Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Multiplexer-Test by
Multiplexer_read.cpp
- Committer:
- O_Shovah
- Date:
- 2014-09-08
- Revision:
- 2:d815250d0377
- Parent:
- 1:84c53305b6a5
- Child:
- 3:cb991a9ba6a6
File content as of revision 2:d815250d0377:
#include "mbed.h" #include "USBSerial.h" #include "EthernetInterface.h" //*************************************************************************************************** //Outputs DigitalOut Multiplex_select_0 (p15); DigitalOut Multiplex_select_1 (p16); DigitalOut Myled (LED1); PwmOut Bremsenstrom_MOSFET(p21); PwmOut Motroregler_PWM(p22); BusOut unused(p18); //*************************************************************************************************** //Inputs InterruptIn Drehzahl_lichtschranke(p14); Timer Umlaufzeit; Ticker ticker_read_sensor; AnalogIn Messkanal_0 (p19); AnalogIn Messkanal_1 (p20); AnalogIn DMS_0 (p17); //*************************************************************************************************** //Communication Serial pc(USBTX, USBRX); UDPSocket udp; Endpoint udp_dest; float MOSFET_duty_cycle = 0; volatile float Motorspannung, Bremsenspannung , Motorstrom, Aux,Bremsenstrom, Temperatur_0, Temperatur_1, Temperatur_2 ; //int Motor_ratio = 0, curr_Motor_pwm_pulsewidth = 0,curr_MOSFET_pwm_pulsewidth = 0, Drehzahl = 0; volatile int Drehzeit_counter = 0; #define DREHZEIT_SIZE 3 volatile int Drehzeit[DREHZEIT_SIZE]; //*************************************************************************************************** //read sensors via multiplexer void interr_read_sensors() { int Messwert_0, Messwert_1,select_0 = 0, select_1 = 0; Multiplex_select_0 = 0, Multiplex_select_1 = 0; //Selection of Multiplexer states for (int i=0; i!=5; ++i) { select_0 = Multiplex_select_0; select_1 = Multiplex_select_1; Messwert_0 = Messkanal_0.read_u16(); Messwert_1 = Messkanal_1.read_u16(); switch(i) { case 0: { Temperatur_0 = Messwert_0; Motorspannung = Messwert_1 * 0.000515 - 0.05 ; //Gute Näherung von 2- ~23V. Dannach zu niedrig.Z-Diode break; } case 1: { Temperatur_1 = Messwert_0; Motorstrom = Messwert_1 * 0.000396 - 4.15; break; } case 2: { Temperatur_2 = Messwert_0; Bremsenspannung = Messwert_1 * 0.000515 - 0.05;//Gute Näherung von 2- ~23V. Dannach zu niedrig.Z-Diode break; } case 3: { Aux = Messwert_0; Bremsenstrom = Messwert_1;// * 0.00032 - 15.8; break; } default: { //i =0; break; } } Multiplex_select_0 = i&0x01; Multiplex_select_1 = (i>>1)&0x01; wait(0.001); } } //*************************************************************************************************** //Control Motor rpm int rpm_control(float motor_n_cmd, float motor_n_cur) { static int motor_pwm_cmd_last = 900; //static float motor_n_last = 0; if (motor_n_cmd < 1.0) { Motroregler_PWM.pulsewidth_us(900); motor_pwm_cmd_last = 900; // motor_n_last = 0; return 1; } float motor_n_dif = motor_n_cmd - motor_n_cur; int motor_pwm_cmd = (int)(motor_pwm_cmd_last + motor_n_dif * 0.6 + 0.5); // round() ... works only for positive values pc.printf("cmd: %7.2f, cur: %7.2f, dif: %7.2f, motor_pwm_cmd: %4d, motor_pwm_dif: %4d, DMS: %f\n\r", motor_n_cmd*60, motor_n_cur*60, motor_n_dif*60, motor_pwm_cmd, motor_pwm_cmd-motor_pwm_cmd_last, ((int)DMS_0.read_u16())/65536.0*3.3); if (motor_pwm_cmd > 1900) motor_pwm_cmd = 1900; else if (motor_pwm_cmd < 1010) motor_pwm_cmd = 1005; Motroregler_PWM.pulsewidth_us(motor_pwm_cmd); motor_pwm_cmd_last = motor_pwm_cmd; return 1; } //*************************************************************************************************** //Control MOSFET pwm int brk_mosfet_control(float mosfet_pwm_cmd, float mosfet_pwm_cur) { static int mosfet_pwm_cmd_last = 0; if (mosfet_pwm_cmd < 1.0) { Bremsenstrom_MOSFET.pulsewidth_us(00); mosfet_pwm_cmd_last = 0; return 1; } float mosfet_pwm_dif = mosfet_pwm_cmd - mosfet_pwm_cur; // int mosfet_pwm_cmd = (int)(mosfet_pwm_cmd_last + mosfet_pwm_dif * 0.6 + 0.5); // round() ... works only for positive values pc.printf("cmd: %7.2f, cur: %7.2f, dif: %7.2f, mosfet_pwm_cmd: %4d, mosfet_pwm_dif: %4d", mosfet_pwm_cmd, mosfet_pwm_cur, mosfet_pwm_dif, mosfet_pwm_cmd, mosfet_pwm_cmd-mosfet_pwm_cmd_last); if (mosfet_pwm_cmd > 20000) mosfet_pwm_cmd = 20000; else if (mosfet_pwm_cmd < 0) mosfet_pwm_cmd = 0; Bremsenstrom_MOSFET.pulsewidth_us(MOSFET_pwm_cmd); mosfet_pwm_cmd_last = mosfet_pwm_cmd; return 1; } //*************************************************************************************************** //Calculate rpm void Motor_drehzahl() { static bool first_run = true; // Umlaufzeit.stop(); int tmp = Umlaufzeit.read_us(); if (first_run) { Umlaufzeit.start(); first_run = false; return; } if (tmp < 1000) return; // Cache last 3 values for averaging Drehzeit[Drehzeit_counter % DREHZEIT_SIZE] = tmp; ++Drehzeit_counter; Umlaufzeit.reset(); } //*************************************************************************************************** // MAIN: int main(void) { // Init networking EthernetInterface eth; int err = eth.init(); if (err) pc.printf("eth.init() failed. (%d)\n\r", err); else pc.printf("eth.init() successful.\n\r"); err = eth.connect(); if (err) pc.printf("eth.connect() failed. (%d)\n\r", err); else pc.printf("eth.connect() successful.\n\r"); char *ip_address = eth.getIPAddress(); pc.printf("IP-Address: %s\n\r", ip_address); err = udp.init(); if (err) pc.printf("udp.init() failed. (%d)\n\r", err); else pc.printf("udp.init() successful.\n\r"); err = udp_dest.set_address("192.168.0.183", 1234); if (err) pc.printf("udp_dest.set_address() failed. (%d)\n\r", err); else pc.printf("udp_dest.set_address() successful.\n\r"); // Init PWM Bremsenstrom_MOSFET.period(0.020); Motroregler_PWM.period(0.020); Motroregler_PWM.pulsewidth_us(900); wait(1.0); Drehzahl_lichtschranke.fall(&Motor_drehzahl); ticker_read_sensor.attach(&interr_read_sensors, 1.0); // Time counters Timer timer_print, timer_pwm; timer_print.start(); timer_pwm.start(); float motor_rpm_cmd = 0; float motor_n_cur = 0; pc.printf("Enter motor rpm to begin\n\r"); while(true) { if (pc.readable()) { pc.printf("\n\r Motor rpm\n\r"); pc.scanf("%f",&motor_rpm_cmd); pc.printf("%f\n\r",motor_rpm_cmd); } // Calculate motor_n_cur by averaging int drehzeit_sum = 0; for (int i=0; i != DREHZEIT_SIZE; ++i) drehzeit_sum += Drehzeit[i]; motor_n_cur = (drehzeit_sum ? (1.0e6/drehzeit_sum)*DREHZEIT_SIZE : 0.0); // Set motor_n_cur to 0 if the interrupt wasn't called for a specified time if (Umlaufzeit.read_ms() > 200) motor_n_cur = 0.0; // Controller is only called every n ms if (timer_pwm.read_ms() > 500) { // pc.printf("drehzeit_sum: %d, motor_n_cur: %f\n\r", drehzeit_sum, motor_n_cur); // pc.printf("%d %d %d\n\r", Drehzeit[0], Drehzeit[1], Drehzeit[2]); timer_pwm.reset(); rpm_control(motor_rpm_cmd/60.0, motor_n_cur); } // Myled = 0; // wait (0.5); /* if (timer_print.read_ms() > 1000) { timer_print.reset(); pc.printf(" [%Temperatur0, Motorspannung]; 0 %5.2f deg; 1 %5.2f V;", Temperatur_0, Motorspannung); pc.printf(" [%Temperatur1, Motorstrom]; 0 %5.2f deg; 1 %5.2f A;", Temperatur_1, Motorstrom); pc.printf(" [%Temperatur0, Bremsenspannung]; 0 %5.2f deg; 1 %5.2f V;", Temperatur_2, Bremsenspannung); pc.printf(" [Aux, Bremsenstrom]; 0 %5.2f NA; 1 %5.2f A;", Aux, Bremsenstrom); float drehzahl = (Drehzeit ? 1.0e6/Drehzeit : 0.0); pc.printf("\n\rCounter: %d, Drehzahl: %f rpm (%f Hz)\n\r\n\r", Drehzeit_counter, drehzahl*60, drehzahl); char udb_buf[] = "123"; err = udp.sendTo(udp_dest, udb_buf, sizeof(udb_buf)); if (err == -1) pc.printf("udp.sendTo() failed. (%d)\n\r", err); } */ } }