Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed OB1203_example_driver
main.cpp
- Committer:
- laserdad
- Date:
- 2018-10-02
- Revision:
- 17:81a9df351dcd
- Parent:
- 16:0a113303c3ed
File content as of revision 17:81a9df351dcd:
#include "mbed.h" #include "OB1203.h" #include "math.h" //#include "SoftI2C.h" //normal I2C i2c(I2C_SDA,I2C_SCL); //instantiate an i2c object from its class #define intb_pin D3 //slave board// //I2C i2c(D12,PA_7); //#define intb_pin D10 InterruptIn intb(intb_pin); //declare an interrupt pin for INTB //setting three 3 pins high to function as pullups for SDA, SCL and INTB //Connect these pins to SDA, SCL and INTB by 2.7K resistors. //5K resistors also work usually DigitalOut sda_pullup(D10,1); DigitalOut scl_pullup(D11,1); DigitalOut intb_pullup(D12,1); OB1203 ob1203(&i2c); //instantiate the OB1203 object from its class and pass i2c object Serial pc(USBTX, USBRX,256000); //create a serial port for printing data to a pc //Serial nrfPort(PA_9, PA_10, 115200); //nrfPort.printf("my data %f\r\n",mydata); Timer t; //use a microsecond timer for time stamping data //USER CONFIGURABLE********* bool mode = 1; //0 for PS_LS, 1 for PPG (ignores PS, LS and temp) bool meas_ps = 1; bool spo2 = 1; //0 for HR, 1 for SpO2 bool afull = 1; //use Afull interrupt--otherwise PPG new data interrupt bool meas_temp = 0; bool printAvg = 0; //default 0 print raw data bool redAGC = 1; bool IRAGC = 1; bool trim_oscillator = 1; bool printCurrent = 1; //**************************** //internal settings bool intFlagged =0; int sample_delay = 25; //ms void defaultConfig() //populate the default settings here { //high accuracy oscillator trim overwrite option ob1203.osc_trim = 0x3F; //max trim code =0x3F //temperature sensor settings (hidden registers) meas_temp ? ob1203.temp_en = TEMP_ON : ob1203.temp_en = TEMP_OFF; //LS settings ob1203.ls_res = LS_RES(2); //2= 18bit 100ms, 0= max res ob1203.ls_rate = LS_RATE(2); //2 =100ms, 4 = 500ms ob1203.ls_gain = LS_GAIN(3); //gain 3 default (range) ob1203.ls_thres_hi = 0x000FFFFF; ob1203.ls_thres_lo = 0; ob1203.ls_sai = LS_SAI_OFF; ob1203.ls_mode = RGB_MODE; ob1203.ls_en = LS_ON; //PS and PPG settings ob1203.ps_sai_en = PS_SAI_OFF; // ob1203.ps_sai_en = PS_SAI_ON; if(mode) { if (spo2) { ob1203.ppg_ps_mode = SPO2_MODE; } else { ob1203.ppg_ps_mode = HR_MODE; } } else { ob1203.ppg_ps_mode = PS_MODE; } ob1203.ps_pulses = PS_PULSES(3); // pc.printf("ps_pulses = %02X\r\n",ob1203.ps_pulses); ob1203.ps_pwidth = PS_PWIDTH(1); ob1203.ps_rate = PS_RATE(4); // pc.printf("ps_rate = %02X\r\n",ob1203.ps_rate); ob1203.ps_avg_en = PS_AVG_OFF; ob1203.ps_can_ana = PS_CAN_ANA_0; ob1203.ps_digital_can = 150; ob1203.ps_hys_level = 0; meas_ps ? ob1203.ps_current = 0x1FF : ob1203.ps_current = 0x000; // ob1203.ps_current = 0; //ob1203.ps_thres_hi = 0xFF; //ob1203.ps_thres_lo = 0x00; ob1203.ps_thres_hi = 2000; ob1203.ps_thres_lo = 1000; //interrupts ob1203.ls_int_sel = LS_INT_SEL_W; ob1203.ls_var_mode = LS_THRES_INT_MODE; //ob1203.ls_int_en = LS_INT_ON; ob1203.ls_int_en = LS_INT_OFF; ob1203.ppg_ps_en = PPG_PS_ON; //enable measurements ob1203.ps_logic_mode = PS_INT_READ_CLEARS; ob1203.ps_int_en = PS_INT_ON; ob1203.ls_persist = LS_PERSIST(2); ob1203.ps_persist = PS_PERSIST(2); //BIO SETTINGS //int if(afull) { ob1203.afull_int_en = AFULL_INT_ON; ob1203.ppg_int_en = PPG_INT_OFF; } else { ob1203.afull_int_en = AFULL_INT_OFF; ob1203.ppg_int_en = PPG_INT_ON; } //PPG ob1203.ir_current = 0x1AF; //max 1023. 3FF if (spo2) { // ob1203.r_current = 0x0FF; ob1203.r_current = 0x1AF; //max 511. 1FF } else { ob1203.r_current = 0; } ob1203.ppg_ps_gain = PPG_PS_GAIN_1; ob1203.ppg_pow_save = PPG_POW_SAVE_OFF; ob1203.led_flip = LED_FLIP_OFF; ob1203.ch1_can_ana = PPG_CH1_CAN(0); ob1203.ch2_can_ana = PPG_CH2_CAN(0); //use rate 1 with pulse width 3 and average 4, or rate 3 with pulse width 4 and average 3 for 100 sps (50Hz basis) or 120 sps sample rate (60Hz basis) ob1203.ppg_avg = PPG_AVG(4); //2^n averages ob1203.ppg_rate = PPG_RATE(1); ob1203.ppg_pwidth = PPG_PWIDTH(3); ob1203.ppg_freq = PPG_FREQ_50HZ; // ob1203.ppg_freq = PPG_FREQ_60HZ; ob1203.bio_trim = 3; //max 3 --this dims the ADC sensitivity, but reduces noise ob1203.led_trim = 0x00; //can use to overwrite trim setting and max out the current ob1203.ppg_LED_settling = PPG_LED_SETTLING(2); //hidden regstier for adjusting LED setting time (not a factor for noise) ob1203.ppg_ALC_track = PPG_ALC_TRACK(2); //hidden register for adjusting ALC track and hold time (not a factor for noise) ob1203.diff = DIFF_ON; //hidden register for turning off subtraction of residual ambient light after ALC ob1203.alc = ALC_ON; //hidden register for turning off ambient light cancelleation track and hold circuit ob1203.sig_out = SIGNAL_OUT; //hidden register for selecting ambient sample or LED sample if DIFF is off ob1203.fifo_rollover_en = FIFO_ROLL_ON; ob1203.fifo_afull_advance_warning = AFULL_ADVANCE_WARNING(0x0F); //warn as quickly as possible (after 17 samples with 0x0F) //run initialization according to user compile settings if(mode) { spo2 ? ob1203.init_spo2() : ob1203.init_hr(); } else { meas_ps ? ob1203.init_ps_rgb() : ob1203.init_rgb(); } if(trim_oscillator) ob1203.setOscTrim(); } void regDump(uint8_t Addr, uint8_t startByte, uint8_t endByte) { /*print the values of up to 20 registers--buffer limit, e.g.*/ char regData[20]; int numBytes; if (endByte>=startByte) { numBytes = (endByte-startByte+1) < 20 ? (endByte-startByte+1) : 20; } else { numBytes=1; } regData[0] = startByte; i2c.write(Addr,regData,1,true); i2c.read(Addr, regData, numBytes); for(int n=0; n<numBytes; n++) { pc.printf("%02X, %02X \r\n", startByte+n, regData[n]); } } void intEvent(void) { intFlagged = 1; } int main() /*This program is messy bacause it allows several different print options and interrupt modes Most of the variables are associated with an optional FIR filter to make data pretty. */ { int numInts = 0; uint32_t running_avg = 10; uint32_t ps_running_avg = 100; uint32_t ps_avg_ptr = 0; char avg_ptr = 0; int baseline_ptr = 0; uint32_t running_baseline = 240; int first = 1; uint32_t IRavg = 0; uint32_t Ravg = 0; uint32_t IRprev = 0; uint32_t Rprev = 0; uint32_t prevAvg = 0; uint32_t IR_avg_buffer[running_avg]; uint32_t R_avg_buffer[running_avg]; uint32_t IR_baseline_buffer[running_baseline]; uint32_t R_baseline_buffer[running_baseline]; uint32_t IRbaseline_prev=0;; uint32_t Rbaseline_prev=0;; uint32_t IRbaseline=0; uint32_t Rbaseline=0; uint32_t prevBaseline=0; uint32_t PSavg = 0; uint32_t PSprev = 0; uint32_t PS_avg_buffer[ps_running_avg]; uint32_t targetIRcounts = 196608; //0.75 of full scale uint32_t targetRcounts = 196608; //0.75 of full scale // uint32_t tol1 = 8192; //1 5 bit increment uint32_t tol1 = 8192; //1 5 bit increment uint32_t tol2 = 39321; //for 90% and 60% large limits uint32_t step = 8; uint32_t IR_in_range = 0; uint32_t R_in_range = 0; bool update = 0; uint32_t in_range_persist = 4; uint16_t maxIRcurrent =0x2AF; for (int n=0;n<ps_running_avg;n++) { PS_avg_buffer[n] =0; } i2c.frequency( 400000 ); //always use max speed I2C char valid; uint32_t ps_ls_data[7]; //array for storing parsed samples char samples2Read = 6; //FIFO samples, e.g. 4 samples * 3 bytes = 12 bytes (or 2 SpO2 samples) char fifoBuffer[samples2Read*3]; uint32_t ppgData[samples2Read]; pc.printf("register settings\r\n"); regDump(OB1203_ADDR,0,19); regDump(OB1203_ADDR,20,39); regDump(OB1203_ADDR,40,59); regDump(OB1203_ADDR,60,77); pc.printf("do initial config\r\n"); defaultConfig(); //do the ASIC configuration now pc.printf("print new register config\r\n"); regDump(OB1203_ADDR,0,19); regDump(OB1203_ADDR,20,39); regDump(OB1203_ADDR,40,59); regDump(OB1203_ADDR,60,77); intb.fall(&intEvent); //attach a falling interrupt t.start(); //start microsecond timer for datalogging while(1) { if(mode) //PPG case******************************************************* { if(!intb.read()) //check the intb to see if it is low (or could check variable set by ISR here) { if(!afull) //if you are using sample completion interrupts { numInts++; //increment counter to get data every so many interrupts if ppg new data interrupt mode } else { numInts = samples2Read; } intFlagged = 1; if( (numInts < samples2Read) && !afull) { ob1203.get_status(); //clear interrupt--not time to get data yet } else if(intFlagged && (numInts==samples2Read) ) //time to get data { numInts = 0; ob1203.getFifoSamples(samples2Read,fifoBuffer); // for (int n=0;n<samples2Read*3;n++) // { // pc.printf("%02X ",fifoBuffer[n]); // } // pc.printf("\r\n"); ob1203.parseFifoSamples(samples2Read,fifoBuffer,ppgData); // for (int n=0;n<samples2Read;n++) // { // pc.printf("%d ",ppgData[n]); // } // pc.printf("\r\n"); if(first) //populate average and baseline buffers the first time we run { for(int n=0;n<running_avg;n++) { IR_avg_buffer[n] = ppgData[0]; IRavg += IR_avg_buffer[n]; if(spo2) { R_avg_buffer[n] = ppgData[1]; Ravg += R_avg_buffer[n]; } } for( int n=0;n<running_baseline;n++) { IR_baseline_buffer[n] = 0; if(spo2) { R_baseline_buffer[n] = 0; } } first = 0; }//end if first for (int n=0;n<samples2Read/2;n++) { ( avg_ptr+1 == running_avg ) ? avg_ptr = 0 : avg_ptr++; ( baseline_ptr+1 == running_baseline) ? baseline_ptr = 0 : baseline_ptr++; IRprev = IR_avg_buffer[avg_ptr]; //load the sample you are about to write over IR_avg_buffer[avg_ptr] = ppgData[2*n]; //load the new sample in the buffer IRavg += (IR_avg_buffer[avg_ptr] - IRprev); //update the average by removing the old sample and adding the new IRbaseline_prev = IR_baseline_buffer[baseline_ptr]; //load the sample you are about to write over IR_baseline_buffer[baseline_ptr] = ppgData[2*n]; //load the new sample in the buffer IRbaseline += (IR_baseline_buffer[baseline_ptr] - IRbaseline_prev); //update the average by removing the old sample and adding the new if(spo2) //print two columsn of data { Rprev = R_avg_buffer[avg_ptr]; R_avg_buffer[avg_ptr] = ppgData[2*n+1]; Ravg += (R_avg_buffer[avg_ptr] - Rprev); // pc.printf("%d, %d, %d, %d\r\n",IRavg/running_avg,Ravg/running_avg, IR_avg_buffer[avg_ptr],R_avg_buffer[avg_ptr]); Rbaseline_prev = R_baseline_buffer[baseline_ptr]; R_baseline_buffer[baseline_ptr] = ppgData[2*n+1]; Rbaseline += (R_baseline_buffer[baseline_ptr] - Rbaseline_prev); if(printAvg) { //PRINT AVG DATA pc.printf("%d,%d,%d\r\n",t.read_us(),IRavg/running_avg,Ravg/running_avg); // pc.printf("%d,%d\r\n",IRavg/running_avg-IRbaseline/running_baseline, Ravg/running_avg-Rbaseline/running_baseline); // pc.printf("%d,%d,%d,%d\r\n",Ravg/running_avg,Rbaseline/running_baseline,Rbaseline_prev,Ravg/running_avg-Rbaseline/running_baseline); } else { //PRINT RAW DATA if(printCurrent) { pc.printf("%d, %d, %d, %d, %d\r\n",t.read_us(),ppgData[2*n],ppgData[2*n+1],ob1203.ir_current,ob1203.r_current); //print with us counter time stamp (use only with slower data rates or averaging as this slows down the data printing); } else { pc.printf("%d, %d, %d\r\n",t.read_us(),ppgData[2*n],ppgData[2*n+1]); //print with us counter time stamp (use only with slower data rates or averaging as this slows down the data printing); // pc.printf("%d, %d\r\n",ppgData[2*n],ppgData[2*n+1]); //print without us timer (faster) } } }//end SpO2 case else //HR mode print one column of data { ( avg_ptr+1 == running_avg ) ? avg_ptr = 0 : avg_ptr++; ( baseline_ptr+1 == running_baseline) ? baseline_ptr = 0 : baseline_ptr++; IRprev = IR_avg_buffer[avg_ptr]; IR_avg_buffer[avg_ptr] = ppgData[2*n+1]; prevAvg = IRavg; IRavg += (IR_avg_buffer[avg_ptr] - IRprev); IRbaseline_prev = IR_baseline_buffer[baseline_ptr]; //load the sample you are about to write over IR_baseline_buffer[baseline_ptr] = ppgData[2*n]; //load the new sample in the buffer prevBaseline = IRbaseline; IRbaseline += (IR_baseline_buffer[baseline_ptr] - IRbaseline_prev); //update the average by removing the old sample and adding the new if(printAvg) { //PRINT AVG DATA pc.printf("%d\r\n%d\r\n",prevAvg/running_avg-prevBaseline/running_baseline,IRavg/running_avg-IRbaseline/running_baseline); } else { //PRINT RAW DATA pc.printf("%d\r\n%d\r\n",ppgData[2*n],ppgData[2*n+1]); // pc.printf("%d, %d, %d\r\n",t.read_us(),ppgData[2*n],ppgData[2*n+1]); //print with us counter time stamp (use only with slower data rates or averaging as this slows down the data printing); } }//HR case if(n+1==samples2Read/2) { if(IRAGC) { if( ppgData[2*n] > targetIRcounts + (IR_in_range>in_range_persist ? tol2: tol1) ) { if(ppgData[2*n]>targetIRcounts + tol2) IR_in_range=0; if(ob1203.ir_current>step) { // pc.printf("IR %d, IRc %d--, IR_in_range %d\r\n",ppgData[2*n],ob1203.ir_current,IR_in_range); ob1203.ir_current -= step; update = 1; } } else if( ppgData[2*n] < targetIRcounts - (IR_in_range>in_range_persist ? tol2 : tol1) ) { if(ppgData[2*n]<targetIRcounts - tol2) IR_in_range=0; if(ob1203.ir_current+step<maxIRcurrent) //no need to go to full current { ob1203.ir_current += step; update = 1; // pc.printf("IR %d, IRc %d++, IR_in range %d\r\n", ppgData[2*n],ob1203.ir_current,IR_in_range); } } else { if( (ppgData[2*n] > (targetRcounts-tol1) ) && (ppgData[2*n] < (targetRcounts+tol1)) ) IR_in_range++; } }//end IR AGC case if(spo2 && redAGC) { if( ppgData[2*n+1] > targetRcounts + (R_in_range>in_range_persist ? tol2 : tol1) ) { if(ppgData[2*n+1]>targetRcounts + tol2) R_in_range=0; if(ob1203.r_current>step) { // pc.printf("R %d, Rc %d--,R_in_range %d\r\n", ppgData[2*n+1],ob1203.r_current,R_in_range); ob1203.r_current -= step; update = 1; } } else if( ppgData[2*n+1] < targetRcounts - (R_in_range>in_range_persist ? tol2 : tol1) ) { if(ppgData[2*n+1]<targetRcounts - tol2) R_in_range=0; if(ob1203.r_current+step<0x1FF) { // pc.printf("R %d, Rc %d++,R_in_range %d\r\n", ppgData[2*n+1],ob1203.r_current,R_in_range); ob1203.r_current += step; update = 1; } } else { if( (ppgData[2*n+1] > (targetRcounts-tol1) ) && (ppgData[2*n+1] < (targetRcounts+tol1)) ) R_in_range++; } if(update) { ob1203.setPPGcurrent(); ob1203.resetFIFO(); update=0; } }//end R AGC case } }//end sample loop intFlagged = 0; }//end if time to read samples } //end if !intb }// end mode (PPG case) //********************************************************************* else //LS and PS measurement case { wait_ms(sample_delay); if( meas_ps ? ob1203.psIsNew() : ob1203.lsIsNew() ) { meas_ps ? valid = ob1203.get_ps_ls_data(ps_ls_data) : valid = ob1203.get_ls_data(ps_ls_data); if(meas_ps) { ( ps_avg_ptr+1 == ps_running_avg ) ? ps_avg_ptr = 0 : ps_avg_ptr++; PSprev = PS_avg_buffer[ps_avg_ptr]; //load the sample you are about to write over PS_avg_buffer[ps_avg_ptr] = ps_ls_data[0]; //load the new sample in the buffer PSavg += (PS_avg_buffer[ps_avg_ptr] - PSprev); //update the average by removing the old sample and adding the new // pc.printf("%d %d %d %d %d ",ps_avg_ptr, PSprev, PS_avg_buffer[ps_avg_ptr],ps_ls_data[0],PSavg); } if (meas_temp) { ob1203.setMainConfig(); } pc.printf("%d, %d %d %d %d %d\r\n",ps_ls_data[0],ps_ls_data[1],ps_ls_data[2],ps_ls_data[3],ps_ls_data[4],ps_ls_data[5]); // pc.printf("%d, %d %d %d %d %d %d %d\r\n",(PSavg/ps_running_avg),ps_ls_data[0],ps_ls_data[1],ps_ls_data[2],ps_ls_data[3],ps_ls_data[4],ps_ls_data[5],ps_ls_data[6]); } // else // { // pc.printf("status = %04X\r\n",ob1203.get_status() ); // } } }//end while }//end main