Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope Servo mbed QEI biquadFilter
main.cpp
- Committer:
- s1725696
- Date:
- 2018-10-26
- Revision:
- 10:56136a0da8c1
- Parent:
- 9:d7a6a3619576
File content as of revision 10:56136a0da8c1:
#include "mbed.h" // Use revision 119!! #include "HIDScope.h" // For displaying data, select MBED - HID device, restart for every new code #include "QEI.h" // For reading the encoder of the motors #include <ctime> // for the timer during the process (if needed) #define SERIAL_BAUD 115200 // In- en outputs // ----------------------------------------------------------------------------- // EMG related AnalogIn emg1(); // EMG signal 1 AnalogIn emg2(); // EMG signal 2 // if needed AnalogIn emg3(); // EMG signal 3 AnalogIn emg4(); // EMG signal 4 // Motor related DigitalOut dirpin_1(D4); // direction of motor 1 PwmOut pwmpin_1(D5); // PWM pin of motor 1 DigitalOut dirpin_2(D7); // direction of motor 2 PwmOut pwmpin_2(D6); // PWM pin of motor 2 // Extra stuff // Like LED lights, buttons etc DigitalIn button_motorcal(SW2); // button for motor calibration, on mbed DigitalIn button_emergency(D7); // button for emergency mode, on bioshield DigitalIn button_wait(SW3); // button for wait mode, on mbed DigitalIn button_demo(D6); // button for demo mode, on bioshield DigitalIn led_red(LED_RED); // red led DigitalIn led_green(LED_GREEN); // green led DigitalIn led_blue(LED_BLUE); // blue led AnalogIn pot_1(A1); // potmeter for simulating EMG input // Other stuff // ----------------------------------------------------------------------------- // Define stuff like tickers etc Ticker ticker; // Name a ticker, use each ticker only for 1 function! HIDScope scope(2); // Number of channels in HIDScope QEI Encoder(D13,D12,NC,64,QEI::X4_ENCODING); // Define the type of encoding: X4 encoding(default is X2) Serial pc(USBTX,USBRX); Timer t; // For timing the time in each state (https://os.mbed.com/handbook/Timer) // Variables // ----------------------------------------------------------------------------- // Define here all variables needed throughout the whole code int counts; float potmeter_value; double time_overall; float time_in_state; double motor_velocity = 0; double EMG = 0; double errors = 0; // states enum states {WAIT, MOTOR_CAL, EMG_CAL, START, OPERATING, FAILURE, DEMO}; // states the robot can be in states CurrentState = WAIT; // the CurrentState to start with is the WAIT state bool StateChanged = true; // the state must be changed to go into the next state // Functions // ----------------------------------------------------------------------------- // Encoder // Getting encoder information from motors int encoder() { int counts = Encoder.getPulses(); return counts; } // Potmeter for contrlling motor float potmeter() { float out_1 = pot_1 * 2.0f; float out_2 = out_1 - 1.0f; dirpin_1.write(out_2 < 0); dirpin_2.write(out_2 < 0); pwmpin_1 = fabs (out_2); // Has to be positive value pwmpin_2 = fabs (out_2); return out_2; } // Send information to HIDScope void hidscope() // Attach this to a ticker! { scope.set(0, counts); // send EMG 1 to channel 1 (=0) scope.set(1, potmeter_value); // sent EMG 2 to channel 2 (=1) // Ensure that enough channels are available (HIDScope scope(2)) scope.send(); // Send all channels to the PC at once } // EMG filter // To process the EMG signal before information can be caught from it // Kees mee bezig // WAIT // To do nothing void wait_mode() { // go back to the initial values // Copy here the variables list with initial values motor_velocity = 0; } // MOTOR_CAL // To calibrate the motor angle to some mechanical boundaries // Kenneth mee bezig void motor_calibration() { // Kenneths code here } // EMG_CAL // To calibrate the EMG signal to some boundary values void emg_calibration() { // code } // PID controller // To control the input signal before it goes into the motor control // Simon mee bezig void pid_controller() { // Simons code here } // START // To move the robot to the starting position: middle void start_mode() { // move to middle } // OPERATING // To control the robot with EMG signals // Gertjan bezig met motor aansturen // DEMO // To control the robot with a written code and write 'HELLO' // Voor het laatst bewaren void demo_mode() { // code here } // FAILURE // To shut down the robot after an error etc void failure() { // code here } // Main function // ----------------------------------------------------------------------------- int main() { pc.baud(115200); // For TeraTerm, the baudrate, set also in TeraTerm itself! pc.printf("Start code\r\n"); // To check if the program starts pwmpin_1.period_us(60); // Setting period for PWM ticker.attach(&hidscope,0.002f); // Send information to HIDScope while(true){ // timer clock_t start; // start the timer start = clock(); time_overall = (clock() - start) / (double) CLOCKS_PER_SEC; counts = encoder(); potmeter_value = potmeter(); //pc.printf("potmeter value = %f ", potmeter_value); //pc.printf("counts = %i\r\n", counts); // With the help of a switch loop and states we can switch between states and the robot knows what to do switch(CurrentState) { case WAIT: if(StateChanged) // so if StateChanged is true { pc.printf("State is WAIT\r\n"); // Execute WAIT mode wait_mode(); StateChanged = false; // the state is still WAIT } if(button_motorcal == true) // condition for WAIT --> MOTOR_CAl; button_motorcal press { CurrentState = MOTOR_CAL; pc.printf("State is MOTOR_CAL\r\n"); StateChanged = true; } if (button_emergency == true) // condition for WAIT --> FAILURE; button_emergency press { CurrentState = FAILURE; pc.printf("State is FAILURE\r\n"); StateChanged = true; } break; case MOTOR_CAL: if(StateChanged) // so if StateChanged is true { t.reset(); t.start(); // Execute MOTOR_CAL mode motor_calibration(); t.stop(); time_in_state = t.read(); pc.printf("Time here = %f\r\n", time_in_state); StateChanged = false; // the state is still MOTOR_CAL } if((time_in_state > 3.0) && (motor_velocity < 0.01)) // condition for MOTOR_CAL --> EMG_CAL; 3s en motors stopped moving { CurrentState = EMG_CAL; pc.printf("State is EMG_CAL\r\n"); StateChanged = true; } if (button_emergency == true) // condition for MOTOR_CAL --> FAILURE; button_emergency press { CurrentState = FAILURE; pc.printf("State is FAILURE\r\n"); StateChanged = true; } break; case EMG_CAL: if(StateChanged) // so if StateChanged is true { t.reset(); t.start(); // Execute EMG_CAL mode emg_calibration(); t.stop(); time_in_state = t.read(); pc.printf("Time here = %f\r\n", time_in_state); StateChanged = false; // state is still EMG_CAL } if((time_in_state > 5) && (EMG < 0.01)) // condition for EMG_CAL --> START; 5s and EMG is low { CurrentState = START; pc.printf("State is START\r\n"); StateChanged = true; } if (button_emergency == true) // condition for EMG_CAL --> FAILURE; button_emergency press { CurrentState = FAILURE; pc.printf("State is FAILURE\r\n"); StateChanged = true; } break; case START: if(StateChanged) // so if StateChanged is true { t.reset(); t.start(); // Execute START mode start_mode(); t.stop(); time_in_state = t.read(); pc.printf("Time here = %f\r\n", time_in_state); StateChanged = false; // state is still START } if((time_in_state > 5) && (errors < 0.01)) // condition for START --> OPERATING; 5s and error is small { CurrentState = OPERATING; pc.printf("State is OPERATING\r\n"); StateChanged = true; } if (button_emergency == true) // condition for START --> FAILURE; button_emergency press { CurrentState = FAILURE; pc.printf("State is FAILURE\r\n"); StateChanged = true; } break; case OPERATING: if(StateChanged) // so if StateChanged is true { // Execute OPERATING mode StateChanged = false; // state is still OPERATING } if(button_emergency == true) // condition for OPERATING --> FAILURE; button_emergency press { CurrentState = FAILURE; pc.printf("State is FAILURE\r\n"); StateChanged = true; } if(button_demo == true) // condition for OPERATING --> DEMO; button_demo press { CurrentState = DEMO; pc.printf("State is DEMO\r\n"); StateChanged = true; } if(button_wait == true) // condition OPERATING --> WAIT; button_wait press { CurrentState = WAIT; pc.printf("State is WAIT\r\n"); StateChanged = true; } break; case FAILURE: if(StateChanged) // so if StateChanged is true { // Execute FAILURE mode failure_mode(); StateChanged = false; // state is still FAILURE } if(button_wait == true) // condition for FAILURE --> WAIT; button_wait press (IF THAT IS EVEN POSSIBLE IN THIS STATE?) { CurrentState = WAIT; pc.printf("State is WAIT\r\n"); StateChanged = true; } break; case DEMO: if(StateChanged) // so if StateChanged is true { // Execute DEMO mode demo_mode(); StateChanged = false; // state is still DEMO } if(button_wait == true) // condition for DEMO --> WAIT; button_wait press { CurrentState = WAIT; pc.printf("State is WAIT\r\n"); StateChanged = true; } if (button_emergency == true) // condition for DEMO --> FAILURE; button_emergency press { CurrentState = FAILURE; pc.printf("State is FAILURE\r\n"); StateChanged = true; } break; // no default } // while loop does not have to loop every time } }