Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed OB1203_example_driver
main.cpp
- Committer:
- laserdad
- Date:
- 2018-05-16
- Revision:
- 7:3ed0f0522b43
- Parent:
- 6:aaa2f8fb5123
- Child:
- 8:21738f9c5835
File content as of revision 7:3ed0f0522b43:
#include "mbed.h" #include "OB1203.h" #include "math.h" //#include "SoftI2C.h" #define intb_pin D3 I2C i2c(I2C_SDA,I2C_SCL); //SoftI2C i2c(I2C_SDA,I2C_SCL); InterruptIn intb(intb_pin); DigitalOut sda_pullup(D11,1); DigitalOut scl_pullup(D12,1); DigitalOut intb_pullup(D13,1); OB1203 ob1203(&i2c); Serial pc(USBTX, USBRX,256000); Timer t; //USER CONFIGURABLE********* bool mode = 1; //0 for PS_LS, 1 for PPG bool meas_ps = 1; bool spo2 = 1; //0 for HR, 1 for SpO2 bool afull = 1; //use Afull interrupt--otherwise PPG new data interrupt bool meas_temp = 0; //**************************** //internal settings bool intFlagged =0; int sample_delay = 25; //ms void defaultConfig() { meas_temp ? ob1203.temp_en = TEMP_ON : ob1203.temp_en = TEMP_OFF; ob1203.ls_res = LS_RES(0); //2= 18bit 100ms, 0= max res ob1203.ls_rate = LS_RATE(4); //2 =100ms, 4 = 500ms ob1203.ls_gain = LS_GAIN(3); //gain 3 default (range) ob1203.ls_thres_hi = 0x000FFFFF; ob1203.ls_thres_lo = 0; ob1203.ls_sai = LS_SAI_OFF; ob1203.ls_mode = RGB_MODE; ob1203.ls_en = LS_ON; ob1203.ps_sai_en = PS_SAI_OFF; // ob1203.ps_sai_en = PS_SAI_ON; if(mode) { if (spo2) { ob1203.ppg_ps_mode = SPO2_MODE; } else { ob1203.ppg_ps_mode = HR_MODE; } } else { ob1203.ppg_ps_mode = PS_MODE; } ob1203.ps_pulses = PS_PULSES(8); // pc.printf("ps_pulses = %02X\r\n",ob1203.ps_pulses); ob1203.ps_pwidth = PS_PWIDTH(1); ob1203.ps_rate = PS_RATE(4); // pc.printf("ps_rate = %02X\r\n",ob1203.ps_rate); ob1203.ps_avg_en = PS_AVG_ON; ob1203.ps_can_ana = PS_CAN_ANA_0; ob1203.ps_digital_can = 0; ob1203.ps_hys_level = 0; meas_ps ? ob1203.ps_current = 0x3FF : ob1203.ps_current = 0x000; // ob1203.ps_current = 0; ob1203.ps_thres_hi = 0xFF; ob1203.ps_thres_lo = 0x00; //interrupts ob1203.ls_int_sel = LS_INT_SEL_W; ob1203.ls_var_mode = LS_THRES_INT_MODE; ob1203.ls_int_en = LS_INT_ON; ob1203.ppg_ps_en = PPG_PS_ON; ob1203.ps_logic_mode = PS_INT_READ_CLEARS; ob1203.ps_int_en = PS_INT_ON; ob1203.ls_persist = LS_PERSIST(2); ob1203.ps_persist = PS_PERSIST(2); //int if(afull) { ob1203.afull_int_en = AFULL_INT_ON; ob1203.ppg_int_en = PPG_INT_OFF; } else { ob1203.afull_int_en = AFULL_INT_OFF; ob1203.ppg_int_en = PPG_INT_ON; } //PPG ob1203.ir_current = 511; //max 1023. 3FF if (spo2) { // ob1203.r_current = 0x0FF; ob1203.r_current = 511; //max 511. 1FF } else { ob1203.r_current = 0; } ob1203.ppg_ps_gain = PPG_PS_GAIN_1; ob1203.ppg_pow_save = PPG_POW_SAVE_OFF; ob1203.led_flip = LED_FLIP_OFF; ob1203.ch1_can_ana = PPG_CH1_CAN(0); ob1203.ch2_can_ana = PPG_CH2_CAN(0); ob1203.ppg_avg = PPG_AVG(0); //2^n ob1203.ppg_rate = PPG_RATE(1); ob1203.ppg_pwidth = PPG_PWIDTH(3); ob1203.ppg_freq = PPG_FREQ_60HZ; // ob1203.ppg_freq = PPG_FREQ_50HZ; ob1203.fifo_rollover_en = FIFO_ROLL_ON; ob1203.fifo_afull_samples_left = AFULL_SAMPLES_LEFT(8); if(mode) { if(spo2) { ob1203.init_spo2(); } else { ob1203.init_hr(); } } else { meas_ps ? ob1203.init_ps_rgb() : ob1203.init_rgb(); } } void regDump(uint8_t Addr, uint8_t startByte, uint8_t endByte) { /*print the values of up to 20 registers--buffer limit, e.g.*/ char regData[20]; int numBytes; if (endByte>=startByte) { numBytes = (endByte-startByte+1) < 20 ? (endByte-startByte+1) : 20; } else { numBytes=1; } regData[0] = startByte; i2c.write(Addr,regData,1,true); i2c.read(Addr, regData, numBytes); for(int n=0; n<numBytes; n++) { pc.printf("%02X, %02X \r\n", startByte+n, regData[n]); } } void intEvent(void) { intFlagged = 1; } int main() { int numInts = 0; uint32_t running_avg = 65; uint32_t ps_running_avg = 1; uint32_t ps_avg_ptr = 0; char avg_ptr = 0; int baseline_ptr = 0; uint32_t running_baseline = 850; int first = 1; uint32_t IRavg = 0; uint32_t Ravg = 0; uint32_t IRprev = 0; uint32_t Rprev = 0; uint32_t prevAvg = 0; uint32_t IR_avg_buffer[running_avg]; uint32_t R_avg_buffer[running_avg]; uint32_t IR_baseline_buffer[running_baseline]; uint32_t R_baseline_buffer[running_baseline]; uint32_t IRbaseline_prev=0;; uint32_t Rbaseline_prev=0;; uint32_t IRbaseline=0; uint32_t Rbaseline=0; uint32_t prevBaseline=0; uint32_t PSavg = 0; uint32_t PSprev = 0; uint32_t PS_avg_buffer[ps_running_avg]; for (int n=0;n<ps_running_avg;n++) { PS_avg_buffer[n] =0; } i2c.frequency( 400000 ); char valid; uint32_t ps_ls_data[7]; char samples2Read = 4; //samples, e.g. 4 samples * 3 bytes = 12 bytes (or 2 SpO2 samples) char fifoBuffer[samples2Read*3]; uint32_t ppgData[samples2Read]; pc.printf("register settings\r\n"); regDump(OB1203_ADDR,0,19); regDump(OB1203_ADDR,20,39); regDump(OB1203_ADDR,40,59); regDump(OB1203_ADDR,60,77); pc.printf("do initial config\r\n"); defaultConfig(); //rgb ps pc.printf("print new register config\r\n"); regDump(OB1203_ADDR,0,19); regDump(OB1203_ADDR,20,39); regDump(OB1203_ADDR,40,59); regDump(OB1203_ADDR,60,77); intb.fall(&intEvent); t.start(); while(1) { if(mode) { if(!intb.read()) { if(!afull) { numInts++; //get data every other interrupt if ppg new data interrupt mode } else { numInts = samples2Read; } intFlagged = 1; if( (numInts < samples2Read) && !afull) { ob1203.get_status(); } else if(intFlagged && (numInts==samples2Read) ) { numInts = 0; ob1203.getFifoSamples(samples2Read,fifoBuffer); // for (int n=0;n<samples2Read*3;n++) // { // pc.printf("%02X ",fifoBuffer[n]); // } // pc.printf("\r\n"); ob1203.parseFifoSamples(samples2Read,fifoBuffer,ppgData); // for (int n=0;n<samples2Read;n++) // { // pc.printf("%d ",ppgData[n]); // } // pc.printf("\r\n"); if(first) //populate average and baseline buffers the first time we run { for(int n=0;n<running_avg;n++) { IR_avg_buffer[n] = ppgData[0]; IRavg += IR_avg_buffer[n]; if(spo2) { R_avg_buffer[n] = ppgData[1]; Ravg += R_avg_buffer[n]; } } for( int n=0;n<running_baseline;n++) { // IR_baseline_buffer[n] = ppgData[0]; IR_baseline_buffer[n] = 0; if(spo2) { // R_baseline_buffer[n] = ppgData[1]; R_baseline_buffer[n] = 0; } } first = 0; // IRbaseline = running_baseline*ppgData[0]; // Rbaseline = running_baseline*ppgData[1]; } // IRbaseline = running_baseline*ppgData[0]; for (int n=0;n<samples2Read/2;n++) { ( avg_ptr+1 == running_avg ) ? avg_ptr = 0 : avg_ptr++; ( baseline_ptr+1 == running_baseline) ? baseline_ptr = 0 : baseline_ptr++; IRprev = IR_avg_buffer[avg_ptr]; //load the sample you are about to write over IR_avg_buffer[avg_ptr] = ppgData[2*n]; //load the new sample in the buffer IRavg += (IR_avg_buffer[avg_ptr] - IRprev); //update the average by removing the old sample and adding the new IRbaseline_prev = IR_baseline_buffer[baseline_ptr]; //load the sample you are about to write over IR_baseline_buffer[baseline_ptr] = ppgData[2*n]; //load the new sample in the buffer IRbaseline += (IR_baseline_buffer[baseline_ptr] - IRbaseline_prev); //update the average by removing the old sample and adding the new if(spo2) { Rprev = R_avg_buffer[avg_ptr]; R_avg_buffer[avg_ptr] = ppgData[2*n+1]; Ravg += (R_avg_buffer[avg_ptr] - Rprev); // pc.printf("%d, %d, %d\r\n",t.read_us(),ppgData[2*n],ppgData[2*n+1]); // pc.printf("%d, %d, %d, %d\r\n",IRavg/running_avg,Ravg/running_avg, IR_avg_buffer[avg_ptr],R_avg_buffer[avg_ptr]); Rbaseline_prev = R_baseline_buffer[baseline_ptr]; R_baseline_buffer[baseline_ptr] = ppgData[2*n+1]; Rbaseline += (R_baseline_buffer[baseline_ptr] - Rbaseline_prev); pc.printf("%d,%d\r\n",IRavg/running_avg,Ravg/running_avg); // pc.printf("%d,%d\r\n",IRavg/running_avg-IRbaseline/running_baseline, Ravg/running_avg-Rbaseline/running_baseline); // pc.printf("%d,%d,%d,%d\r\n",Ravg/running_avg,Rbaseline/running_baseline,Rbaseline_prev,Ravg/running_avg-Rbaseline/running_baseline); } else { ( avg_ptr+1 == running_avg ) ? avg_ptr = 0 : avg_ptr++; ( baseline_ptr+1 == running_baseline) ? baseline_ptr = 0 : baseline_ptr++; IRprev = IR_avg_buffer[avg_ptr]; IR_avg_buffer[avg_ptr] = ppgData[2*n+1]; prevAvg = IRavg; IRavg += (IR_avg_buffer[avg_ptr] - IRprev); IRbaseline_prev = IR_baseline_buffer[baseline_ptr]; //load the sample you are about to write over IR_baseline_buffer[baseline_ptr] = ppgData[2*n]; //load the new sample in the buffer prevBaseline = IRbaseline; IRbaseline += (IR_baseline_buffer[baseline_ptr] - IRbaseline_prev); //update the average by removing the old sample and adding the new pc.printf("%d\r\n%d\r\n",prevAvg/running_avg-prevBaseline/running_baseline,IRavg/running_avg-IRbaseline/running_baseline); // pc.printf("%d\r\n%d\r\n",ppgData[2*n],ppgData[2*n+1]); } } intFlagged = 0; } } //end if !intb }// end mode else { wait_ms(sample_delay); if( meas_ps ? ob1203.psIsNew() : ob1203.lsIsNew() ) { meas_ps ? valid = ob1203.get_ps_ls_data(ps_ls_data) : valid = ob1203.get_ls_data(ps_ls_data); if(meas_ps) { ( ps_avg_ptr+1 == ps_running_avg ) ? ps_avg_ptr = 0 : ps_avg_ptr++; PSprev = PS_avg_buffer[ps_avg_ptr]; //load the sample you are about to write over PS_avg_buffer[ps_avg_ptr] = ps_ls_data[0]; //load the new sample in the buffer PSavg += (PS_avg_buffer[ps_avg_ptr] - PSprev); //update the average by removing the old sample and adding the new // pc.printf("%d %d %d %d %d ",ps_avg_ptr, PSprev, PS_avg_buffer[ps_avg_ptr],ps_ls_data[0],PSavg); } if (meas_temp) { ob1203.setMainConfig(); } // pc.printf("%d %d %d %d %d %d\r\n",ps_ls_data[0],ps_ls_data[1],ps_ls_data[2],ps_ls_data[3],ps_ls_data[4],ps_ls_data[5]); pc.printf("%d, %d %d %d %d %d %d %d\r\n",(PSavg/ps_running_avg)>>6,ps_ls_data[0],ps_ls_data[1],ps_ls_data[2],ps_ls_data[3],ps_ls_data[4],ps_ls_data[5],ps_ls_data[6]); } // else // { // pc.printf("status = %04X\r\n",ob1203.get_status() ); // } } }//end while }//end main