_ACC_D_HBW 0x13 #define BMX055_ACC_BGW_SOFTRESET 0x14 //#define BMX055_ACC_Reserved 0x15 #define BMX055_ACC_INT_EN_0 0x16 #define BMX055_ACC_INT_EN_1 0x17 #define BMX055_ACC_INT_EN_2 0x18 #define BMX055_ACC_INT_MAP_0 0x19 #define BMX055_ACC_INT_MAP_1 0x1A #define BMX055_ACC_INT_MAP_2 0x1B //#define BMX055_ACC_Reserved 0x1C //#define BMX055_ACC_Reserved 0x1D #define BMX055_ACC_INT_SRC 0x1E //#define BMX055_ACC_Reserved 0x1F #define BMX055_ACC_INT_OUT_CTRL 0x20 #define BMX055_ACC_INT_RST_LATCH 0x21 #define BMX055_ACC_INT_0 0x22 #define BMX055_ACC_INT_1 0x23 #define BMX055_ACC_INT_2 0x24 #define BMX055_ACC_INT_3 0x25 #define BMX055_ACC_INT_4 0x26 #define BMX055_ACC_INT_5 0x27 #define BMX055_ACC_INT_6 0x28 #define BMX055_ACC_INT_7 0x29 #define BMX055_ACC_INT_8 0x2A #define BMX055_ACC_INT_9 0x2B #define BMX055_ACC_INT_A 0x2C #define BMX055_ACC_INT_B 0x2D #define BMX055_ACC_INT_C 0x2E #define BMX055_ACC_INT_D 0x2F #define BMX055_ACC_FIFO_CONFIG_0 0x30 //#define BMX055_ACC_Reserved 0x31 #define BMX055_ACC_PMU_SELF_TEST 0x32 #define BMX055_ACC_TRIM_NVM_CTRL 0x33 #define BMX055_ACC_BGW_SPI3_WDT 0x34 //#define BMX055_ACC_Reserved 0x35 #define BMX055_ACC_OFC_CTRL 0x36 #define BMX055_ACC_OFC_SETTING 0x37 #define BMX055_ACC_OFC_OFFSET_X 0x38 #define BMX055_ACC_OFC_OFFSET_Y 0x39 #define BMX055_ACC_OFC_OFFSET_Z 0x3A #define BMX055_ACC_TRIM_GPO 0x3B #define BMX055_ACC_TRIM_GP1 0x3C //#define BMX055_ACC_Reserved 0x3D #define BMX055_ACC_FIFO_CONFIG_1 0x3E #define BMX055_ACC_FIFO_DATA 0x3F // BMX055 Gyroscope Registers #define BMX055_GYRO_WHOAMI 0x00 // should return 0x0F //#define BMX055_GYRO_Reserved 0x01 #define BMX055_GYRO_RATE_X_LSB 0x02 #define BMX055_GYRO_RATE_X_MSB 0x03 #define BMX055_GYRO_RATE_Y_LSB 0x04 #define BMX055_GYRO_RATE_Y_MSB 0x05 #define BMX055_GYRO_RATE_Z_LSB 0x06 #define BMX055_GYRO_RATE_Z_MSB 0x07 //#define BMX055_GYRO_Reserved 0x08 #define BMX055_GYRO_INT_STATUS_0 0x09 #define BMX055_GYRO_INT_STATUS_1 0x0A #define BMX055_GYRO_INT_STATUS_2 0x0B #define BMX055_GYRO_INT_STATUS_3 0x0C //#define BMX055_GYRO_Reserved 0x0D #define BMX055_GYRO_FIFO_STATUS 0x0E #define BMX055_GYRO_RANGE 0x0F #define BMX055_GYRO_BW 0x10 #define BMX055_GYRO_LPM1 0x11 #define BMX055_GYRO_LPM2 0x12 #define BMX055_GYRO_RATE_HBW 0x13 #define BMX055_GYRO_BGW_SOFTRESET 0x14 #define BMX055_GYRO_INT_EN_0 0x15 #define BMX055_GYRO_INT_EN_1 0x16 #define BMX055_GYRO_INT_MAP_0 0x17 #define BMX055_GYRO_INT_MAP_1 0x18 #define BMX055_GYRO_INT_MAP_2 0x19 #define BMX055_GYRO_INT_SRC_1 0x1A #define BMX055_GYRO_INT_SRC_2 0x1B #define BMX055_GYRO_INT_SRC_3 0x1C //#define BMX055_GYRO_Reserved 0x1D #define BMX055_GYRO_FIFO_EN 0x1E //#define BMX055_GYRO_Reserved 0x1F //#define BMX055_GYRO_Reserved 0x20 #define BMX055_GYRO_INT_RST_LATCH 0x21 #define BMX055_GYRO_HIGH_TH_X 0x22 #define BMX055_GYRO_HIGH_DUR_X 0x23 #define BMX055_GYRO_HIGH_TH_Y 0x24 #define BMX055_GYRO_HIGH_DUR_Y 0x25 #define BMX055_GYRO_HIGH_TH_Z 0x26 #define BMX055_GYRO_HIGH_DUR_Z 0x27 //#define BMX055_GYRO_Reserved 0x28 //#define BMX055_GYRO_Reserved 0x29 //#define BMX055_GYRO_Reserved 0x2A #define BMX055_GYRO_SOC 0x31 #define BMX055_GYRO_A_FOC 0x32 #define BMX055_GYRO_TRIM_NVM_CTRL 0x33 #define BMX055_GYRO_BGW_SPI3_WDT 0x34 //#define BMX055_GYRO_Reserved 0x35 #define BMX055_GYRO_OFC1 0x36 #define BMX055_GYRO_OFC2 0x37 #define BMX055_GYRO_OFC3 0x38 #define BMX055_GYRO_OFC4 0x39 #define BMX055_GYRO_TRIM_GP0 0x3A #define BMX055_GYRO_TRIM_GP1 0x3B #define BMX055_GYRO_BIST 0x3C #define BMX055_GYRO_FIFO_CONFIG_0 0x3D #define BMX055_GYRO_FIFO_CONFIG_1 0x3E // BMX055 magnetometer registers #define BMX055_MAG_WHOAMI 0x40 // should return 0x32 #define BMX055_MAG_Reserved 0x41 #define BMX055_MAG_XOUT_LSB 0x42 #define BMX055_MAG_XOUT_MSB 0x43 #define BMX055_MAG_YOUT_LSB 0x44 #define BMX055_MAG_YOUT_MSB 0x45 #define BMX055_MAG_ZOUT_LSB 0x46 #define BMX055_MAG_ZOUT_MSB 0x47 #define BMX055_MAG_ROUT_LSB 0x48 #define BMX055_MAG_ROUT_MSB 0x49 #define BMX055_MAG_INT_STATUS 0x4A #define BMX055_MAG_PWR_CNTL1 0x4B #define BMX055_MAG_PWR_CNTL2 0x4C #define BMX055_MAG_INT_EN_1 0x4D #define BMX055_MAG_INT_EN_2 0x4E #define BMX055_MAG_LOW_THS 0x4F #define BMX055_MAG_HIGH_THS 0x50 #define BMX055_MAG_REP_XY 0x51 #define BMX055_MAG_REP_Z 0x52 /* Trim Extended Registers */ #define BMM050_DIG_X1 0x5D // needed for magnetic field calculation #define BMM050_DIG_Y1 0x5E #define BMM050_DIG_Z4_LSB 0x62 #define BMM050_DIG_Z4_MSB 0x63 #define BMM050_DIG_X2 0x64 #define BMM050_DIG_Y2 0x65 #define BMM050_DIG_Z2_LSB 0x68 #define BMM050_DIG_Z2_MSB 0x69 #define BMM050_DIG_Z1_LSB 0x6A #define BMM050_DIG_Z1_MSB 0x6B #define BMM050_DIG_XYZ1_LSB 0x6C #define BMM050_DIG_XYZ1_MSB 0x6D #define BMM050_DIG_Z3_LSB 0x6E #define BMM050_DIG_Z3_MSB 0x6F #define BMM050_DIG_XY2 0x70 #define BMM050_DIG_XY1 0x71 // Using SDO1 = SDO2 = CSB3 = GND as designed // Seven-bit device addresses are ACC = 0x18, GYRO = 0x68, MAG = 0x10 #define BMX055_ACC_ADDRESS 0x18 << 1 // Address of BMX055 accelerometer #define BMX055_GYRO_ADDRESS 0x68 << 1 // Address of BMX055 gyroscope #define BMX055_MAG_ADDRESS 0x10 << 1 // Address of BMX055 magnetometer // Set initial input parameters // define BMX055 ACC full scale options #define AFS_2G 0x03 #define AFS_4G 0x05 #define AFS_8G 0x08 #define AFS_16G 0x0C enum ACCBW { // define BMX055 accelerometer bandwidths ABW_8Hz, // 7.81 Hz, 64 ms update time ABW_16Hz, // 15.63 Hz, 32 ms update time ABW_31Hz, // 31.25 Hz, 16 ms update time ABW_63Hz, // 62.5 Hz, 8 ms update time ABW_125Hz, // 125 Hz, 4 ms update time ABW_250Hz, // 250 Hz, 2 ms update time ABW_500Hz, // 500 Hz, 1 ms update time ABW_100Hz // 1000 Hz, 0.5 ms update time }; enum Gscale { GFS_2000DPS = 0, GFS_1000DPS, GFS_500DPS, GFS_250DPS, GFS_125DPS }; enum GODRBW { G_2000Hz523Hz = 0, // 2000 Hz ODR and unfiltered (bandwidth 523Hz) G_2000Hz230Hz, G_1000Hz116Hz, G_400Hz47Hz, G_200Hz23Hz, G_100Hz12Hz, G_200Hz64Hz, G_100Hz32Hz // 100 Hz ODR and 32 Hz bandwidth }; enum MODR { MODR_10Hz = 0, // 10 Hz ODR MODR_2Hz , // 2 Hz ODR MODR_6Hz , // 6 Hz ODR MODR_8Hz , // 8 Hz ODR MODR_15Hz , // 15 Hz ODR MODR_20Hz , // 20 Hz ODR MODR_25Hz , // 25 Hz ODR MODR_30Hz // 30 Hz ODR }; enum Mmode { lowPower = 0, // rms noise ~1.0 microTesla, 0.17 mA power Regular , // rms noise ~0.6 microTesla, 0.5 mA power enhancedRegular , // rms noise ~0.5 microTesla, 0.8 mA power highAccuracy // rms noise ~0.3 microTesla, 4.9 mA power }; // Set up I2C, (SDA,SCL) I2C i2c2(PB_11, PB_10); // Specify sensor full scale uint8_t Ascale = AFS_2G; uint8_t Gscale = GFS_125DPS; float aRes, gRes, mRes; // scale resolutions per LSB for the sensors // Parameters to hold BMX055 trim values int8_t dig_x1; int8_t dig_y1; int8_t dig_x2; int8_t dig_y2; uint16_t dig_z1; int16_t dig_z2; int16_t dig_z3; int16_t dig_z4; uint8_t dig_xy1; int8_t dig_xy2; uint16_t dig_xyz1; // BMX055 variables int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output int16_t magCount[3]; // Stores the 13/15-bit signed magnetometer sensor output float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag float SelfTest[6]; // holds results of gyro and accelerometer self test // global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System) float GyroMeasError = M_PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s) float GyroMeasDrift = M_PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) // There is a tradeoff in the beta parameter between accuracy and response speed. // In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy. // However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion. // Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car! // By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec // I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense; // the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy. // In any case, this is the free parameter in the Madgwick filtering and fusion scheme. float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral #define Ki 0.0f // Declination at Sao Paulo, Brazil is -21 degrees 7 minutes on 2016-03-27 #define LOCAL_DECLINATION -21.1f float deltat = 0.0f; // integration interval for both filter schemes float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method class BMX055 { private: float pitch, yaw, roll; void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { char data_write[2]; data_write[0] = subAddress; data_write[1] = data; i2c2.write(address, data_write, 2, 0); } char readByte(uint8_t address, uint8_t subAddress) { char data[1]; // `data` will store the register data char data_write[1]; data_write[0] = subAddress; i2c2.write(address, data_write, 1, 1); // no stop i2c2.read(address, data, 1, 0); return data[0]; } void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { char data[14]; char data_write[1]; data_write[0] = subAddress; i2c2.write(address, data_write, 1, 1); // no stop i2c2.read(address, data, count, 0); for(int ii = 0; ii < count; ii++) { dest[ii] = data[ii]; } } public: BMX055() { //Set up I2C i2c2.frequency(400000); // use fast (400 kHz) I2C } float getAres(void) { switch (Ascale) { // Possible accelerometer scales (and their register bit settings) are: // 2 Gs (0011), 4 Gs (0101), 8 Gs (1000), and 16 Gs (1100). // BMX055 ACC data is signed 12 bit case AFS_2G: aRes = 2.0/2048.0; break; case AFS_4G: aRes = 4.0/2048.0; break; case AFS_8G: aRes = 8.0/2048.0; break; case AFS_16G: aRes = 16.0/2048.0; break; } return aRes; } float getGres(void) { switch (Gscale) { // Possible gyro scales (and their register bit settings) are: // 125 DPS (100), 250 DPS (011), 500 DPS (010), 1000 DPS (001), and 2000 DPS (000). case GFS_125DPS: gRes = 124.87/32768.0; // per data sheet, not exactly 125!? break; case GFS_250DPS: gRes = 249.75/32768.0; break; case GFS_500DPS: gRes = 499.5/32768.0; break; case GFS_1000DPS: gRes = 999.0/32768.0; break; case GFS_2000DPS: gRes = 1998.0/32768.0; break; } return gRes; } float getPitch(void) { return pitch; } float getRoll(void) { return roll; } float getYaw(void) { return yaw; } void readAccelData(int16_t * destination) { uint8_t rawData[6]; // x/y/z accel register data stored here // Read the six raw data registers into data array readBytes(BMX055_ACC_ADDRESS, BMX055_ACC_D_X_LSB, 6, &rawData[0]); if((rawData[0] & 0x01) && (rawData[2] & 0x01) && (rawData[4] & 0x01)) { // Check that all 3 axes have new data // Turn the MSB and LSB into a signed 12-bit value destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]) >> 4; destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]) >> 4; destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]) >> 4; } } void readGyroData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here // Read the six raw data registers sequentially into data array readBytes(BMX055_GYRO_ADDRESS, BMX055_GYRO_RATE_X_LSB, 6, &rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } void readMagData(int16_t * magData) { int16_t mdata_x = 0, mdata_y = 0, mdata_z = 0, temp = 0; uint16_t data_r = 0; uint8_t rawData[8]; // x/y/z hall magnetic field data, and Hall resistance data readBytes(BMX055_MAG_ADDRESS, BMX055_MAG_XOUT_LSB, 8, &rawData[0]); // Read the eight raw data registers sequentially into data array if(rawData[6] & 0x01) { // Check if data ready status bit is set mdata_x = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]) >> 3; // 13-bit signed integer for x-axis field mdata_y = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]) >> 3; // 13-bit signed integer for y-axis field mdata_z = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]) >> 1; // 15-bit signed integer for z-axis field data_r = (uint16_t) (((uint16_t)rawData[7] << 8) | rawData[6]) >> 2; // 14-bit unsigned integer for Hall resistance // calculate temperature compensated 16-bit magnetic fields temp = ((int16_t)(((uint16_t)((((int32_t)dig_xyz1) << 14)/(data_r != 0 ? data_r : dig_xyz1))) - ((uint16_t)0x4000))); magData[0] = ((int16_t)((((int32_t)mdata_x) * ((((((((int32_t)dig_xy2) * ((((int32_t)temp) * ((int32_t)temp)) >> 7)) + (((int32_t)temp) * ((int32_t)(((int16_t)dig_xy1) << 7)))) >> 9) + ((int32_t)0x100000)) * ((int32_t)(((int16_t)dig_x2) + ((int16_t)0xA0)))) >> 12)) >> 13)) + (((int16_t)dig_x1) << 3); temp = ((int16_t)(((uint16_t)((((int32_t)dig_xyz1) << 14)/(data_r != 0 ? data_r : dig_xyz1))) - ((uint16_t)0x4000))); magData[1] = ((int16_t)((((int32_t)mdata_y) * ((((((((int32_t)dig_xy2) * ((((int32_t)temp) * ((int32_t)temp)) >> 7)) + (((int32_t)temp) * ((int32_t)(((int16_t)dig_xy1) << 7)))) >> 9) + ((int32_t)0x100000)) * ((int32_t)(((int16_t)dig_y2) + ((int16_t)0xA0)))) >> 12)) >> 13)) + (((int16_t)dig_y1) << 3); magData[2] = (((((int32_t)(mdata_z - dig_z4)) << 15) - ((((int32_t)dig_z3) * ((int32_t)(((int16_t)data_r) - ((int16_t)dig_xyz1))))>>2))/(dig_z2 + ((int16_t)(((((int32_t)dig_z1) * ((((int16_t)data_r) << 1)))+(1<<15))>>16)))); } } float getTemperature() { uint8_t c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_D_TEMP); // Read the raw data register int16_t tempCount = ((int16_t)((int16_t)c << 8)) >> 8 ; // Turn the byte into a signed 8-bit integer return ((((float)tempCount) * 0.5f) + 23.0f); // temperature in degrees Centigrade } void fastcompaccelBMX055(float * dest1) { writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x80); // set all accel offset compensation registers to zero writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_SETTING, 0x20); // set offset targets to 0, 0, and +1 g for x, y, z axes writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x20); // calculate x-axis offset uint8_t c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL); while(!(c & 0x10)) { // check if fast calibration complete c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL); wait_ms(10); } writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x40); // calculate y-axis offset c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL); while(!(c & 0x10)) { // check if fast calibration complete c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL); wait_ms(10); } writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL, 0x60); // calculate z-axis offset c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL); while(!(c & 0x10)) { // check if fast calibration complete c = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_CTRL); wait_ms(10); } int8_t compx = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_X); int8_t compy = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_Y); int8_t compz = readByte(BMX055_ACC_ADDRESS, BMX055_ACC_OFC_OFFSET_Z); dest1[0] = (float) compx/128.0f; // accleration bias in g dest1[1] = (float) compy/128.0f; // accleration bias in g dest1[2] = (float) compz/128.0f; // accleration bias in g } void magcalBMX055(float * dest1) { uint16_t ii = 0, sample_count = 0; int32_t mag_bias[3] = {0, 0, 0}; int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0}; // ## "Mag Calibration: Wave device in a figure eight until done!" ## //wait(4); sample_count = 48; for(ii = 0; ii < sample_count; ii++) { int16_t mag_temp[3] = {0, 0, 0}; readMagData(mag_temp); for (int jj = 0; jj < 3; jj++) { if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; } wait_ms(105); // at 10 Hz ODR, new mag data is available every 100 ms } mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts // save mag biases in G for main program dest1[0] = (float) mag_bias[0]*mRes; dest1[1] = (float) mag_bias[1]*mRes; dest1[2] = (float) mag_bias[2]*mRes; // ## "Mag Calibration done!" ## } // Get trim values for magnetometer sensitivity void trim(void) { uint8_t rawData[2]; //placeholder for 2-byte trim data dig_x1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_X1); dig_x2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_X2); dig_y1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_Y1); dig_y2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_Y2); dig_xy1 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_XY1); dig_xy2 = readByte(BMX055_ACC_ADDRESS, BMM050_DIG_XY2); readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z1_LSB, 2, &rawData[0]); dig_z1 = (uint16_t) (((uint16_t)rawData[1] << 8) | rawData[0]); readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z2_LSB, 2, &rawData[0]); dig_z2 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z3_LSB, 2, &rawData[0]); dig_z3 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_Z4_LSB, 2, &rawData[0]); dig_z4 = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); readBytes(BMX055_MAG_ADDRESS, BMM050_DIG_XYZ1_LSB, 2, &rawData[0]); dig_xyz1 = (uint16_t) (((uint16_t)rawData[1] << 8) | rawData[0]); } /** Initialize device for active mode * @param Ascale set accel full scale * @param ACCBW set bandwidth for accelerometer * @param Gscale set gyro full scale * @param GODRBW set gyro ODR and bandwidth * @param Mmode set magnetometer operation mode * @param MODR set magnetometer data rate * @see ACCBW, GODRBW and MODR enums */ void init(uint8_t mAscale = AFS_2G, uint8_t ACCBW = ABW_16Hz, uint8_t mGscale = GFS_125DPS, uint8_t GODRBW = G_200Hz23Hz, uint8_t Mmode = Regular, uint8_t MODR = MODR_10Hz) { Ascale = mAscale; Gscale = mGscale; // Configure accelerometer writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_PMU_RANGE, Ascale & 0x0F); // Set accelerometer full scale writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_PMU_BW, (0x08 | ACCBW) & 0x0F); // Set accelerometer bandwidth writeByte(BMX055_ACC_ADDRESS, BMX055_ACC_D_HBW, 0x00); // Use filtered data // Configure Gyro writeByte(BMX055_GYRO_ADDRESS, BMX055_GYRO_RANGE, Gscale); // set GYRO FS range writeByte(BMX055_GYRO_ADDRESS, BMX055_GYRO_BW, GODRBW); // set GYRO ODR and Bandwidth // Configure magnetometer writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL1, 0x82); // Softreset magnetometer, ends up in sleep mode wait_ms(100); writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL1, 0x01); // Wake up magnetometer wait_ms(100); writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_PWR_CNTL2, MODR << 3); // Normal mode // Set up four standard configurations for the magnetometer switch (Mmode) { case lowPower: // Low-power writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x01); // 3 repetitions (oversampling) writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x02); // 3 repetitions (oversampling) break; case Regular: // Regular writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x04); // 9 repetitions (oversampling) writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x16); // 15 repetitions (oversampling) break; case enhancedRegular: // Enhanced Regular writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x07); // 15 repetitions (oversampling) writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x22); // 27 repetitions (oversampling) break; case highAccuracy: // High Accuracy writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_XY, 0x17); // 47 repetitions (oversampling) writeByte(BMX055_MAG_ADDRESS, BMX055_MAG_REP_Z, 0x51); // 83 repetitions (oversampling) break; } // get sensor resolutions, only need to do this once getAres(); getGres(); // magnetometer resolution is 1 microTesla/16 counts or 1/1.6 milliGauss/count mRes = 1./1.6; trim(); // read the magnetometer calibration data fastcompaccelBMX055(accelBias); magcalBMX055(magBias); // TODO: see magcalBMX055(): 128 samples * 105ms = 13.44s // So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically // like the gyro and accelerometer biases // magBias[0] = -5.; // User environmental x-axis correction in milliGauss // magBias[1] = -95.; // User environmental y-axis correction in milliGauss // magBias[2] = -260.; // User environmental z-axis correction in milliGauss } // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms // but is much less computationally intensive void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability float norm; float hx, hy, _2bx, _2bz; float s1, s2, s3, s4; float qDot1, qDot2, qDot3, qDot4; // Auxiliary variables to avoid repeated arithmetic float _2q1mx; float _2q1my; float _2q1mz; float _2q2mx; float _4bx; float _4bz; float _2q1 = 2.0f * q1; float _2q2 = 2.0f * q2; float _2q3 = 2.0f * q3; float _2q4 = 2.0f * q4; float _2q1q3 = 2.0f * q1 * q3; float _2q3q4 = 2.0f * q3 * q4; float q1q1 = q1 * q1; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrt(ax * ax + ay * ay + az * az); if (norm == 0.0f) return; // handle NaN norm = 1.0f/norm; ax *= norm; ay *= norm; az *= norm; // Normalise magnetometer measurement norm = sqrt(mx * mx + my * my + mz * mz); if (norm == 0.0f) return; // handle NaN norm = 1.0f/norm; mx *= norm; my *= norm; mz *= norm; // Reference direction of Earth's magnetic field _2q1mx = 2.0f * q1 * mx; _2q1my = 2.0f * q1 * my; _2q1mz = 2.0f * q1 * mz; _2q2mx = 2.0f * q2 * mx; hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; _2bx = sqrt(hx * hx + hy * hy); _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; _4bx = 2.0f * _2bx; _4bz = 2.0f * _2bz; // Gradient decent algorithm corrective step s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude norm = 1.0f/norm; s1 *= norm; s2 *= norm; s3 *= norm; s4 *= norm; // Compute rate of change of quaternion qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; // Integrate to yield quaternion q1 += qDot1 * deltat; q2 += qDot2 * deltat; q3 += qDot3 * deltat; q4 += qDot4 * deltat; norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion norm = 1.0f/norm; q[0] = q1 * norm; q[1] = q2 * norm; q[2] = q3 * norm; q[3] = q4 * norm; } /** Get raw 9-axis motion sensor readings (accel/gyro/compass). * @param ax 12-bit signed integer container for accelerometer X-axis value * @param ay 12-bit signed integer container for accelerometer Y-axis value * @param az 12-bit signed integer container for accelerometer Z-axis value * @param gx 16-bit signed integer container for gyroscope X-axis value * @param gy 16-bit signed integer container for gyroscope Y-axis value * @param gz 16-bit signed integer container for gyroscope Z-axis value * @param mx 13-bit signed integer container for magnetometer X-axis value * @param my 13-bit signed integer container for magnetometer Y-axis value * @param mz 15-bit signed integer container for magnetometer Z-axis value * @see getAcceleration() * @see getRotation() * @see getMag() */ void getRaw9( int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz) { uint8_t rawData[8]; // x/y/z MSB and LSB registers raw data stored here // Read the six raw data registers into data array // Turn the MSB and LSB into a signed 12-bit value readBytes(BMX055_ACC_ADDRESS, BMX055_ACC_D_X_LSB, 6, rawData); *ax = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) >> 4; *ay = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) >> 4; *az = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) >> 4; // Read the six raw data registers sequentially into data array // Turn the MSB and LSB into a signed 16-bit value readBytes(BMX055_GYRO_ADDRESS, BMX055_GYRO_RATE_X_LSB, 6, rawData); *gx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); *gy = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]); *gz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]); // Read the six raw data registers into data array // 13-bit signed integer for x-axis and y-axis field // 15-bit signed integer for z-axis field readBytes(BMX055_MAG_ADDRESS, BMX055_MAG_XOUT_LSB, 8, rawData); if(rawData[6] & 0x01) // Check if data ready status bit is set { *mx = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]) >> 3; *my = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) >> 3; *mz = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) >> 1; } } /** Get raw 9-axis motion sensor readings (accel/gyro/compass). * @param ax accelerometer X-axis value (g's) * @param ay accelerometer Y-axis value (g's) * @param az accelerometer Z-axis value (g's) * @param gx gyroscope X-axis value (degrees per second) * @param gy gyroscope Y-axis value (degrees per second) * @param gz gyroscope Z-axis value (degrees per second) * @param mx magnetometer X-axis value (milliGauss) * @param my magnetometer Y-axis value (milliGauss) * @param mz magnetometer Z-axis value (milliGauss) * @see getAcceleration() * @see getRotation() * @see getMag() */ void getMotion9( float* ax, float* ay, float* az, float* gx, float* gy, float* gz, float* mx, float* my, float* mz) { int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output int16_t magCount[3]; // Stores the 13/15-bit signed magnetometer sensor output // Read the x/y/z raw values readAccelData(accelCount); // Calculate the accleration value into actual g's // get actual g value, this depends on scale being set *ax = (float)accelCount[0]*aRes; // + accelBias[0]; *ay = (float)accelCount[1]*aRes; // + accelBias[1]; *az = (float)accelCount[2]*aRes; // + accelBias[2]; // Read the x/y/z raw values readGyroData(gyroCount); // Calculate the gyro value into actual degrees per second // get actual gyro value, this depends on scale being set *gx = (float)gyroCount[0]*gRes; *gy = (float)gyroCount[1]*gRes; *gz = (float)gyroCount[2]*gRes; // Read the x/y/z raw values readMagData(magCount); // Calculate the magnetometer values in milliGauss // Temperature-compensated magnetic field is in 16 LSB/microTesla // get actual magnetometer value, this depends on scale being set *mx = (float)magCount[0]*mRes - magBias[0]; *my = (float)magCount[1]*mRes - magBias[1]; *mz = (float)magCount[2]*mRes - magBias[2]; } void runAHRS(float mdeltat, float local_declination = LOCAL_DECLINATION) { float ax, ay, az, gx, gy, gz, mx, my, mz; getMotion9(&ax, &ay, &az, &gx, &gy, &gz, &mx, &my, &mz); deltat = mdeltat; // Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer; // the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro! // We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter. // For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like // in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention. // This is ok by aircraft orientation standards! // Pass gyro rate as rad/s //MadgwickQuaternionUpdate(ax, ay, az, gx*M_PI/180.0f, gy*M_PI/180.0f, gz*M_PI/180.0f, -my, mx, mz); MadgwickQuaternionUpdate(-ay, ax, az, -gy*M_PI/180.0f, gx*M_PI/180.0f, gz*M_PI/180.0f, mx, my, mz); // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); pitch *= 180.0f / M_PI; yaw *= 180.0f / M_PI; yaw -= local_declination; roll *= 180.0f / M_PI; } }; #endif /* BMX055_H_ */