interrupt handling

Dependencies:  

readerComm.cpp

Committer:
rwclough
Date:
2015-03-05
Revision:
2:bd5afc5aa139
Parent:
1:1eb96189824d
Child:
3:eaae5433ab45

File content as of revision 2:bd5afc5aa139:

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
    Filename:       readerComm.cpp
    Description:    Functions used to communicate with the TRF7970 eval bd.
                    Communication is by means of an SPI interface between
                    the nRF51-DK board (nRF51422 MCU) and the TRF7970 eval bd.
    Copyright (C)   2015 Gymtrack, Inc.
    Author:         Ron Clough
    Date:           2015-02-27
    
    Changes:
    Rev     Date        Who     Details
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    0.0     2015-02-27  RWC     Original version.
    
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

#include    "mbed.h"
#include    "readerComm.h"
#include    "main.h"

uint8_t     afi = 0;
uint8_t     flags = 0;                      // Stores the mask value (used in anticollision)
uint8_t     command[2];
uint8_t     temp;
extern  DigitalOut      ISO15693LED;        // ISO15693 LED
extern  SPI             spi;                // main.cpp
extern  Serial          pc;                 // main.cpp
extern  DigitalOut      CS;                 // main.cpp
extern  InterruptIn     readerInt;          // main.cpp
extern  int8_t          rxtxState;          // Transmit/Receive byte count (main.cpp)
extern  uint8_t         buf[300];           // main.cpp
extern  uint8_t         irqRegister;        // Interrupt register (main.cpp)
extern  uint8_t         irqFlag;            // main.cpp
extern  uint8_t         rxErrorFlag;        // main.cpp
extern  uint8_t         readerMode;         // Determines how interrupts will be handled (main.cpp)
extern  uint8_t         buffer[2];

void initialSettings(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  initialSettings()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t mod_control[2];
    
    mod_control[0] = SOFT_INIT;
    spiDirectCommand(mod_control);
    mod_control[0] = IDLE;
    spiDirectCommand(mod_control);
    mod_control[0] = MODULATOR_CONTROL;
    mod_control[1] = 0x21;                  // 6.78 MHz, OOK 100%
    spiWriteSingle(mod_control, 2);
    mod_control[0] = MODULATOR_CONTROL;
    spiReadSingle(mod_control, 1);
}   // End of initialSettings()

void spiDirectCommand(uint8_t *buffer)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  directCommand()
//  Description:    Transmit a Direct Command to the reader chip.
//  Parameter:      *buffer =   the direct command.
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    *buffer = (0x80 | *buffer);     // Setup command mode
    *buffer = (0x9F & *buffer);     // Setup command mode
    CS = SELECT;
    spi.write(*buffer);
    CS = DESELECT;
}   // End of directCommand()

void spiWriteSingle(uint8_t *buffer, uint8_t length)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  spiWriteSingle()
//  Description:    Writes to specified reader registers.
//  Parameters:     *buffer =   addresses of the registers followed by the
//                              contents to write.
//                  length =    number of registers * 2.
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t i=0;
    
    CS = SELECT;
    while(length > 0) {
        *buffer = (0x1F & *buffer);     // Register address
        for(i = 0; i < 2; i++) {
            spi.write(*buffer);
            temp = spi.write(0x00);
            buffer++;
            length--;
        }
    }
    CS = DESELECT;
}   // End of spiWriteSingle()

void spiReadSingle(uint8_t *buffer, uint8_t number)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  spiReadSingle()
//  Description:    Reads specified reader chip registers and 
//                  writes register contents to *buffer.
//  Parameters:     *buffer =   addresses of the registers.
//                  number  =   number of registers.
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    CS = SELECT;
    while(number > 0) {
        *buffer = (0x40 | *buffer);     // Address, read, single
        *buffer = (0x5F & *buffer);     // Register address
        temp = spi.write(*buffer);
//        *buffer = spi.write(*buffer);
//        temp = spi.write(0x00);         // dummy read
        *buffer = spi.write(0x00);      // *buffer <- register contents
        buffer++;
        number--;
    }
    CS = DESELECT;
}   // End of spiReadSingle()

void spiReadContinuous(uint8_t *buffer, uint8_t length)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  spiReadContinuous()
//  Description:    Used in SPI mode to read a specified number of
//                  reader chip registers from a specified address upwards.
//                  Contents of the registers are stored in *buffer.
//  Parameters:     *buffer =   address of first register.
//                  length =    number of registers to read.
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    CS = SELECT;
    *buffer = (0x60 | *buffer);     // Address, read, continuous
    *buffer = (0x7f & *buffer);     // Register address
    spi.write(*buffer);
    temp = spi.write(0x00);
    while(length > 0) {
        spi.write(0x00);
        *buffer = spi.write(0x00);
        buffer++;
        length--;
    } // while
    CS = DESELECT;
}   // End of spiReadContinuous()

void spiRawWrite(uint8_t *buffer, uint8_t length)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  rawWrite()
//  Description:    Used in SPI mode to write direct to the reader chip.
//  Parameters:     *buffer =   raw data
//                  length =    number of data bytes
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    CS = SELECT;
    while(length > 0) {
        temp = spi.write(*buffer);
        buffer++;
        length--;
    }
    CS = DESELECT;
}   // End of spiRawWrite()

void stopDecoders(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  stopDecoders()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    command[0] = STOP_DECODERS;
    spiDirectCommand(command);
}

void runDecoders(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  runDecoders()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    command[0] = RUN_DECODERS;
    spiDirectCommand(command);
}

void txNextSlot(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  txNextSlot()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    command[0] = TRANSMIT_NEXT_SLOT;
    spiDirectCommand(command);
}

void disableSlotCounter(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  disableSlotCounter()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    buf[40] = IRQ_MASK;
    buf[41] = IRQ_MASK;
    spiReadSingle(&buf[41], 1);
    buf[41] &= 0xFE;
    spiWriteSingle(&buf[40], 2);
}

void trf7970Reset(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  trf7970Reset()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    command[0] = RESET;
    spiDirectCommand(command);
}

void turnRfOn(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  turnRfOn()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t cmd[2];
    
    cmd[0] = CHIP_STATUS_CONTROL;
    cmd[1] = CHIP_STATUS_CONTROL;
    spiReadSingle(&cmd[1], 1);
    cmd[1] &= 0x3F;
    cmd[1] |= 0x20;
    spiWriteSingle(cmd, 2);
    
//    wait_ms(100);
//    spiReadSingle(cmd, 1);
//    printf("Cmd[0]: 0x%X\r\n", cmd[0]);
//    printf("Cmd[1]: 0x%X\r\n", cmd[1]);
    
}   // End of turnRfOn()

void turnRfOff(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  turnRfOff()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t cmd[2];
    
    cmd[0] = CHIP_STATUS_CONTROL;
    cmd[1] = CHIP_STATUS_CONTROL;
    spiReadSingle(&cmd[1], 1);
    cmd[1] &= 0x1F;
    spiWriteSingle(cmd, 2);
}   // End of turnRfOff()

void writeIsoControl(uint8_t iso_control)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  writeIsoControl()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t write[4];
    
    if ((iso_control & BIT5) == BIT5) {
        printf("iso_control bit5 != 0\r\n");
        return;
    }
    
    write[0] = ISO_CONTROL;
    write[1] = iso_control;
    write[1] &= ~BIT5;
    spiWriteSingle(write, 2);
    
//    wait_ms(100);
//    spiReadSingle(write, 1);
//    printf("Reg[0]: 0x%X\r\n", write[0]);
//    printf("Reg[1]: 0x%X\r\n", write[1]);

    iso_control &= 0x1F;
}   // End of writeIsoControl()

void resetIrqStatus(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  resetIrqStatus()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t irq_status[4];
    
    irq_status[0] = IRQ_STATUS;
    irq_status[1] = IRQ_MASK;
    
    spiReadContinuous(irq_status, 2);   // Read second register as dummy read
}

void iso15693FindTag(void)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  iso15693FindTag()
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    turnRfOn();
    writeIsoControl(0x02);
    // The VCD should wait at least 1 ms after it activated the
    // powering field before sending the first request, to
    // ensure that the VICCs are ready to receive it. (ISO15693-3)
    wait_ms(6);
    flags = SIXTEEN_SLOTS;                  // 0x06
    buf[20] = 0x00;
    Iso15693Anticollision(&buf[20], 0x00);  // Send Inventory request
    turnRfOff();
    resetIrqStatus();                       // Clear any IRQs
}   // End of iso15693FindTag()

void Iso15693Anticollision(uint8_t *mask, uint8_t length)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
//  Iso15693Anticollision()
//  Description: Used to perform an inventory cycle of 1 or 16 timeslots.
//               Send command, receive response and send response to host.
//  Parameters: *mask =     mask value
//              length =    number of significant bits of mask value
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
{
    uint8_t i = 1, j = 1, command[2], no_slots, found = 0;
    uint8_t *p_slot_no, slot_no[17];
    uint8_t new_mask[8], new_length, mask_size;
    uint32_t size;
    uint8_t fifo_length = 0;
    uint16_t k;

    slot_no[0] = 0x00;
    if ((flags & BIT5) == 0x00) {                       // flag bit5 is the number of slots indicator
        no_slots = 16;                                  // 16 slots if bit5 is cleared
    }
    else {
        no_slots = 1;                                   // 1 slot if bit5 is set
    }
    
    p_slot_no = &slot_no[0];                            // slot number pointer
    mask_size = (((length >> 2) + 1) >> 1);             // mask_size is 1 for length = 4 or 8
    buf[0] = 0x8F;                                      // RESET
    buf[1] = 0x91;                                      // send with CRC
    buf[2] = 0x3D;                                      // write continuous from 1D
    buf[5] = flags;                                     // ISO15693 flags
    buf[6] = 0x01;                                      // anticollision command code
    
    if (flags & 0x10) {                                 // mask_size is 2 for length = 12 or 16 and so on
        size = mask_size + 4;                           // mask value + mask length + afi + command code + flags
        buf[7] = afi;
        buf[8] = length;                                // mask length
        if (length > 0) {
            for(i = 0; i < mask_size; i++) {
                buf[9 + i] = *(mask + i);
            }
        }
        fifo_length = 9;
    }
    else {                                              // mask_size is 2 for length = 12 or 16 and so on
        size = mask_size + 3;                           // mask value + mask length + command code + flags
        buf[7] = length;                                // mask length
        if(length > 0) {
            for(i = 0; i < mask_size; i++) {
                buf[8 + i] = *(mask + i);
            }
        }
        fifo_length = 8;
    }
    
    buf[3] = (char) (size >> 8);
    buf[4] = (char) (size << 4);

    resetIrqStatus();
    
    spiRawWrite(&buf[0], mask_size + fifo_length);      // Write to FIFO
    irqRegister = 0x01;
    irqFlag = 0x00;
    readerInt.enable_irq();
    
    printf("Anticollision 1  \r\n"); wait_ms(100);
    
    while(irqFlag == 0x00);                             // Wait for end-of-TX interrupt
    
    printf("Anticollision 2  \r\n"); wait_ms(100);
    
    for (j=1; j <= no_slots; j++) {                     // 1 or 16 available timeslots
        rxtxState = 1;
        irqFlag = 0x00;
        while(irqFlag == 0x00);                         // Wait for interrupt
        while(irqRegister == 0x01) {                    // Wait for RX complete
            k++;
            if (k == 0xFFF0) {
                irqRegister = 0x00;
                rxErrorFlag = 0x00;
            }
        }   // while
        command[0] = RSSI_LEVELS;                       // Read RSSI levels
        spiReadSingle(command, 1);
        switch (irqRegister) {
            case 0xFF:                  // If received UID in buffer
                printf("ISO15693: [ ");
                for (i=3; i < 11; i++) {
                    printf("%c", buf[i]);
                }
                printf(", %d ]\r\n", command[0]);
            break;
            
            case 0x02:                  // Collision occurred
                p_slot_no++;            // Remember a collision was detected
                *p_slot_no = j;
            break;
            
            case 0x00:                  // Timer interrupt
            break;
            
            default:
            break;
        }   // switch
        
        command[0] = RESET;             // FIFO must be reset before receiving the next response
        spiDirectCommand(command);
        
        if ((no_slots == 16) && (j < 16)) {         // If 16 slots used then send EOF (next slot)
            stopDecoders();
            runDecoders();
            txNextSlot();
        }
        else if ((no_slots == 16) && (j == 16)) {   // At end of slot 16, stop the slot counter
            stopDecoders();
            disableSlotCounter();
        }
        else if (no_slots == 1) {                   // 1 slot is uesd
            break;
        }
    }   // for
    
    if (found == 1) {
        ISO15693LED = LED_ON;
        printf("Found ISO15693 tag\r\n");
    }
    else {
        ISO15693LED = LED_OFF;
    }
    
    new_length = length + 4;                        // The mask length is a multiple of 4 bits
    mask_size = (((new_length >> 2) + 1) >> 1);
    while ((*p_slot_no != 0x00) && (no_slots == 16) && (new_length < 61) && (slot_no[16] != 16)) {
        *p_slot_no = *p_slot_no - 1;

        for(i = 0; i < 8; i++)
        {
            new_mask[i] = *(mask + i);              // First the whole mask is copied
        }

        if((new_length & BIT2) == 0x00)
        {
            *p_slot_no = *p_slot_no << 4;
        }
        else
        {
            for(i = 7; i > 0; i--)
            {
                new_mask[i] = new_mask[i - 1];
            }
            new_mask[0] &= 0x00;
        }
        new_mask[0] |= *p_slot_no;                  // The mask is changed
        wait_ms(2);

        Iso15693Anticollision(&new_mask[0], new_length);    // Recursive call with new Mask

        p_slot_no--;
    }
    
    readerInt.disable_irq();
}   // End of Iso15693Anticollision()