IMU Library

Dependents:   Cube_Mini_Solution Cube_Mini_Solution

Committer:
Yihui Xiong
Date:
Fri Sep 12 09:28:14 2014 +0800
Revision:
2:8c562a8fed36
Parent:
0:662207e34fba
Child:
3:8d033f880fce
update

Who changed what in which revision?

UserRevisionLine numberNew contents of line
garfieldsg 0:662207e34fba 1 //ported from arduino library: https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050
garfieldsg 0:662207e34fba 2 //written by szymon gaertig (email: szymon@gaertig.com.pl)
garfieldsg 0:662207e34fba 3 //
garfieldsg 0:662207e34fba 4 //Changelog:
garfieldsg 0:662207e34fba 5 //2013-01-08 - first beta release
garfieldsg 0:662207e34fba 6
garfieldsg 0:662207e34fba 7 // I2Cdev library collection - MPU6050 I2C device class
garfieldsg 0:662207e34fba 8 // Based on InvenSense MPU-6050 register map document rev. 2.0, 5/19/2011 (RM-MPU-6000A-00)
garfieldsg 0:662207e34fba 9 // 8/24/2011 by Jeff Rowberg <jeff@rowberg.net>
garfieldsg 0:662207e34fba 10 // Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
garfieldsg 0:662207e34fba 11 //
garfieldsg 0:662207e34fba 12 // Changelog:
garfieldsg 0:662207e34fba 13 // ... - ongoing debug release
garfieldsg 0:662207e34fba 14
garfieldsg 0:662207e34fba 15 // NOTE: THIS IS ONLY A PARIAL RELEASE. THIS DEVICE CLASS IS CURRENTLY UNDERGOING ACTIVE
garfieldsg 0:662207e34fba 16 // DEVELOPMENT AND IS STILL MISSING SOME IMPORTANT FEATURES. PLEASE KEEP THIS IN MIND IF
garfieldsg 0:662207e34fba 17 // YOU DECIDE TO USE THIS PARTICULAR CODE FOR ANYTHING.
garfieldsg 0:662207e34fba 18
garfieldsg 0:662207e34fba 19 /* ============================================
garfieldsg 0:662207e34fba 20 I2Cdev device library code is placed under the MIT license
garfieldsg 0:662207e34fba 21 Copyright (c) 2012 Jeff Rowberg
garfieldsg 0:662207e34fba 22
garfieldsg 0:662207e34fba 23 Permission is hereby granted, free of charge, to any person obtaining a copy
garfieldsg 0:662207e34fba 24 of this software and associated documentation files (the "Software"), to deal
garfieldsg 0:662207e34fba 25 in the Software without restriction, including without limitation the rights
garfieldsg 0:662207e34fba 26 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
garfieldsg 0:662207e34fba 27 copies of the Software, and to permit persons to whom the Software is
garfieldsg 0:662207e34fba 28 furnished to do so, subject to the following conditions:
garfieldsg 0:662207e34fba 29
garfieldsg 0:662207e34fba 30 The above copyright notice and this permission notice shall be included in
garfieldsg 0:662207e34fba 31 all copies or substantial portions of the Software.
garfieldsg 0:662207e34fba 32
garfieldsg 0:662207e34fba 33 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
garfieldsg 0:662207e34fba 34 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
garfieldsg 0:662207e34fba 35 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
garfieldsg 0:662207e34fba 36 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
garfieldsg 0:662207e34fba 37 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
garfieldsg 0:662207e34fba 38 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
garfieldsg 0:662207e34fba 39 THE SOFTWARE.
garfieldsg 0:662207e34fba 40 ===============================================
garfieldsg 0:662207e34fba 41 */
garfieldsg 0:662207e34fba 42
garfieldsg 0:662207e34fba 43 #include "MPU6050.h"
garfieldsg 0:662207e34fba 44
Yihui Xiong 2:8c562a8fed36 45 #define LOG(args...) // printf(args)
garfieldsg 0:662207e34fba 46
garfieldsg 0:662207e34fba 47 //instead of using pgmspace.h
garfieldsg 0:662207e34fba 48 typedef const unsigned char prog_uchar;
garfieldsg 0:662207e34fba 49 #define pgm_read_byte_near(x) (*(prog_uchar*)x)
garfieldsg 0:662207e34fba 50 #define pgm_read_byte(x) (*(prog_uchar*)x)
garfieldsg 0:662207e34fba 51
garfieldsg 0:662207e34fba 52 /** Specific address constructor.
garfieldsg 0:662207e34fba 53 * @param address I2C address
garfieldsg 0:662207e34fba 54 * @see MPU6050_DEFAULT_ADDRESS
garfieldsg 0:662207e34fba 55 * @see MPU6050_ADDRESS_AD0_LOW
garfieldsg 0:662207e34fba 56 * @see MPU6050_ADDRESS_AD0_HIGH
garfieldsg 0:662207e34fba 57 */
Yihui Xiong 2:8c562a8fed36 58 MPU6050::MPU6050(I2C &i2c, uint8_t address) : i2Cdev(i2c)
garfieldsg 0:662207e34fba 59 {
garfieldsg 0:662207e34fba 60 devAddr = address;
garfieldsg 0:662207e34fba 61 }
garfieldsg 0:662207e34fba 62
garfieldsg 0:662207e34fba 63 /** Power on and prepare for general usage.
garfieldsg 0:662207e34fba 64 * This will activate the device and take it out of sleep mode (which must be done
garfieldsg 0:662207e34fba 65 * after start-up). This function also sets both the accelerometer and the gyroscope
garfieldsg 0:662207e34fba 66 * to their most sensitive settings, namely +/- 2g and +/- 250 degrees/sec, and sets
garfieldsg 0:662207e34fba 67 * the clock source to use the X Gyro for reference, which is slightly better than
garfieldsg 0:662207e34fba 68 * the default internal clock source.
garfieldsg 0:662207e34fba 69 */
garfieldsg 0:662207e34fba 70 void MPU6050::initialize()
garfieldsg 0:662207e34fba 71 {
Yihui Xiong 2:8c562a8fed36 72 LOG("MPU6050::initialize start\n");
garfieldsg 0:662207e34fba 73
garfieldsg 0:662207e34fba 74 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
garfieldsg 0:662207e34fba 75 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
garfieldsg 0:662207e34fba 76 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
garfieldsg 0:662207e34fba 77 setSleepEnabled(false); // thanks to Jack Elston for pointing this one out!
garfieldsg 0:662207e34fba 78
Yihui Xiong 2:8c562a8fed36 79 LOG("MPU6050::initialize end\n");
garfieldsg 0:662207e34fba 80 }
garfieldsg 0:662207e34fba 81
garfieldsg 0:662207e34fba 82 /** Verify the I2C connection.
garfieldsg 0:662207e34fba 83 * Make sure the device is connected and responds as expected.
garfieldsg 0:662207e34fba 84 * @return True if connection is valid, false otherwise
garfieldsg 0:662207e34fba 85 */
garfieldsg 0:662207e34fba 86 bool MPU6050::testConnection()
garfieldsg 0:662207e34fba 87 {
Yihui Xiong 2:8c562a8fed36 88 LOG("MPU6050::testConnection start\n");
Yihui Xiong 2:8c562a8fed36 89
garfieldsg 0:662207e34fba 90 uint8_t deviceId = getDeviceID();
Yihui Xiong 2:8c562a8fed36 91
Yihui Xiong 2:8c562a8fed36 92 LOG("DeviceId = %d\n",deviceId);
Yihui Xiong 2:8c562a8fed36 93
garfieldsg 0:662207e34fba 94 return deviceId == 0x34;
garfieldsg 0:662207e34fba 95 }
garfieldsg 0:662207e34fba 96
garfieldsg 0:662207e34fba 97 // AUX_VDDIO register (InvenSense demo code calls this RA_*G_OFFS_TC)
garfieldsg 0:662207e34fba 98
garfieldsg 0:662207e34fba 99 /** Get the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 100 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 101 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 102 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 103 * @return I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 104 */
garfieldsg 0:662207e34fba 105 uint8_t MPU6050::getAuxVDDIOLevel()
garfieldsg 0:662207e34fba 106 {
garfieldsg 0:662207e34fba 107 i2Cdev.readBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, buffer);
garfieldsg 0:662207e34fba 108 return buffer[0];
garfieldsg 0:662207e34fba 109 }
garfieldsg 0:662207e34fba 110 /** Set the auxiliary I2C supply voltage level.
garfieldsg 0:662207e34fba 111 * When set to 1, the auxiliary I2C bus high logic level is VDD. When cleared to
garfieldsg 0:662207e34fba 112 * 0, the auxiliary I2C bus high logic level is VLOGIC. This does not apply to
garfieldsg 0:662207e34fba 113 * the MPU-6000, which does not have a VLOGIC pin.
garfieldsg 0:662207e34fba 114 * @param level I2C supply voltage level (0=VLOGIC, 1=VDD)
garfieldsg 0:662207e34fba 115 */
garfieldsg 0:662207e34fba 116 void MPU6050::setAuxVDDIOLevel(uint8_t level)
garfieldsg 0:662207e34fba 117 {
garfieldsg 0:662207e34fba 118 i2Cdev.writeBit(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_PWR_MODE_BIT, level);
garfieldsg 0:662207e34fba 119 }
garfieldsg 0:662207e34fba 120
garfieldsg 0:662207e34fba 121 // SMPLRT_DIV register
garfieldsg 0:662207e34fba 122
garfieldsg 0:662207e34fba 123 /** Get gyroscope output rate divider.
garfieldsg 0:662207e34fba 124 * The sensor register output, FIFO output, DMP sampling, Motion detection, Zero
garfieldsg 0:662207e34fba 125 * Motion detection, and Free Fall detection are all based on the Sample Rate.
garfieldsg 0:662207e34fba 126 * The Sample Rate is generated by dividing the gyroscope output rate by
garfieldsg 0:662207e34fba 127 * SMPLRT_DIV:
garfieldsg 0:662207e34fba 128 *
garfieldsg 0:662207e34fba 129 * Sample Rate = Gyroscope Output Rate / (1 + SMPLRT_DIV)
garfieldsg 0:662207e34fba 130 *
garfieldsg 0:662207e34fba 131 * where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPF_CFG = 0 or
garfieldsg 0:662207e34fba 132 * 7), and 1kHz when the DLPF is enabled (see Register 26).
garfieldsg 0:662207e34fba 133 *
garfieldsg 0:662207e34fba 134 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 135 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 136 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 137 *
garfieldsg 0:662207e34fba 138 * For a diagram of the gyroscope and accelerometer signal paths, see Section 8
garfieldsg 0:662207e34fba 139 * of the MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 140 *
garfieldsg 0:662207e34fba 141 * @return Current sample rate
garfieldsg 0:662207e34fba 142 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 143 */
garfieldsg 0:662207e34fba 144 uint8_t MPU6050::getRate()
garfieldsg 0:662207e34fba 145 {
garfieldsg 0:662207e34fba 146 i2Cdev.readByte(devAddr, MPU6050_RA_SMPLRT_DIV, buffer);
garfieldsg 0:662207e34fba 147 return buffer[0];
garfieldsg 0:662207e34fba 148 }
garfieldsg 0:662207e34fba 149 /** Set gyroscope sample rate divider.
garfieldsg 0:662207e34fba 150 * @param rate New sample rate divider
garfieldsg 0:662207e34fba 151 * @see getRate()
garfieldsg 0:662207e34fba 152 * @see MPU6050_RA_SMPLRT_DIV
garfieldsg 0:662207e34fba 153 */
garfieldsg 0:662207e34fba 154 void MPU6050::setRate(uint8_t rate)
garfieldsg 0:662207e34fba 155 {
garfieldsg 0:662207e34fba 156 i2Cdev.writeByte(devAddr, MPU6050_RA_SMPLRT_DIV, rate);
garfieldsg 0:662207e34fba 157 }
garfieldsg 0:662207e34fba 158
garfieldsg 0:662207e34fba 159 // CONFIG register
garfieldsg 0:662207e34fba 160
garfieldsg 0:662207e34fba 161 /** Get external FSYNC configuration.
garfieldsg 0:662207e34fba 162 * Configures the external Frame Synchronization (FSYNC) pin sampling. An
garfieldsg 0:662207e34fba 163 * external signal connected to the FSYNC pin can be sampled by configuring
garfieldsg 0:662207e34fba 164 * EXT_SYNC_SET. Signal changes to the FSYNC pin are latched so that short
garfieldsg 0:662207e34fba 165 * strobes may be captured. The latched FSYNC signal will be sampled at the
garfieldsg 0:662207e34fba 166 * Sampling Rate, as defined in register 25. After sampling, the latch will
garfieldsg 0:662207e34fba 167 * reset to the current FSYNC signal state.
garfieldsg 0:662207e34fba 168 *
garfieldsg 0:662207e34fba 169 * The sampled value will be reported in place of the least significant bit in
garfieldsg 0:662207e34fba 170 * a sensor data register determined by the value of EXT_SYNC_SET according to
garfieldsg 0:662207e34fba 171 * the following table.
garfieldsg 0:662207e34fba 172 *
garfieldsg 0:662207e34fba 173 * <pre>
garfieldsg 0:662207e34fba 174 * EXT_SYNC_SET | FSYNC Bit Location
garfieldsg 0:662207e34fba 175 * -------------+-------------------
garfieldsg 0:662207e34fba 176 * 0 | Input disabled
garfieldsg 0:662207e34fba 177 * 1 | TEMP_OUT_L[0]
garfieldsg 0:662207e34fba 178 * 2 | GYRO_XOUT_L[0]
garfieldsg 0:662207e34fba 179 * 3 | GYRO_YOUT_L[0]
garfieldsg 0:662207e34fba 180 * 4 | GYRO_ZOUT_L[0]
garfieldsg 0:662207e34fba 181 * 5 | ACCEL_XOUT_L[0]
garfieldsg 0:662207e34fba 182 * 6 | ACCEL_YOUT_L[0]
garfieldsg 0:662207e34fba 183 * 7 | ACCEL_ZOUT_L[0]
garfieldsg 0:662207e34fba 184 * </pre>
garfieldsg 0:662207e34fba 185 *
garfieldsg 0:662207e34fba 186 * @return FSYNC configuration value
garfieldsg 0:662207e34fba 187 */
garfieldsg 0:662207e34fba 188 uint8_t MPU6050::getExternalFrameSync()
garfieldsg 0:662207e34fba 189 {
garfieldsg 0:662207e34fba 190 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, buffer);
garfieldsg 0:662207e34fba 191 return buffer[0];
garfieldsg 0:662207e34fba 192 }
garfieldsg 0:662207e34fba 193 /** Set external FSYNC configuration.
garfieldsg 0:662207e34fba 194 * @see getExternalFrameSync()
garfieldsg 0:662207e34fba 195 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 196 * @param sync New FSYNC configuration value
garfieldsg 0:662207e34fba 197 */
garfieldsg 0:662207e34fba 198 void MPU6050::setExternalFrameSync(uint8_t sync)
garfieldsg 0:662207e34fba 199 {
garfieldsg 0:662207e34fba 200 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_EXT_SYNC_SET_BIT, MPU6050_CFG_EXT_SYNC_SET_LENGTH, sync);
garfieldsg 0:662207e34fba 201 }
garfieldsg 0:662207e34fba 202 /** Get digital low-pass filter configuration.
garfieldsg 0:662207e34fba 203 * The DLPF_CFG parameter sets the digital low pass filter configuration. It
garfieldsg 0:662207e34fba 204 * also determines the internal sampling rate used by the device as shown in
garfieldsg 0:662207e34fba 205 * the table below.
garfieldsg 0:662207e34fba 206 *
garfieldsg 0:662207e34fba 207 * Note: The accelerometer output rate is 1kHz. This means that for a Sample
garfieldsg 0:662207e34fba 208 * Rate greater than 1kHz, the same accelerometer sample may be output to the
garfieldsg 0:662207e34fba 209 * FIFO, DMP, and sensor registers more than once.
garfieldsg 0:662207e34fba 210 *
garfieldsg 0:662207e34fba 211 * <pre>
garfieldsg 0:662207e34fba 212 * | ACCELEROMETER | GYROSCOPE
garfieldsg 0:662207e34fba 213 * DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate
garfieldsg 0:662207e34fba 214 * ---------+-----------+--------+-----------+--------+-------------
garfieldsg 0:662207e34fba 215 * 0 | 260Hz | 0ms | 256Hz | 0.98ms | 8kHz
garfieldsg 0:662207e34fba 216 * 1 | 184Hz | 2.0ms | 188Hz | 1.9ms | 1kHz
garfieldsg 0:662207e34fba 217 * 2 | 94Hz | 3.0ms | 98Hz | 2.8ms | 1kHz
garfieldsg 0:662207e34fba 218 * 3 | 44Hz | 4.9ms | 42Hz | 4.8ms | 1kHz
garfieldsg 0:662207e34fba 219 * 4 | 21Hz | 8.5ms | 20Hz | 8.3ms | 1kHz
garfieldsg 0:662207e34fba 220 * 5 | 10Hz | 13.8ms | 10Hz | 13.4ms | 1kHz
garfieldsg 0:662207e34fba 221 * 6 | 5Hz | 19.0ms | 5Hz | 18.6ms | 1kHz
garfieldsg 0:662207e34fba 222 * 7 | -- Reserved -- | -- Reserved -- | Reserved
garfieldsg 0:662207e34fba 223 * </pre>
garfieldsg 0:662207e34fba 224 *
garfieldsg 0:662207e34fba 225 * @return DLFP configuration
garfieldsg 0:662207e34fba 226 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 227 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 228 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 229 */
garfieldsg 0:662207e34fba 230 uint8_t MPU6050::getDLPFMode()
garfieldsg 0:662207e34fba 231 {
garfieldsg 0:662207e34fba 232 i2Cdev.readBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, buffer);
garfieldsg 0:662207e34fba 233 return buffer[0];
garfieldsg 0:662207e34fba 234 }
garfieldsg 0:662207e34fba 235 /** Set digital low-pass filter configuration.
garfieldsg 0:662207e34fba 236 * @param mode New DLFP configuration setting
garfieldsg 0:662207e34fba 237 * @see getDLPFBandwidth()
garfieldsg 0:662207e34fba 238 * @see MPU6050_DLPF_BW_256
garfieldsg 0:662207e34fba 239 * @see MPU6050_RA_CONFIG
garfieldsg 0:662207e34fba 240 * @see MPU6050_CFG_DLPF_CFG_BIT
garfieldsg 0:662207e34fba 241 * @see MPU6050_CFG_DLPF_CFG_LENGTH
garfieldsg 0:662207e34fba 242 */
garfieldsg 0:662207e34fba 243 void MPU6050::setDLPFMode(uint8_t mode)
garfieldsg 0:662207e34fba 244 {
garfieldsg 0:662207e34fba 245 i2Cdev.writeBits(devAddr, MPU6050_RA_CONFIG, MPU6050_CFG_DLPF_CFG_BIT, MPU6050_CFG_DLPF_CFG_LENGTH, mode);
garfieldsg 0:662207e34fba 246 }
garfieldsg 0:662207e34fba 247
garfieldsg 0:662207e34fba 248 // GYRO_CONFIG register
garfieldsg 0:662207e34fba 249
garfieldsg 0:662207e34fba 250 /** Get full-scale gyroscope range.
garfieldsg 0:662207e34fba 251 * The FS_SEL parameter allows setting the full-scale range of the gyro sensors,
garfieldsg 0:662207e34fba 252 * as described in the table below.
garfieldsg 0:662207e34fba 253 *
garfieldsg 0:662207e34fba 254 * <pre>
garfieldsg 0:662207e34fba 255 * 0 = +/- 250 degrees/sec
garfieldsg 0:662207e34fba 256 * 1 = +/- 500 degrees/sec
garfieldsg 0:662207e34fba 257 * 2 = +/- 1000 degrees/sec
garfieldsg 0:662207e34fba 258 * 3 = +/- 2000 degrees/sec
garfieldsg 0:662207e34fba 259 * </pre>
garfieldsg 0:662207e34fba 260 *
garfieldsg 0:662207e34fba 261 * @return Current full-scale gyroscope range setting
garfieldsg 0:662207e34fba 262 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 263 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 264 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 265 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 266 */
garfieldsg 0:662207e34fba 267 uint8_t MPU6050::getFullScaleGyroRange()
garfieldsg 0:662207e34fba 268 {
garfieldsg 0:662207e34fba 269 i2Cdev.readBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 270 return buffer[0];
garfieldsg 0:662207e34fba 271 }
garfieldsg 0:662207e34fba 272 /** Set full-scale gyroscope range.
garfieldsg 0:662207e34fba 273 * @param range New full-scale gyroscope range value
garfieldsg 0:662207e34fba 274 * @see getFullScaleRange()
garfieldsg 0:662207e34fba 275 * @see MPU6050_GYRO_FS_250
garfieldsg 0:662207e34fba 276 * @see MPU6050_RA_GYRO_CONFIG
garfieldsg 0:662207e34fba 277 * @see MPU6050_GCONFIG_FS_SEL_BIT
garfieldsg 0:662207e34fba 278 * @see MPU6050_GCONFIG_FS_SEL_LENGTH
garfieldsg 0:662207e34fba 279 */
garfieldsg 0:662207e34fba 280 void MPU6050::setFullScaleGyroRange(uint8_t range)
garfieldsg 0:662207e34fba 281 {
garfieldsg 0:662207e34fba 282 i2Cdev.writeBits(devAddr, MPU6050_RA_GYRO_CONFIG, MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 283 }
garfieldsg 0:662207e34fba 284
garfieldsg 0:662207e34fba 285 // ACCEL_CONFIG register
garfieldsg 0:662207e34fba 286
garfieldsg 0:662207e34fba 287 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 288 * @return Self-test enabled value
garfieldsg 0:662207e34fba 289 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 290 */
garfieldsg 0:662207e34fba 291 bool MPU6050::getAccelXSelfTest()
garfieldsg 0:662207e34fba 292 {
garfieldsg 0:662207e34fba 293 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 294 return buffer[0];
garfieldsg 0:662207e34fba 295 }
garfieldsg 0:662207e34fba 296 /** Get self-test enabled setting for accelerometer X axis.
garfieldsg 0:662207e34fba 297 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 298 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 299 */
garfieldsg 0:662207e34fba 300 void MPU6050::setAccelXSelfTest(bool enabled)
garfieldsg 0:662207e34fba 301 {
garfieldsg 0:662207e34fba 302 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_XA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 303 }
garfieldsg 0:662207e34fba 304 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 305 * @return Self-test enabled value
garfieldsg 0:662207e34fba 306 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 307 */
garfieldsg 0:662207e34fba 308 bool MPU6050::getAccelYSelfTest()
garfieldsg 0:662207e34fba 309 {
garfieldsg 0:662207e34fba 310 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 311 return buffer[0];
garfieldsg 0:662207e34fba 312 }
garfieldsg 0:662207e34fba 313 /** Get self-test enabled value for accelerometer Y axis.
garfieldsg 0:662207e34fba 314 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 315 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 316 */
garfieldsg 0:662207e34fba 317 void MPU6050::setAccelYSelfTest(bool enabled)
garfieldsg 0:662207e34fba 318 {
garfieldsg 0:662207e34fba 319 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_YA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 320 }
garfieldsg 0:662207e34fba 321 /** Get self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 322 * @return Self-test enabled value
garfieldsg 0:662207e34fba 323 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 324 */
garfieldsg 0:662207e34fba 325 bool MPU6050::getAccelZSelfTest()
garfieldsg 0:662207e34fba 326 {
garfieldsg 0:662207e34fba 327 i2Cdev.readBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, buffer);
garfieldsg 0:662207e34fba 328 return buffer[0];
garfieldsg 0:662207e34fba 329 }
garfieldsg 0:662207e34fba 330 /** Set self-test enabled value for accelerometer Z axis.
garfieldsg 0:662207e34fba 331 * @param enabled Self-test enabled value
garfieldsg 0:662207e34fba 332 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 333 */
garfieldsg 0:662207e34fba 334 void MPU6050::setAccelZSelfTest(bool enabled)
garfieldsg 0:662207e34fba 335 {
garfieldsg 0:662207e34fba 336 i2Cdev.writeBit(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ZA_ST_BIT, enabled);
garfieldsg 0:662207e34fba 337 }
garfieldsg 0:662207e34fba 338 /** Get full-scale accelerometer range.
garfieldsg 0:662207e34fba 339 * The FS_SEL parameter allows setting the full-scale range of the accelerometer
garfieldsg 0:662207e34fba 340 * sensors, as described in the table below.
garfieldsg 0:662207e34fba 341 *
garfieldsg 0:662207e34fba 342 * <pre>
garfieldsg 0:662207e34fba 343 * 0 = +/- 2g
garfieldsg 0:662207e34fba 344 * 1 = +/- 4g
garfieldsg 0:662207e34fba 345 * 2 = +/- 8g
garfieldsg 0:662207e34fba 346 * 3 = +/- 16g
garfieldsg 0:662207e34fba 347 * </pre>
garfieldsg 0:662207e34fba 348 *
garfieldsg 0:662207e34fba 349 * @return Current full-scale accelerometer range setting
garfieldsg 0:662207e34fba 350 * @see MPU6050_ACCEL_FS_2
garfieldsg 0:662207e34fba 351 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 352 * @see MPU6050_ACONFIG_AFS_SEL_BIT
garfieldsg 0:662207e34fba 353 * @see MPU6050_ACONFIG_AFS_SEL_LENGTH
garfieldsg 0:662207e34fba 354 */
garfieldsg 0:662207e34fba 355 uint8_t MPU6050::getFullScaleAccelRange()
garfieldsg 0:662207e34fba 356 {
garfieldsg 0:662207e34fba 357 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 358 return buffer[0];
garfieldsg 0:662207e34fba 359 }
garfieldsg 0:662207e34fba 360 /** Set full-scale accelerometer range.
garfieldsg 0:662207e34fba 361 * @param range New full-scale accelerometer range setting
garfieldsg 0:662207e34fba 362 * @see getFullScaleAccelRange()
garfieldsg 0:662207e34fba 363 */
garfieldsg 0:662207e34fba 364 void MPU6050::setFullScaleAccelRange(uint8_t range)
garfieldsg 0:662207e34fba 365 {
garfieldsg 0:662207e34fba 366 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, range);
garfieldsg 0:662207e34fba 367 }
garfieldsg 0:662207e34fba 368 /** Get the high-pass filter configuration.
garfieldsg 0:662207e34fba 369 * The DHPF is a filter module in the path leading to motion detectors (Free
garfieldsg 0:662207e34fba 370 * Fall, Motion threshold, and Zero Motion). The high pass filter output is not
garfieldsg 0:662207e34fba 371 * available to the data registers (see Figure in Section 8 of the MPU-6000/
garfieldsg 0:662207e34fba 372 * MPU-6050 Product Specification document).
garfieldsg 0:662207e34fba 373 *
garfieldsg 0:662207e34fba 374 * The high pass filter has three modes:
garfieldsg 0:662207e34fba 375 *
garfieldsg 0:662207e34fba 376 * <pre>
garfieldsg 0:662207e34fba 377 * Reset: The filter output settles to zero within one sample. This
garfieldsg 0:662207e34fba 378 * effectively disables the high pass filter. This mode may be toggled
garfieldsg 0:662207e34fba 379 * to quickly settle the filter.
garfieldsg 0:662207e34fba 380 *
garfieldsg 0:662207e34fba 381 * On: The high pass filter will pass signals above the cut off frequency.
garfieldsg 0:662207e34fba 382 *
garfieldsg 0:662207e34fba 383 * Hold: When triggered, the filter holds the present sample. The filter
garfieldsg 0:662207e34fba 384 * output will be the difference between the input sample and the held
garfieldsg 0:662207e34fba 385 * sample.
garfieldsg 0:662207e34fba 386 * </pre>
garfieldsg 0:662207e34fba 387 *
garfieldsg 0:662207e34fba 388 * <pre>
garfieldsg 0:662207e34fba 389 * ACCEL_HPF | Filter Mode | Cut-off Frequency
garfieldsg 0:662207e34fba 390 * ----------+-------------+------------------
garfieldsg 0:662207e34fba 391 * 0 | Reset | None
garfieldsg 0:662207e34fba 392 * 1 | On | 5Hz
garfieldsg 0:662207e34fba 393 * 2 | On | 2.5Hz
garfieldsg 0:662207e34fba 394 * 3 | On | 1.25Hz
garfieldsg 0:662207e34fba 395 * 4 | On | 0.63Hz
garfieldsg 0:662207e34fba 396 * 7 | Hold | None
garfieldsg 0:662207e34fba 397 * </pre>
garfieldsg 0:662207e34fba 398 *
garfieldsg 0:662207e34fba 399 * @return Current high-pass filter configuration
garfieldsg 0:662207e34fba 400 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 401 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 402 */
garfieldsg 0:662207e34fba 403 uint8_t MPU6050::getDHPFMode()
garfieldsg 0:662207e34fba 404 {
garfieldsg 0:662207e34fba 405 i2Cdev.readBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, buffer);
garfieldsg 0:662207e34fba 406 return buffer[0];
garfieldsg 0:662207e34fba 407 }
garfieldsg 0:662207e34fba 408 /** Set the high-pass filter configuration.
garfieldsg 0:662207e34fba 409 * @param bandwidth New high-pass filter configuration
garfieldsg 0:662207e34fba 410 * @see setDHPFMode()
garfieldsg 0:662207e34fba 411 * @see MPU6050_DHPF_RESET
garfieldsg 0:662207e34fba 412 * @see MPU6050_RA_ACCEL_CONFIG
garfieldsg 0:662207e34fba 413 */
garfieldsg 0:662207e34fba 414 void MPU6050::setDHPFMode(uint8_t bandwidth)
garfieldsg 0:662207e34fba 415 {
garfieldsg 0:662207e34fba 416 i2Cdev.writeBits(devAddr, MPU6050_RA_ACCEL_CONFIG, MPU6050_ACONFIG_ACCEL_HPF_BIT, MPU6050_ACONFIG_ACCEL_HPF_LENGTH, bandwidth);
garfieldsg 0:662207e34fba 417 }
garfieldsg 0:662207e34fba 418
garfieldsg 0:662207e34fba 419 // FF_THR register
garfieldsg 0:662207e34fba 420
garfieldsg 0:662207e34fba 421 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 422 * This register configures the detection threshold for Free Fall event
garfieldsg 0:662207e34fba 423 * detection. The unit of FF_THR is 1LSB = 2mg. Free Fall is detected when the
garfieldsg 0:662207e34fba 424 * absolute value of the accelerometer measurements for the three axes are each
garfieldsg 0:662207e34fba 425 * less than the detection threshold. This condition increments the Free Fall
garfieldsg 0:662207e34fba 426 * duration counter (Register 30). The Free Fall interrupt is triggered when the
garfieldsg 0:662207e34fba 427 * Free Fall duration counter reaches the time specified in FF_DUR.
garfieldsg 0:662207e34fba 428 *
garfieldsg 0:662207e34fba 429 * For more details on the Free Fall detection interrupt, see Section 8.2 of the
garfieldsg 0:662207e34fba 430 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 431 * 58 of this document.
garfieldsg 0:662207e34fba 432 *
garfieldsg 0:662207e34fba 433 * @return Current free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 434 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 435 */
garfieldsg 0:662207e34fba 436 uint8_t MPU6050::getFreefallDetectionThreshold()
garfieldsg 0:662207e34fba 437 {
garfieldsg 0:662207e34fba 438 i2Cdev.readByte(devAddr, MPU6050_RA_FF_THR, buffer);
garfieldsg 0:662207e34fba 439 return buffer[0];
garfieldsg 0:662207e34fba 440 }
garfieldsg 0:662207e34fba 441 /** Get free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 442 * @param threshold New free-fall acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 443 * @see getFreefallDetectionThreshold()
garfieldsg 0:662207e34fba 444 * @see MPU6050_RA_FF_THR
garfieldsg 0:662207e34fba 445 */
garfieldsg 0:662207e34fba 446 void MPU6050::setFreefallDetectionThreshold(uint8_t threshold)
garfieldsg 0:662207e34fba 447 {
garfieldsg 0:662207e34fba 448 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_THR, threshold);
garfieldsg 0:662207e34fba 449 }
garfieldsg 0:662207e34fba 450
garfieldsg 0:662207e34fba 451 // FF_DUR register
garfieldsg 0:662207e34fba 452
garfieldsg 0:662207e34fba 453 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 454 * This register configures the duration counter threshold for Free Fall event
garfieldsg 0:662207e34fba 455 * detection. The duration counter ticks at 1kHz, therefore FF_DUR has a unit
garfieldsg 0:662207e34fba 456 * of 1 LSB = 1 ms.
garfieldsg 0:662207e34fba 457 *
garfieldsg 0:662207e34fba 458 * The Free Fall duration counter increments while the absolute value of the
garfieldsg 0:662207e34fba 459 * accelerometer measurements are each less than the detection threshold
garfieldsg 0:662207e34fba 460 * (Register 29). The Free Fall interrupt is triggered when the Free Fall
garfieldsg 0:662207e34fba 461 * duration counter reaches the time specified in this register.
garfieldsg 0:662207e34fba 462 *
garfieldsg 0:662207e34fba 463 * For more details on the Free Fall detection interrupt, see Section 8.2 of
garfieldsg 0:662207e34fba 464 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 465 * and 58 of this document.
garfieldsg 0:662207e34fba 466 *
garfieldsg 0:662207e34fba 467 * @return Current free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 468 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 469 */
garfieldsg 0:662207e34fba 470 uint8_t MPU6050::getFreefallDetectionDuration()
garfieldsg 0:662207e34fba 471 {
garfieldsg 0:662207e34fba 472 i2Cdev.readByte(devAddr, MPU6050_RA_FF_DUR, buffer);
garfieldsg 0:662207e34fba 473 return buffer[0];
garfieldsg 0:662207e34fba 474 }
garfieldsg 0:662207e34fba 475 /** Get free-fall event duration threshold.
garfieldsg 0:662207e34fba 476 * @param duration New free-fall duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 477 * @see getFreefallDetectionDuration()
garfieldsg 0:662207e34fba 478 * @see MPU6050_RA_FF_DUR
garfieldsg 0:662207e34fba 479 */
garfieldsg 0:662207e34fba 480 void MPU6050::setFreefallDetectionDuration(uint8_t duration)
garfieldsg 0:662207e34fba 481 {
garfieldsg 0:662207e34fba 482 i2Cdev.writeByte(devAddr, MPU6050_RA_FF_DUR, duration);
garfieldsg 0:662207e34fba 483 }
garfieldsg 0:662207e34fba 484
garfieldsg 0:662207e34fba 485 // MOT_THR register
garfieldsg 0:662207e34fba 486
garfieldsg 0:662207e34fba 487 /** Get motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 488 * This register configures the detection threshold for Motion interrupt
garfieldsg 0:662207e34fba 489 * generation. The unit of MOT_THR is 1LSB = 2mg. Motion is detected when the
garfieldsg 0:662207e34fba 490 * absolute value of any of the accelerometer measurements exceeds this Motion
garfieldsg 0:662207e34fba 491 * detection threshold. This condition increments the Motion detection duration
garfieldsg 0:662207e34fba 492 * counter (Register 32). The Motion detection interrupt is triggered when the
garfieldsg 0:662207e34fba 493 * Motion Detection counter reaches the time count specified in MOT_DUR
garfieldsg 0:662207e34fba 494 * (Register 32).
garfieldsg 0:662207e34fba 495 *
garfieldsg 0:662207e34fba 496 * The Motion interrupt will indicate the axis and polarity of detected motion
garfieldsg 0:662207e34fba 497 * in MOT_DETECT_STATUS (Register 97).
garfieldsg 0:662207e34fba 498 *
garfieldsg 0:662207e34fba 499 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 500 * MPU-6000/MPU-6050 Product Specification document as well as Registers 56 and
garfieldsg 0:662207e34fba 501 * 58 of this document.
garfieldsg 0:662207e34fba 502 *
garfieldsg 0:662207e34fba 503 * @return Current motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 504 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 505 */
garfieldsg 0:662207e34fba 506 uint8_t MPU6050::getMotionDetectionThreshold()
garfieldsg 0:662207e34fba 507 {
garfieldsg 0:662207e34fba 508 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_THR, buffer);
garfieldsg 0:662207e34fba 509 return buffer[0];
garfieldsg 0:662207e34fba 510 }
garfieldsg 0:662207e34fba 511 /** Set free-fall event acceleration threshold.
garfieldsg 0:662207e34fba 512 * @param threshold New motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 513 * @see getMotionDetectionThreshold()
garfieldsg 0:662207e34fba 514 * @see MPU6050_RA_MOT_THR
garfieldsg 0:662207e34fba 515 */
garfieldsg 0:662207e34fba 516 void MPU6050::setMotionDetectionThreshold(uint8_t threshold)
garfieldsg 0:662207e34fba 517 {
garfieldsg 0:662207e34fba 518 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_THR, threshold);
garfieldsg 0:662207e34fba 519 }
garfieldsg 0:662207e34fba 520
garfieldsg 0:662207e34fba 521 // MOT_DUR register
garfieldsg 0:662207e34fba 522
garfieldsg 0:662207e34fba 523 /** Get motion detection event duration threshold.
garfieldsg 0:662207e34fba 524 * This register configures the duration counter threshold for Motion interrupt
garfieldsg 0:662207e34fba 525 * generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit
garfieldsg 0:662207e34fba 526 * of 1LSB = 1ms. The Motion detection duration counter increments when the
garfieldsg 0:662207e34fba 527 * absolute value of any of the accelerometer measurements exceeds the Motion
garfieldsg 0:662207e34fba 528 * detection threshold (Register 31). The Motion detection interrupt is
garfieldsg 0:662207e34fba 529 * triggered when the Motion detection counter reaches the time count specified
garfieldsg 0:662207e34fba 530 * in this register.
garfieldsg 0:662207e34fba 531 *
garfieldsg 0:662207e34fba 532 * For more details on the Motion detection interrupt, see Section 8.3 of the
garfieldsg 0:662207e34fba 533 * MPU-6000/MPU-6050 Product Specification document.
garfieldsg 0:662207e34fba 534 *
garfieldsg 0:662207e34fba 535 * @return Current motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 536 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 537 */
garfieldsg 0:662207e34fba 538 uint8_t MPU6050::getMotionDetectionDuration()
garfieldsg 0:662207e34fba 539 {
garfieldsg 0:662207e34fba 540 i2Cdev.readByte(devAddr, MPU6050_RA_MOT_DUR, buffer);
garfieldsg 0:662207e34fba 541 return buffer[0];
garfieldsg 0:662207e34fba 542 }
garfieldsg 0:662207e34fba 543 /** Set motion detection event duration threshold.
garfieldsg 0:662207e34fba 544 * @param duration New motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 545 * @see getMotionDetectionDuration()
garfieldsg 0:662207e34fba 546 * @see MPU6050_RA_MOT_DUR
garfieldsg 0:662207e34fba 547 */
garfieldsg 0:662207e34fba 548 void MPU6050::setMotionDetectionDuration(uint8_t duration)
garfieldsg 0:662207e34fba 549 {
garfieldsg 0:662207e34fba 550 i2Cdev.writeByte(devAddr, MPU6050_RA_MOT_DUR, duration);
garfieldsg 0:662207e34fba 551 }
garfieldsg 0:662207e34fba 552
garfieldsg 0:662207e34fba 553 // ZRMOT_THR register
garfieldsg 0:662207e34fba 554
garfieldsg 0:662207e34fba 555 /** Get zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 556 * This register configures the detection threshold for Zero Motion interrupt
garfieldsg 0:662207e34fba 557 * generation. The unit of ZRMOT_THR is 1LSB = 2mg. Zero Motion is detected when
garfieldsg 0:662207e34fba 558 * the absolute value of the accelerometer measurements for the 3 axes are each
garfieldsg 0:662207e34fba 559 * less than the detection threshold. This condition increments the Zero Motion
garfieldsg 0:662207e34fba 560 * duration counter (Register 34). The Zero Motion interrupt is triggered when
garfieldsg 0:662207e34fba 561 * the Zero Motion duration counter reaches the time count specified in
garfieldsg 0:662207e34fba 562 * ZRMOT_DUR (Register 34).
garfieldsg 0:662207e34fba 563 *
garfieldsg 0:662207e34fba 564 * Unlike Free Fall or Motion detection, Zero Motion detection triggers an
garfieldsg 0:662207e34fba 565 * interrupt both when Zero Motion is first detected and when Zero Motion is no
garfieldsg 0:662207e34fba 566 * longer detected.
garfieldsg 0:662207e34fba 567 *
garfieldsg 0:662207e34fba 568 * When a zero motion event is detected, a Zero Motion Status will be indicated
garfieldsg 0:662207e34fba 569 * in the MOT_DETECT_STATUS register (Register 97). When a motion-to-zero-motion
garfieldsg 0:662207e34fba 570 * condition is detected, the status bit is set to 1. When a zero-motion-to-
garfieldsg 0:662207e34fba 571 * motion condition is detected, the status bit is set to 0.
garfieldsg 0:662207e34fba 572 *
garfieldsg 0:662207e34fba 573 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 574 * the MPU-6000/MPU-6050 Product Specification document as well as Registers 56
garfieldsg 0:662207e34fba 575 * and 58 of this document.
garfieldsg 0:662207e34fba 576 *
garfieldsg 0:662207e34fba 577 * @return Current zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 578 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 579 */
garfieldsg 0:662207e34fba 580 uint8_t MPU6050::getZeroMotionDetectionThreshold()
garfieldsg 0:662207e34fba 581 {
garfieldsg 0:662207e34fba 582 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_THR, buffer);
garfieldsg 0:662207e34fba 583 return buffer[0];
garfieldsg 0:662207e34fba 584 }
garfieldsg 0:662207e34fba 585 /** Set zero motion detection event acceleration threshold.
garfieldsg 0:662207e34fba 586 * @param threshold New zero motion detection acceleration threshold value (LSB = 2mg)
garfieldsg 0:662207e34fba 587 * @see getZeroMotionDetectionThreshold()
garfieldsg 0:662207e34fba 588 * @see MPU6050_RA_ZRMOT_THR
garfieldsg 0:662207e34fba 589 */
garfieldsg 0:662207e34fba 590 void MPU6050::setZeroMotionDetectionThreshold(uint8_t threshold)
garfieldsg 0:662207e34fba 591 {
garfieldsg 0:662207e34fba 592 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_THR, threshold);
garfieldsg 0:662207e34fba 593 }
garfieldsg 0:662207e34fba 594
garfieldsg 0:662207e34fba 595 // ZRMOT_DUR register
garfieldsg 0:662207e34fba 596
garfieldsg 0:662207e34fba 597 /** Get zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 598 * This register configures the duration counter threshold for Zero Motion
garfieldsg 0:662207e34fba 599 * interrupt generation. The duration counter ticks at 16 Hz, therefore
garfieldsg 0:662207e34fba 600 * ZRMOT_DUR has a unit of 1 LSB = 64 ms. The Zero Motion duration counter
garfieldsg 0:662207e34fba 601 * increments while the absolute value of the accelerometer measurements are
garfieldsg 0:662207e34fba 602 * each less than the detection threshold (Register 33). The Zero Motion
garfieldsg 0:662207e34fba 603 * interrupt is triggered when the Zero Motion duration counter reaches the time
garfieldsg 0:662207e34fba 604 * count specified in this register.
garfieldsg 0:662207e34fba 605 *
garfieldsg 0:662207e34fba 606 * For more details on the Zero Motion detection interrupt, see Section 8.4 of
garfieldsg 0:662207e34fba 607 * the MPU-6000/MPU-6050 Product Specification document, as well as Registers 56
garfieldsg 0:662207e34fba 608 * and 58 of this document.
garfieldsg 0:662207e34fba 609 *
garfieldsg 0:662207e34fba 610 * @return Current zero motion detection duration threshold value (LSB = 64ms)
garfieldsg 0:662207e34fba 611 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 612 */
garfieldsg 0:662207e34fba 613 uint8_t MPU6050::getZeroMotionDetectionDuration()
garfieldsg 0:662207e34fba 614 {
garfieldsg 0:662207e34fba 615 i2Cdev.readByte(devAddr, MPU6050_RA_ZRMOT_DUR, buffer);
garfieldsg 0:662207e34fba 616 return buffer[0];
garfieldsg 0:662207e34fba 617 }
garfieldsg 0:662207e34fba 618 /** Set zero motion detection event duration threshold.
garfieldsg 0:662207e34fba 619 * @param duration New zero motion detection duration threshold value (LSB = 1ms)
garfieldsg 0:662207e34fba 620 * @see getZeroMotionDetectionDuration()
garfieldsg 0:662207e34fba 621 * @see MPU6050_RA_ZRMOT_DUR
garfieldsg 0:662207e34fba 622 */
garfieldsg 0:662207e34fba 623 void MPU6050::setZeroMotionDetectionDuration(uint8_t duration)
garfieldsg 0:662207e34fba 624 {
garfieldsg 0:662207e34fba 625 i2Cdev.writeByte(devAddr, MPU6050_RA_ZRMOT_DUR, duration);
garfieldsg 0:662207e34fba 626 }
garfieldsg 0:662207e34fba 627
garfieldsg 0:662207e34fba 628 // FIFO_EN register
garfieldsg 0:662207e34fba 629
garfieldsg 0:662207e34fba 630 /** Get temperature FIFO enabled value.
garfieldsg 0:662207e34fba 631 * When set to 1, this bit enables TEMP_OUT_H and TEMP_OUT_L (Registers 65 and
garfieldsg 0:662207e34fba 632 * 66) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 633 * @return Current temperature FIFO enabled value
garfieldsg 0:662207e34fba 634 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 635 */
garfieldsg 0:662207e34fba 636 bool MPU6050::getTempFIFOEnabled()
garfieldsg 0:662207e34fba 637 {
garfieldsg 0:662207e34fba 638 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 639 return buffer[0];
garfieldsg 0:662207e34fba 640 }
garfieldsg 0:662207e34fba 641 /** Set temperature FIFO enabled value.
garfieldsg 0:662207e34fba 642 * @param enabled New temperature FIFO enabled value
garfieldsg 0:662207e34fba 643 * @see getTempFIFOEnabled()
garfieldsg 0:662207e34fba 644 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 645 */
garfieldsg 0:662207e34fba 646 void MPU6050::setTempFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 647 {
garfieldsg 0:662207e34fba 648 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_TEMP_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 649 }
garfieldsg 0:662207e34fba 650 /** Get gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 651 * When set to 1, this bit enables GYRO_XOUT_H and GYRO_XOUT_L (Registers 67 and
garfieldsg 0:662207e34fba 652 * 68) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 653 * @return Current gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 654 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 655 */
garfieldsg 0:662207e34fba 656 bool MPU6050::getXGyroFIFOEnabled()
garfieldsg 0:662207e34fba 657 {
garfieldsg 0:662207e34fba 658 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 659 return buffer[0];
garfieldsg 0:662207e34fba 660 }
garfieldsg 0:662207e34fba 661 /** Set gyroscope X-axis FIFO enabled value.
garfieldsg 0:662207e34fba 662 * @param enabled New gyroscope X-axis FIFO enabled value
garfieldsg 0:662207e34fba 663 * @see getXGyroFIFOEnabled()
garfieldsg 0:662207e34fba 664 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 665 */
garfieldsg 0:662207e34fba 666 void MPU6050::setXGyroFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 667 {
garfieldsg 0:662207e34fba 668 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_XG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 669 }
garfieldsg 0:662207e34fba 670 /** Get gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 671 * When set to 1, this bit enables GYRO_YOUT_H and GYRO_YOUT_L (Registers 69 and
garfieldsg 0:662207e34fba 672 * 70) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 673 * @return Current gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 674 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 675 */
garfieldsg 0:662207e34fba 676 bool MPU6050::getYGyroFIFOEnabled()
garfieldsg 0:662207e34fba 677 {
garfieldsg 0:662207e34fba 678 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 679 return buffer[0];
garfieldsg 0:662207e34fba 680 }
garfieldsg 0:662207e34fba 681 /** Set gyroscope Y-axis FIFO enabled value.
garfieldsg 0:662207e34fba 682 * @param enabled New gyroscope Y-axis FIFO enabled value
garfieldsg 0:662207e34fba 683 * @see getYGyroFIFOEnabled()
garfieldsg 0:662207e34fba 684 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 685 */
garfieldsg 0:662207e34fba 686 void MPU6050::setYGyroFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 687 {
garfieldsg 0:662207e34fba 688 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_YG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 689 }
garfieldsg 0:662207e34fba 690 /** Get gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 691 * When set to 1, this bit enables GYRO_ZOUT_H and GYRO_ZOUT_L (Registers 71 and
garfieldsg 0:662207e34fba 692 * 72) to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 693 * @return Current gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 694 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 695 */
garfieldsg 0:662207e34fba 696 bool MPU6050::getZGyroFIFOEnabled()
garfieldsg 0:662207e34fba 697 {
garfieldsg 0:662207e34fba 698 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 699 return buffer[0];
garfieldsg 0:662207e34fba 700 }
garfieldsg 0:662207e34fba 701 /** Set gyroscope Z-axis FIFO enabled value.
garfieldsg 0:662207e34fba 702 * @param enabled New gyroscope Z-axis FIFO enabled value
garfieldsg 0:662207e34fba 703 * @see getZGyroFIFOEnabled()
garfieldsg 0:662207e34fba 704 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 705 */
garfieldsg 0:662207e34fba 706 void MPU6050::setZGyroFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 707 {
garfieldsg 0:662207e34fba 708 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ZG_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 709 }
garfieldsg 0:662207e34fba 710 /** Get accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 711 * When set to 1, this bit enables ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H,
garfieldsg 0:662207e34fba 712 * ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L (Registers 59 to 64) to be
garfieldsg 0:662207e34fba 713 * written into the FIFO buffer.
garfieldsg 0:662207e34fba 714 * @return Current accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 715 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 716 */
garfieldsg 0:662207e34fba 717 bool MPU6050::getAccelFIFOEnabled()
garfieldsg 0:662207e34fba 718 {
garfieldsg 0:662207e34fba 719 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 720 return buffer[0];
garfieldsg 0:662207e34fba 721 }
garfieldsg 0:662207e34fba 722 /** Set accelerometer FIFO enabled value.
garfieldsg 0:662207e34fba 723 * @param enabled New accelerometer FIFO enabled value
garfieldsg 0:662207e34fba 724 * @see getAccelFIFOEnabled()
garfieldsg 0:662207e34fba 725 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 726 */
garfieldsg 0:662207e34fba 727 void MPU6050::setAccelFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 728 {
garfieldsg 0:662207e34fba 729 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_ACCEL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 730 }
garfieldsg 0:662207e34fba 731 /** Get Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 732 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 733 * associated with Slave 2 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 734 * @return Current Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 735 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 736 */
garfieldsg 0:662207e34fba 737 bool MPU6050::getSlave2FIFOEnabled()
garfieldsg 0:662207e34fba 738 {
garfieldsg 0:662207e34fba 739 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 740 return buffer[0];
garfieldsg 0:662207e34fba 741 }
garfieldsg 0:662207e34fba 742 /** Set Slave 2 FIFO enabled value.
garfieldsg 0:662207e34fba 743 * @param enabled New Slave 2 FIFO enabled value
garfieldsg 0:662207e34fba 744 * @see getSlave2FIFOEnabled()
garfieldsg 0:662207e34fba 745 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 746 */
garfieldsg 0:662207e34fba 747 void MPU6050::setSlave2FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 748 {
garfieldsg 0:662207e34fba 749 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV2_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 750 }
garfieldsg 0:662207e34fba 751 /** Get Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 752 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 753 * associated with Slave 1 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 754 * @return Current Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 755 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 756 */
garfieldsg 0:662207e34fba 757 bool MPU6050::getSlave1FIFOEnabled()
garfieldsg 0:662207e34fba 758 {
garfieldsg 0:662207e34fba 759 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 760 return buffer[0];
garfieldsg 0:662207e34fba 761 }
garfieldsg 0:662207e34fba 762 /** Set Slave 1 FIFO enabled value.
garfieldsg 0:662207e34fba 763 * @param enabled New Slave 1 FIFO enabled value
garfieldsg 0:662207e34fba 764 * @see getSlave1FIFOEnabled()
garfieldsg 0:662207e34fba 765 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 766 */
garfieldsg 0:662207e34fba 767 void MPU6050::setSlave1FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 768 {
garfieldsg 0:662207e34fba 769 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV1_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 770 }
garfieldsg 0:662207e34fba 771 /** Get Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 772 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 773 * associated with Slave 0 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 774 * @return Current Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 775 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 776 */
garfieldsg 0:662207e34fba 777 bool MPU6050::getSlave0FIFOEnabled()
garfieldsg 0:662207e34fba 778 {
garfieldsg 0:662207e34fba 779 i2Cdev.readBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 780 return buffer[0];
garfieldsg 0:662207e34fba 781 }
garfieldsg 0:662207e34fba 782 /** Set Slave 0 FIFO enabled value.
garfieldsg 0:662207e34fba 783 * @param enabled New Slave 0 FIFO enabled value
garfieldsg 0:662207e34fba 784 * @see getSlave0FIFOEnabled()
garfieldsg 0:662207e34fba 785 * @see MPU6050_RA_FIFO_EN
garfieldsg 0:662207e34fba 786 */
garfieldsg 0:662207e34fba 787 void MPU6050::setSlave0FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 788 {
garfieldsg 0:662207e34fba 789 i2Cdev.writeBit(devAddr, MPU6050_RA_FIFO_EN, MPU6050_SLV0_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 790 }
garfieldsg 0:662207e34fba 791
garfieldsg 0:662207e34fba 792 // I2C_MST_CTRL register
garfieldsg 0:662207e34fba 793
garfieldsg 0:662207e34fba 794 /** Get multi-master enabled value.
garfieldsg 0:662207e34fba 795 * Multi-master capability allows multiple I2C masters to operate on the same
garfieldsg 0:662207e34fba 796 * bus. In circuits where multi-master capability is required, set MULT_MST_EN
garfieldsg 0:662207e34fba 797 * to 1. This will increase current drawn by approximately 30uA.
garfieldsg 0:662207e34fba 798 *
garfieldsg 0:662207e34fba 799 * In circuits where multi-master capability is required, the state of the I2C
garfieldsg 0:662207e34fba 800 * bus must always be monitored by each separate I2C Master. Before an I2C
garfieldsg 0:662207e34fba 801 * Master can assume arbitration of the bus, it must first confirm that no other
garfieldsg 0:662207e34fba 802 * I2C Master has arbitration of the bus. When MULT_MST_EN is set to 1, the
garfieldsg 0:662207e34fba 803 * MPU-60X0's bus arbitration detection logic is turned on, enabling it to
garfieldsg 0:662207e34fba 804 * detect when the bus is available.
garfieldsg 0:662207e34fba 805 *
garfieldsg 0:662207e34fba 806 * @return Current multi-master enabled value
garfieldsg 0:662207e34fba 807 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 808 */
garfieldsg 0:662207e34fba 809 bool MPU6050::getMultiMasterEnabled()
garfieldsg 0:662207e34fba 810 {
garfieldsg 0:662207e34fba 811 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 812 return buffer[0];
garfieldsg 0:662207e34fba 813 }
garfieldsg 0:662207e34fba 814 /** Set multi-master enabled value.
garfieldsg 0:662207e34fba 815 * @param enabled New multi-master enabled value
garfieldsg 0:662207e34fba 816 * @see getMultiMasterEnabled()
garfieldsg 0:662207e34fba 817 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 818 */
garfieldsg 0:662207e34fba 819 void MPU6050::setMultiMasterEnabled(bool enabled)
garfieldsg 0:662207e34fba 820 {
garfieldsg 0:662207e34fba 821 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_MULT_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 822 }
garfieldsg 0:662207e34fba 823 /** Get wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 824 * When the WAIT_FOR_ES bit is set to 1, the Data Ready interrupt will be
garfieldsg 0:662207e34fba 825 * delayed until External Sensor data from the Slave Devices are loaded into the
garfieldsg 0:662207e34fba 826 * EXT_SENS_DATA registers. This is used to ensure that both the internal sensor
garfieldsg 0:662207e34fba 827 * data (i.e. from gyro and accel) and external sensor data have been loaded to
garfieldsg 0:662207e34fba 828 * their respective data registers (i.e. the data is synced) when the Data Ready
garfieldsg 0:662207e34fba 829 * interrupt is triggered.
garfieldsg 0:662207e34fba 830 *
garfieldsg 0:662207e34fba 831 * @return Current wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 832 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 833 */
garfieldsg 0:662207e34fba 834 bool MPU6050::getWaitForExternalSensorEnabled()
garfieldsg 0:662207e34fba 835 {
garfieldsg 0:662207e34fba 836 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, buffer);
garfieldsg 0:662207e34fba 837 return buffer[0];
garfieldsg 0:662207e34fba 838 }
garfieldsg 0:662207e34fba 839 /** Set wait-for-external-sensor-data enabled value.
garfieldsg 0:662207e34fba 840 * @param enabled New wait-for-external-sensor-data enabled value
garfieldsg 0:662207e34fba 841 * @see getWaitForExternalSensorEnabled()
garfieldsg 0:662207e34fba 842 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 843 */
garfieldsg 0:662207e34fba 844 void MPU6050::setWaitForExternalSensorEnabled(bool enabled)
garfieldsg 0:662207e34fba 845 {
garfieldsg 0:662207e34fba 846 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_WAIT_FOR_ES_BIT, enabled);
garfieldsg 0:662207e34fba 847 }
garfieldsg 0:662207e34fba 848 /** Get Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 849 * When set to 1, this bit enables EXT_SENS_DATA registers (Registers 73 to 96)
garfieldsg 0:662207e34fba 850 * associated with Slave 3 to be written into the FIFO buffer.
garfieldsg 0:662207e34fba 851 * @return Current Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 852 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 853 */
garfieldsg 0:662207e34fba 854 bool MPU6050::getSlave3FIFOEnabled()
garfieldsg 0:662207e34fba 855 {
garfieldsg 0:662207e34fba 856 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 857 return buffer[0];
garfieldsg 0:662207e34fba 858 }
garfieldsg 0:662207e34fba 859 /** Set Slave 3 FIFO enabled value.
garfieldsg 0:662207e34fba 860 * @param enabled New Slave 3 FIFO enabled value
garfieldsg 0:662207e34fba 861 * @see getSlave3FIFOEnabled()
garfieldsg 0:662207e34fba 862 * @see MPU6050_RA_MST_CTRL
garfieldsg 0:662207e34fba 863 */
garfieldsg 0:662207e34fba 864 void MPU6050::setSlave3FIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 865 {
garfieldsg 0:662207e34fba 866 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_SLV_3_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 867 }
garfieldsg 0:662207e34fba 868 /** Get slave read/write transition enabled value.
garfieldsg 0:662207e34fba 869 * The I2C_MST_P_NSR bit configures the I2C Master's transition from one slave
garfieldsg 0:662207e34fba 870 * read to the next slave read. If the bit equals 0, there will be a restart
garfieldsg 0:662207e34fba 871 * between reads. If the bit equals 1, there will be a stop followed by a start
garfieldsg 0:662207e34fba 872 * of the following read. When a write transaction follows a read transaction,
garfieldsg 0:662207e34fba 873 * the stop followed by a start of the successive write will be always used.
garfieldsg 0:662207e34fba 874 *
garfieldsg 0:662207e34fba 875 * @return Current slave read/write transition enabled value
garfieldsg 0:662207e34fba 876 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 877 */
garfieldsg 0:662207e34fba 878 bool MPU6050::getSlaveReadWriteTransitionEnabled()
garfieldsg 0:662207e34fba 879 {
garfieldsg 0:662207e34fba 880 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, buffer);
garfieldsg 0:662207e34fba 881 return buffer[0];
garfieldsg 0:662207e34fba 882 }
garfieldsg 0:662207e34fba 883 /** Set slave read/write transition enabled value.
garfieldsg 0:662207e34fba 884 * @param enabled New slave read/write transition enabled value
garfieldsg 0:662207e34fba 885 * @see getSlaveReadWriteTransitionEnabled()
garfieldsg 0:662207e34fba 886 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 887 */
garfieldsg 0:662207e34fba 888 void MPU6050::setSlaveReadWriteTransitionEnabled(bool enabled)
garfieldsg 0:662207e34fba 889 {
garfieldsg 0:662207e34fba 890 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_P_NSR_BIT, enabled);
garfieldsg 0:662207e34fba 891 }
garfieldsg 0:662207e34fba 892 /** Get I2C master clock speed.
garfieldsg 0:662207e34fba 893 * I2C_MST_CLK is a 4 bit unsigned value which configures a divider on the
garfieldsg 0:662207e34fba 894 * MPU-60X0 internal 8MHz clock. It sets the I2C master clock speed according to
garfieldsg 0:662207e34fba 895 * the following table:
garfieldsg 0:662207e34fba 896 *
garfieldsg 0:662207e34fba 897 * <pre>
garfieldsg 0:662207e34fba 898 * I2C_MST_CLK | I2C Master Clock Speed | 8MHz Clock Divider
garfieldsg 0:662207e34fba 899 * ------------+------------------------+-------------------
garfieldsg 0:662207e34fba 900 * 0 | 348kHz | 23
garfieldsg 0:662207e34fba 901 * 1 | 333kHz | 24
garfieldsg 0:662207e34fba 902 * 2 | 320kHz | 25
garfieldsg 0:662207e34fba 903 * 3 | 308kHz | 26
garfieldsg 0:662207e34fba 904 * 4 | 296kHz | 27
garfieldsg 0:662207e34fba 905 * 5 | 286kHz | 28
garfieldsg 0:662207e34fba 906 * 6 | 276kHz | 29
garfieldsg 0:662207e34fba 907 * 7 | 267kHz | 30
garfieldsg 0:662207e34fba 908 * 8 | 258kHz | 31
garfieldsg 0:662207e34fba 909 * 9 | 500kHz | 16
garfieldsg 0:662207e34fba 910 * 10 | 471kHz | 17
garfieldsg 0:662207e34fba 911 * 11 | 444kHz | 18
garfieldsg 0:662207e34fba 912 * 12 | 421kHz | 19
garfieldsg 0:662207e34fba 913 * 13 | 400kHz | 20
garfieldsg 0:662207e34fba 914 * 14 | 381kHz | 21
garfieldsg 0:662207e34fba 915 * 15 | 364kHz | 22
garfieldsg 0:662207e34fba 916 * </pre>
garfieldsg 0:662207e34fba 917 *
garfieldsg 0:662207e34fba 918 * @return Current I2C master clock speed
garfieldsg 0:662207e34fba 919 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 920 */
garfieldsg 0:662207e34fba 921 uint8_t MPU6050::getMasterClockSpeed()
garfieldsg 0:662207e34fba 922 {
garfieldsg 0:662207e34fba 923 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, buffer);
garfieldsg 0:662207e34fba 924 return buffer[0];
garfieldsg 0:662207e34fba 925 }
garfieldsg 0:662207e34fba 926 /** Set I2C master clock speed.
garfieldsg 0:662207e34fba 927 * @reparam speed Current I2C master clock speed
garfieldsg 0:662207e34fba 928 * @see MPU6050_RA_I2C_MST_CTRL
garfieldsg 0:662207e34fba 929 */
garfieldsg 0:662207e34fba 930 void MPU6050::setMasterClockSpeed(uint8_t speed)
garfieldsg 0:662207e34fba 931 {
garfieldsg 0:662207e34fba 932 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_MST_CTRL, MPU6050_I2C_MST_CLK_BIT, MPU6050_I2C_MST_CLK_LENGTH, speed);
garfieldsg 0:662207e34fba 933 }
garfieldsg 0:662207e34fba 934
garfieldsg 0:662207e34fba 935 // I2C_SLV* registers (Slave 0-3)
garfieldsg 0:662207e34fba 936
garfieldsg 0:662207e34fba 937 /** Get the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 938 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 939 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 940 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 941 *
garfieldsg 0:662207e34fba 942 * In read mode, the result of the read is placed in the lowest available
garfieldsg 0:662207e34fba 943 * EXT_SENS_DATA register. For further information regarding the allocation of
garfieldsg 0:662207e34fba 944 * read results, please refer to the EXT_SENS_DATA register description
garfieldsg 0:662207e34fba 945 * (Registers 73 - 96).
garfieldsg 0:662207e34fba 946 *
garfieldsg 0:662207e34fba 947 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 948 * characteristics, and so it has its own functions (getSlave4* and setSlave4*).
garfieldsg 0:662207e34fba 949 *
garfieldsg 0:662207e34fba 950 * I2C data transactions are performed at the Sample Rate, as defined in
garfieldsg 0:662207e34fba 951 * Register 25. The user is responsible for ensuring that I2C data transactions
garfieldsg 0:662207e34fba 952 * to and from each enabled Slave can be completed within a single period of the
garfieldsg 0:662207e34fba 953 * Sample Rate.
garfieldsg 0:662207e34fba 954 *
garfieldsg 0:662207e34fba 955 * The I2C slave access rate can be reduced relative to the Sample Rate. This
garfieldsg 0:662207e34fba 956 * reduced access rate is determined by I2C_MST_DLY (Register 52). Whether a
garfieldsg 0:662207e34fba 957 * slave's access rate is reduced relative to the Sample Rate is determined by
garfieldsg 0:662207e34fba 958 * I2C_MST_DELAY_CTRL (Register 103).
garfieldsg 0:662207e34fba 959 *
garfieldsg 0:662207e34fba 960 * The processing order for the slaves is fixed. The sequence followed for
garfieldsg 0:662207e34fba 961 * processing the slaves is Slave 0, Slave 1, Slave 2, Slave 3 and Slave 4. If a
garfieldsg 0:662207e34fba 962 * particular Slave is disabled it will be skipped.
garfieldsg 0:662207e34fba 963 *
garfieldsg 0:662207e34fba 964 * Each slave can either be accessed at the sample rate or at a reduced sample
garfieldsg 0:662207e34fba 965 * rate. In a case where some slaves are accessed at the Sample Rate and some
garfieldsg 0:662207e34fba 966 * slaves are accessed at the reduced rate, the sequence of accessing the slaves
garfieldsg 0:662207e34fba 967 * (Slave 0 to Slave 4) is still followed. However, the reduced rate slaves will
garfieldsg 0:662207e34fba 968 * be skipped if their access rate dictates that they should not be accessed
garfieldsg 0:662207e34fba 969 * during that particular cycle. For further information regarding the reduced
garfieldsg 0:662207e34fba 970 * access rate, please refer to Register 52. Whether a slave is accessed at the
garfieldsg 0:662207e34fba 971 * Sample Rate or at the reduced rate is determined by the Delay Enable bits in
garfieldsg 0:662207e34fba 972 * Register 103.
garfieldsg 0:662207e34fba 973 *
garfieldsg 0:662207e34fba 974 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 975 * @return Current address for specified slave
garfieldsg 0:662207e34fba 976 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 977 */
garfieldsg 0:662207e34fba 978 uint8_t MPU6050::getSlaveAddress(uint8_t num)
garfieldsg 0:662207e34fba 979 {
garfieldsg 0:662207e34fba 980 if (num > 3) return 0;
garfieldsg 0:662207e34fba 981 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, buffer);
garfieldsg 0:662207e34fba 982 return buffer[0];
garfieldsg 0:662207e34fba 983 }
garfieldsg 0:662207e34fba 984 /** Set the I2C address of the specified slave (0-3).
garfieldsg 0:662207e34fba 985 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 986 * @param address New address for specified slave
garfieldsg 0:662207e34fba 987 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 988 * @see MPU6050_RA_I2C_SLV0_ADDR
garfieldsg 0:662207e34fba 989 */
garfieldsg 0:662207e34fba 990 void MPU6050::setSlaveAddress(uint8_t num, uint8_t address)
garfieldsg 0:662207e34fba 991 {
garfieldsg 0:662207e34fba 992 if (num > 3) return;
garfieldsg 0:662207e34fba 993 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_ADDR + num*3, address);
garfieldsg 0:662207e34fba 994 }
garfieldsg 0:662207e34fba 995 /** Get the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 996 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 997 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 998 *
garfieldsg 0:662207e34fba 999 * The MPU-6050 supports a total of five slaves, but Slave 4 has unique
garfieldsg 0:662207e34fba 1000 * characteristics, and so it has its own functions.
garfieldsg 0:662207e34fba 1001 *
garfieldsg 0:662207e34fba 1002 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1003 * @return Current active register for specified slave
garfieldsg 0:662207e34fba 1004 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 1005 */
garfieldsg 0:662207e34fba 1006 uint8_t MPU6050::getSlaveRegister(uint8_t num)
garfieldsg 0:662207e34fba 1007 {
garfieldsg 0:662207e34fba 1008 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1009 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, buffer);
garfieldsg 0:662207e34fba 1010 return buffer[0];
garfieldsg 0:662207e34fba 1011 }
garfieldsg 0:662207e34fba 1012 /** Set the active internal register for the specified slave (0-3).
garfieldsg 0:662207e34fba 1013 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1014 * @param reg New active register for specified slave
garfieldsg 0:662207e34fba 1015 * @see getSlaveRegister()
garfieldsg 0:662207e34fba 1016 * @see MPU6050_RA_I2C_SLV0_REG
garfieldsg 0:662207e34fba 1017 */
garfieldsg 0:662207e34fba 1018 void MPU6050::setSlaveRegister(uint8_t num, uint8_t reg)
garfieldsg 0:662207e34fba 1019 {
garfieldsg 0:662207e34fba 1020 if (num > 3) return;
garfieldsg 0:662207e34fba 1021 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_REG + num*3, reg);
garfieldsg 0:662207e34fba 1022 }
garfieldsg 0:662207e34fba 1023 /** Get the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 1024 * When set to 1, this bit enables Slave 0 for data transfer operations. When
garfieldsg 0:662207e34fba 1025 * cleared to 0, this bit disables Slave 0 from data transfer operations.
garfieldsg 0:662207e34fba 1026 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1027 * @return Current enabled value for specified slave
garfieldsg 0:662207e34fba 1028 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1029 */
garfieldsg 0:662207e34fba 1030 bool MPU6050::getSlaveEnabled(uint8_t num)
garfieldsg 0:662207e34fba 1031 {
garfieldsg 0:662207e34fba 1032 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1033 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1034 return buffer[0];
garfieldsg 0:662207e34fba 1035 }
garfieldsg 0:662207e34fba 1036 /** Set the enabled value for the specified slave (0-3).
garfieldsg 0:662207e34fba 1037 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1038 * @param enabled New enabled value for specified slave
garfieldsg 0:662207e34fba 1039 * @see getSlaveEnabled()
garfieldsg 0:662207e34fba 1040 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1041 */
garfieldsg 0:662207e34fba 1042 void MPU6050::setSlaveEnabled(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 1043 {
garfieldsg 0:662207e34fba 1044 if (num > 3) return;
garfieldsg 0:662207e34fba 1045 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1046 }
garfieldsg 0:662207e34fba 1047 /** Get word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 1048 * When set to 1, this bit enables byte swapping. When byte swapping is enabled,
garfieldsg 0:662207e34fba 1049 * the high and low bytes of a word pair are swapped. Please refer to
garfieldsg 0:662207e34fba 1050 * I2C_SLV0_GRP for the pairing convention of the word pairs. When cleared to 0,
garfieldsg 0:662207e34fba 1051 * bytes transferred to and from Slave 0 will be written to EXT_SENS_DATA
garfieldsg 0:662207e34fba 1052 * registers in the order they were transferred.
garfieldsg 0:662207e34fba 1053 *
garfieldsg 0:662207e34fba 1054 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1055 * @return Current word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 1056 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1057 */
garfieldsg 0:662207e34fba 1058 bool MPU6050::getSlaveWordByteSwap(uint8_t num)
garfieldsg 0:662207e34fba 1059 {
garfieldsg 0:662207e34fba 1060 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1061 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, buffer);
garfieldsg 0:662207e34fba 1062 return buffer[0];
garfieldsg 0:662207e34fba 1063 }
garfieldsg 0:662207e34fba 1064 /** Set word pair byte-swapping enabled for the specified slave (0-3).
garfieldsg 0:662207e34fba 1065 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1066 * @param enabled New word pair byte-swapping enabled value for specified slave
garfieldsg 0:662207e34fba 1067 * @see getSlaveWordByteSwap()
garfieldsg 0:662207e34fba 1068 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1069 */
garfieldsg 0:662207e34fba 1070 void MPU6050::setSlaveWordByteSwap(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 1071 {
garfieldsg 0:662207e34fba 1072 if (num > 3) return;
garfieldsg 0:662207e34fba 1073 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_BYTE_SW_BIT, enabled);
garfieldsg 0:662207e34fba 1074 }
garfieldsg 0:662207e34fba 1075 /** Get write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1076 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1077 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1078 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1079 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1080 *
garfieldsg 0:662207e34fba 1081 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1082 * @return Current write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1083 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1084 */
garfieldsg 0:662207e34fba 1085 bool MPU6050::getSlaveWriteMode(uint8_t num)
garfieldsg 0:662207e34fba 1086 {
garfieldsg 0:662207e34fba 1087 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1088 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1089 return buffer[0];
garfieldsg 0:662207e34fba 1090 }
garfieldsg 0:662207e34fba 1091 /** Set write mode for the specified slave (0-3).
garfieldsg 0:662207e34fba 1092 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1093 * @param mode New write mode for specified slave (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1094 * @see getSlaveWriteMode()
garfieldsg 0:662207e34fba 1095 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1096 */
garfieldsg 0:662207e34fba 1097 void MPU6050::setSlaveWriteMode(uint8_t num, bool mode)
garfieldsg 0:662207e34fba 1098 {
garfieldsg 0:662207e34fba 1099 if (num > 3) return;
garfieldsg 0:662207e34fba 1100 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1101 }
garfieldsg 0:662207e34fba 1102 /** Get word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1103 * This sets specifies the grouping order of word pairs received from registers.
garfieldsg 0:662207e34fba 1104 * When cleared to 0, bytes from register addresses 0 and 1, 2 and 3, etc (even,
garfieldsg 0:662207e34fba 1105 * then odd register addresses) are paired to form a word. When set to 1, bytes
garfieldsg 0:662207e34fba 1106 * from register addresses are paired 1 and 2, 3 and 4, etc. (odd, then even
garfieldsg 0:662207e34fba 1107 * register addresses) are paired to form a word.
garfieldsg 0:662207e34fba 1108 *
garfieldsg 0:662207e34fba 1109 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1110 * @return Current word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1111 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1112 */
garfieldsg 0:662207e34fba 1113 bool MPU6050::getSlaveWordGroupOffset(uint8_t num)
garfieldsg 0:662207e34fba 1114 {
garfieldsg 0:662207e34fba 1115 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1116 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, buffer);
garfieldsg 0:662207e34fba 1117 return buffer[0];
garfieldsg 0:662207e34fba 1118 }
garfieldsg 0:662207e34fba 1119 /** Set word pair grouping order offset for the specified slave (0-3).
garfieldsg 0:662207e34fba 1120 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1121 * @param enabled New word pair grouping order offset for specified slave
garfieldsg 0:662207e34fba 1122 * @see getSlaveWordGroupOffset()
garfieldsg 0:662207e34fba 1123 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1124 */
garfieldsg 0:662207e34fba 1125 void MPU6050::setSlaveWordGroupOffset(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 1126 {
garfieldsg 0:662207e34fba 1127 if (num > 3) return;
garfieldsg 0:662207e34fba 1128 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_GRP_BIT, enabled);
garfieldsg 0:662207e34fba 1129 }
garfieldsg 0:662207e34fba 1130 /** Get number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1131 * Specifies the number of bytes transferred to and from Slave 0. Clearing this
garfieldsg 0:662207e34fba 1132 * bit to 0 is equivalent to disabling the register by writing 0 to I2C_SLV0_EN.
garfieldsg 0:662207e34fba 1133 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1134 * @return Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1135 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1136 */
garfieldsg 0:662207e34fba 1137 uint8_t MPU6050::getSlaveDataLength(uint8_t num)
garfieldsg 0:662207e34fba 1138 {
garfieldsg 0:662207e34fba 1139 if (num > 3) return 0;
garfieldsg 0:662207e34fba 1140 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, buffer);
garfieldsg 0:662207e34fba 1141 return buffer[0];
garfieldsg 0:662207e34fba 1142 }
garfieldsg 0:662207e34fba 1143 /** Set number of bytes to read for the specified slave (0-3).
garfieldsg 0:662207e34fba 1144 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 1145 * @param length Number of bytes to read for specified slave
garfieldsg 0:662207e34fba 1146 * @see getSlaveDataLength()
garfieldsg 0:662207e34fba 1147 * @see MPU6050_RA_I2C_SLV0_CTRL
garfieldsg 0:662207e34fba 1148 */
garfieldsg 0:662207e34fba 1149 void MPU6050::setSlaveDataLength(uint8_t num, uint8_t length)
garfieldsg 0:662207e34fba 1150 {
garfieldsg 0:662207e34fba 1151 if (num > 3) return;
garfieldsg 0:662207e34fba 1152 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV0_CTRL + num*3, MPU6050_I2C_SLV_LEN_BIT, MPU6050_I2C_SLV_LEN_LENGTH, length);
garfieldsg 0:662207e34fba 1153 }
garfieldsg 0:662207e34fba 1154
garfieldsg 0:662207e34fba 1155 // I2C_SLV* registers (Slave 4)
garfieldsg 0:662207e34fba 1156
garfieldsg 0:662207e34fba 1157 /** Get the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1158 * Note that Bit 7 (MSB) controls read/write mode. If Bit 7 is set, it's a read
garfieldsg 0:662207e34fba 1159 * operation, and if it is cleared, then it's a write operation. The remaining
garfieldsg 0:662207e34fba 1160 * bits (6-0) are the 7-bit device address of the slave device.
garfieldsg 0:662207e34fba 1161 *
garfieldsg 0:662207e34fba 1162 * @return Current address for Slave 4
garfieldsg 0:662207e34fba 1163 * @see getSlaveAddress()
garfieldsg 0:662207e34fba 1164 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1165 */
garfieldsg 0:662207e34fba 1166 uint8_t MPU6050::getSlave4Address()
garfieldsg 0:662207e34fba 1167 {
garfieldsg 0:662207e34fba 1168 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, buffer);
garfieldsg 0:662207e34fba 1169 return buffer[0];
garfieldsg 0:662207e34fba 1170 }
garfieldsg 0:662207e34fba 1171 /** Set the I2C address of Slave 4.
garfieldsg 0:662207e34fba 1172 * @param address New address for Slave 4
garfieldsg 0:662207e34fba 1173 * @see getSlave4Address()
garfieldsg 0:662207e34fba 1174 * @see MPU6050_RA_I2C_SLV4_ADDR
garfieldsg 0:662207e34fba 1175 */
garfieldsg 0:662207e34fba 1176 void MPU6050::setSlave4Address(uint8_t address)
garfieldsg 0:662207e34fba 1177 {
garfieldsg 0:662207e34fba 1178 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_ADDR, address);
garfieldsg 0:662207e34fba 1179 }
garfieldsg 0:662207e34fba 1180 /** Get the active internal register for the Slave 4.
garfieldsg 0:662207e34fba 1181 * Read/write operations for this slave will be done to whatever internal
garfieldsg 0:662207e34fba 1182 * register address is stored in this MPU register.
garfieldsg 0:662207e34fba 1183 *
garfieldsg 0:662207e34fba 1184 * @return Current active register for Slave 4
garfieldsg 0:662207e34fba 1185 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1186 */
garfieldsg 0:662207e34fba 1187 uint8_t MPU6050::getSlave4Register()
garfieldsg 0:662207e34fba 1188 {
garfieldsg 0:662207e34fba 1189 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_REG, buffer);
garfieldsg 0:662207e34fba 1190 return buffer[0];
garfieldsg 0:662207e34fba 1191 }
garfieldsg 0:662207e34fba 1192 /** Set the active internal register for Slave 4.
garfieldsg 0:662207e34fba 1193 * @param reg New active register for Slave 4
garfieldsg 0:662207e34fba 1194 * @see getSlave4Register()
garfieldsg 0:662207e34fba 1195 * @see MPU6050_RA_I2C_SLV4_REG
garfieldsg 0:662207e34fba 1196 */
garfieldsg 0:662207e34fba 1197 void MPU6050::setSlave4Register(uint8_t reg)
garfieldsg 0:662207e34fba 1198 {
garfieldsg 0:662207e34fba 1199 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_REG, reg);
garfieldsg 0:662207e34fba 1200 }
garfieldsg 0:662207e34fba 1201 /** Set new byte to write to Slave 4.
garfieldsg 0:662207e34fba 1202 * This register stores the data to be written into the Slave 4. If I2C_SLV4_RW
garfieldsg 0:662207e34fba 1203 * is set 1 (set to read), this register has no effect.
garfieldsg 0:662207e34fba 1204 * @param data New byte to write to Slave 4
garfieldsg 0:662207e34fba 1205 * @see MPU6050_RA_I2C_SLV4_DO
garfieldsg 0:662207e34fba 1206 */
garfieldsg 0:662207e34fba 1207 void MPU6050::setSlave4OutputByte(uint8_t data)
garfieldsg 0:662207e34fba 1208 {
garfieldsg 0:662207e34fba 1209 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV4_DO, data);
garfieldsg 0:662207e34fba 1210 }
garfieldsg 0:662207e34fba 1211 /** Get the enabled value for the Slave 4.
garfieldsg 0:662207e34fba 1212 * When set to 1, this bit enables Slave 4 for data transfer operations. When
garfieldsg 0:662207e34fba 1213 * cleared to 0, this bit disables Slave 4 from data transfer operations.
garfieldsg 0:662207e34fba 1214 * @return Current enabled value for Slave 4
garfieldsg 0:662207e34fba 1215 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1216 */
garfieldsg 0:662207e34fba 1217 bool MPU6050::getSlave4Enabled()
garfieldsg 0:662207e34fba 1218 {
garfieldsg 0:662207e34fba 1219 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1220 return buffer[0];
garfieldsg 0:662207e34fba 1221 }
garfieldsg 0:662207e34fba 1222 /** Set the enabled value for Slave 4.
garfieldsg 0:662207e34fba 1223 * @param enabled New enabled value for Slave 4
garfieldsg 0:662207e34fba 1224 * @see getSlave4Enabled()
garfieldsg 0:662207e34fba 1225 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1226 */
garfieldsg 0:662207e34fba 1227 void MPU6050::setSlave4Enabled(bool enabled)
garfieldsg 0:662207e34fba 1228 {
garfieldsg 0:662207e34fba 1229 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1230 }
garfieldsg 0:662207e34fba 1231 /** Get the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1232 * When set to 1, this bit enables the generation of an interrupt signal upon
garfieldsg 0:662207e34fba 1233 * completion of a Slave 4 transaction. When cleared to 0, this bit disables the
garfieldsg 0:662207e34fba 1234 * generation of an interrupt signal upon completion of a Slave 4 transaction.
garfieldsg 0:662207e34fba 1235 * The interrupt status can be observed in Register 54.
garfieldsg 0:662207e34fba 1236 *
garfieldsg 0:662207e34fba 1237 * @return Current enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1238 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1239 */
garfieldsg 0:662207e34fba 1240 bool MPU6050::getSlave4InterruptEnabled()
garfieldsg 0:662207e34fba 1241 {
garfieldsg 0:662207e34fba 1242 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1243 return buffer[0];
garfieldsg 0:662207e34fba 1244 }
garfieldsg 0:662207e34fba 1245 /** Set the enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1246 * @param enabled New enabled value for Slave 4 transaction interrupts.
garfieldsg 0:662207e34fba 1247 * @see getSlave4InterruptEnabled()
garfieldsg 0:662207e34fba 1248 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1249 */
garfieldsg 0:662207e34fba 1250 void MPU6050::setSlave4InterruptEnabled(bool enabled)
garfieldsg 0:662207e34fba 1251 {
garfieldsg 0:662207e34fba 1252 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1253 }
garfieldsg 0:662207e34fba 1254 /** Get write mode for Slave 4.
garfieldsg 0:662207e34fba 1255 * When set to 1, the transaction will read or write data only. When cleared to
garfieldsg 0:662207e34fba 1256 * 0, the transaction will write a register address prior to reading or writing
garfieldsg 0:662207e34fba 1257 * data. This should equal 0 when specifying the register address within the
garfieldsg 0:662207e34fba 1258 * Slave device to/from which the ensuing data transaction will take place.
garfieldsg 0:662207e34fba 1259 *
garfieldsg 0:662207e34fba 1260 * @return Current write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1261 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1262 */
garfieldsg 0:662207e34fba 1263 bool MPU6050::getSlave4WriteMode()
garfieldsg 0:662207e34fba 1264 {
garfieldsg 0:662207e34fba 1265 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 1266 return buffer[0];
garfieldsg 0:662207e34fba 1267 }
garfieldsg 0:662207e34fba 1268 /** Set write mode for the Slave 4.
garfieldsg 0:662207e34fba 1269 * @param mode New write mode for Slave 4 (0 = register address + data, 1 = data only)
garfieldsg 0:662207e34fba 1270 * @see getSlave4WriteMode()
garfieldsg 0:662207e34fba 1271 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1272 */
garfieldsg 0:662207e34fba 1273 void MPU6050::setSlave4WriteMode(bool mode)
garfieldsg 0:662207e34fba 1274 {
garfieldsg 0:662207e34fba 1275 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_REG_DIS_BIT, mode);
garfieldsg 0:662207e34fba 1276 }
garfieldsg 0:662207e34fba 1277 /** Get Slave 4 master delay value.
garfieldsg 0:662207e34fba 1278 * This configures the reduced access rate of I2C slaves relative to the Sample
garfieldsg 0:662207e34fba 1279 * Rate. When a slave's access rate is decreased relative to the Sample Rate,
garfieldsg 0:662207e34fba 1280 * the slave is accessed every:
garfieldsg 0:662207e34fba 1281 *
garfieldsg 0:662207e34fba 1282 * 1 / (1 + I2C_MST_DLY) samples
garfieldsg 0:662207e34fba 1283 *
garfieldsg 0:662207e34fba 1284 * This base Sample Rate in turn is determined by SMPLRT_DIV (register 25) and
garfieldsg 0:662207e34fba 1285 * DLPF_CFG (register 26). Whether a slave's access rate is reduced relative to
garfieldsg 0:662207e34fba 1286 * the Sample Rate is determined by I2C_MST_DELAY_CTRL (register 103). For
garfieldsg 0:662207e34fba 1287 * further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 1288 *
garfieldsg 0:662207e34fba 1289 * @return Current Slave 4 master delay value
garfieldsg 0:662207e34fba 1290 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1291 */
garfieldsg 0:662207e34fba 1292 uint8_t MPU6050::getSlave4MasterDelay()
garfieldsg 0:662207e34fba 1293 {
garfieldsg 0:662207e34fba 1294 i2Cdev.readBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, buffer);
garfieldsg 0:662207e34fba 1295 return buffer[0];
garfieldsg 0:662207e34fba 1296 }
garfieldsg 0:662207e34fba 1297 /** Set Slave 4 master delay value.
garfieldsg 0:662207e34fba 1298 * @param delay New Slave 4 master delay value
garfieldsg 0:662207e34fba 1299 * @see getSlave4MasterDelay()
garfieldsg 0:662207e34fba 1300 * @see MPU6050_RA_I2C_SLV4_CTRL
garfieldsg 0:662207e34fba 1301 */
garfieldsg 0:662207e34fba 1302 void MPU6050::setSlave4MasterDelay(uint8_t delay)
garfieldsg 0:662207e34fba 1303 {
garfieldsg 0:662207e34fba 1304 i2Cdev.writeBits(devAddr, MPU6050_RA_I2C_SLV4_CTRL, MPU6050_I2C_SLV4_MST_DLY_BIT, MPU6050_I2C_SLV4_MST_DLY_LENGTH, delay);
garfieldsg 0:662207e34fba 1305 }
garfieldsg 0:662207e34fba 1306 /** Get last available byte read from Slave 4.
garfieldsg 0:662207e34fba 1307 * This register stores the data read from Slave 4. This field is populated
garfieldsg 0:662207e34fba 1308 * after a read transaction.
garfieldsg 0:662207e34fba 1309 * @return Last available byte read from to Slave 4
garfieldsg 0:662207e34fba 1310 * @see MPU6050_RA_I2C_SLV4_DI
garfieldsg 0:662207e34fba 1311 */
garfieldsg 0:662207e34fba 1312 uint8_t MPU6050::getSlate4InputByte()
garfieldsg 0:662207e34fba 1313 {
garfieldsg 0:662207e34fba 1314 i2Cdev.readByte(devAddr, MPU6050_RA_I2C_SLV4_DI, buffer);
garfieldsg 0:662207e34fba 1315 return buffer[0];
garfieldsg 0:662207e34fba 1316 }
garfieldsg 0:662207e34fba 1317
garfieldsg 0:662207e34fba 1318 // I2C_MST_STATUS register
garfieldsg 0:662207e34fba 1319
garfieldsg 0:662207e34fba 1320 /** Get FSYNC interrupt status.
garfieldsg 0:662207e34fba 1321 * This bit reflects the status of the FSYNC interrupt from an external device
garfieldsg 0:662207e34fba 1322 * into the MPU-60X0. This is used as a way to pass an external interrupt
garfieldsg 0:662207e34fba 1323 * through the MPU-60X0 to the host application processor. When set to 1, this
garfieldsg 0:662207e34fba 1324 * bit will cause an interrupt if FSYNC_INT_EN is asserted in INT_PIN_CFG
garfieldsg 0:662207e34fba 1325 * (Register 55).
garfieldsg 0:662207e34fba 1326 * @return FSYNC interrupt status
garfieldsg 0:662207e34fba 1327 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1328 */
garfieldsg 0:662207e34fba 1329 bool MPU6050::getPassthroughStatus()
garfieldsg 0:662207e34fba 1330 {
garfieldsg 0:662207e34fba 1331 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_PASS_THROUGH_BIT, buffer);
garfieldsg 0:662207e34fba 1332 return buffer[0];
garfieldsg 0:662207e34fba 1333 }
garfieldsg 0:662207e34fba 1334 /** Get Slave 4 transaction done status.
garfieldsg 0:662207e34fba 1335 * Automatically sets to 1 when a Slave 4 transaction has completed. This
garfieldsg 0:662207e34fba 1336 * triggers an interrupt if the I2C_MST_INT_EN bit in the INT_ENABLE register
garfieldsg 0:662207e34fba 1337 * (Register 56) is asserted and if the SLV_4_DONE_INT bit is asserted in the
garfieldsg 0:662207e34fba 1338 * I2C_SLV4_CTRL register (Register 52).
garfieldsg 0:662207e34fba 1339 * @return Slave 4 transaction done status
garfieldsg 0:662207e34fba 1340 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1341 */
garfieldsg 0:662207e34fba 1342 bool MPU6050::getSlave4IsDone()
garfieldsg 0:662207e34fba 1343 {
garfieldsg 0:662207e34fba 1344 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_DONE_BIT, buffer);
garfieldsg 0:662207e34fba 1345 return buffer[0];
garfieldsg 0:662207e34fba 1346 }
garfieldsg 0:662207e34fba 1347 /** Get master arbitration lost status.
garfieldsg 0:662207e34fba 1348 * This bit automatically sets to 1 when the I2C Master has lost arbitration of
garfieldsg 0:662207e34fba 1349 * the auxiliary I2C bus (an error condition). This triggers an interrupt if the
garfieldsg 0:662207e34fba 1350 * I2C_MST_INT_EN bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1351 * @return Master arbitration lost status
garfieldsg 0:662207e34fba 1352 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1353 */
garfieldsg 0:662207e34fba 1354 bool MPU6050::getLostArbitration()
garfieldsg 0:662207e34fba 1355 {
garfieldsg 0:662207e34fba 1356 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_LOST_ARB_BIT, buffer);
garfieldsg 0:662207e34fba 1357 return buffer[0];
garfieldsg 0:662207e34fba 1358 }
garfieldsg 0:662207e34fba 1359 /** Get Slave 4 NACK status.
garfieldsg 0:662207e34fba 1360 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1361 * transaction with Slave 4. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1362 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1363 * @return Slave 4 NACK interrupt status
garfieldsg 0:662207e34fba 1364 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1365 */
garfieldsg 0:662207e34fba 1366 bool MPU6050::getSlave4Nack()
garfieldsg 0:662207e34fba 1367 {
garfieldsg 0:662207e34fba 1368 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV4_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1369 return buffer[0];
garfieldsg 0:662207e34fba 1370 }
garfieldsg 0:662207e34fba 1371 /** Get Slave 3 NACK status.
garfieldsg 0:662207e34fba 1372 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1373 * transaction with Slave 3. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1374 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1375 * @return Slave 3 NACK interrupt status
garfieldsg 0:662207e34fba 1376 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1377 */
garfieldsg 0:662207e34fba 1378 bool MPU6050::getSlave3Nack()
garfieldsg 0:662207e34fba 1379 {
garfieldsg 0:662207e34fba 1380 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV3_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1381 return buffer[0];
garfieldsg 0:662207e34fba 1382 }
garfieldsg 0:662207e34fba 1383 /** Get Slave 2 NACK status.
garfieldsg 0:662207e34fba 1384 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1385 * transaction with Slave 2. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1386 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1387 * @return Slave 2 NACK interrupt status
garfieldsg 0:662207e34fba 1388 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1389 */
garfieldsg 0:662207e34fba 1390 bool MPU6050::getSlave2Nack()
garfieldsg 0:662207e34fba 1391 {
garfieldsg 0:662207e34fba 1392 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV2_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1393 return buffer[0];
garfieldsg 0:662207e34fba 1394 }
garfieldsg 0:662207e34fba 1395 /** Get Slave 1 NACK status.
garfieldsg 0:662207e34fba 1396 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1397 * transaction with Slave 1. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1398 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1399 * @return Slave 1 NACK interrupt status
garfieldsg 0:662207e34fba 1400 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1401 */
garfieldsg 0:662207e34fba 1402 bool MPU6050::getSlave1Nack()
garfieldsg 0:662207e34fba 1403 {
garfieldsg 0:662207e34fba 1404 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV1_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1405 return buffer[0];
garfieldsg 0:662207e34fba 1406 }
garfieldsg 0:662207e34fba 1407 /** Get Slave 0 NACK status.
garfieldsg 0:662207e34fba 1408 * This bit automatically sets to 1 when the I2C Master receives a NACK in a
garfieldsg 0:662207e34fba 1409 * transaction with Slave 0. This triggers an interrupt if the I2C_MST_INT_EN
garfieldsg 0:662207e34fba 1410 * bit in the INT_ENABLE register (Register 56) is asserted.
garfieldsg 0:662207e34fba 1411 * @return Slave 0 NACK interrupt status
garfieldsg 0:662207e34fba 1412 * @see MPU6050_RA_I2C_MST_STATUS
garfieldsg 0:662207e34fba 1413 */
garfieldsg 0:662207e34fba 1414 bool MPU6050::getSlave0Nack()
garfieldsg 0:662207e34fba 1415 {
garfieldsg 0:662207e34fba 1416 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_STATUS, MPU6050_MST_I2C_SLV0_NACK_BIT, buffer);
garfieldsg 0:662207e34fba 1417 return buffer[0];
garfieldsg 0:662207e34fba 1418 }
garfieldsg 0:662207e34fba 1419
garfieldsg 0:662207e34fba 1420 // INT_PIN_CFG register
garfieldsg 0:662207e34fba 1421
garfieldsg 0:662207e34fba 1422 /** Get interrupt logic level mode.
garfieldsg 0:662207e34fba 1423 * Will be set 0 for active-high, 1 for active-low.
garfieldsg 0:662207e34fba 1424 * @return Current interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1425 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1426 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1427 */
garfieldsg 0:662207e34fba 1428 bool MPU6050::getInterruptMode()
garfieldsg 0:662207e34fba 1429 {
garfieldsg 0:662207e34fba 1430 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1431 return buffer[0];
garfieldsg 0:662207e34fba 1432 }
garfieldsg 0:662207e34fba 1433 /** Set interrupt logic level mode.
garfieldsg 0:662207e34fba 1434 * @param mode New interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1435 * @see getInterruptMode()
garfieldsg 0:662207e34fba 1436 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1437 * @see MPU6050_INTCFG_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1438 */
garfieldsg 0:662207e34fba 1439 void MPU6050::setInterruptMode(bool mode)
garfieldsg 0:662207e34fba 1440 {
garfieldsg 0:662207e34fba 1441 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_LEVEL_BIT, mode);
garfieldsg 0:662207e34fba 1442 }
garfieldsg 0:662207e34fba 1443 /** Get interrupt drive mode.
garfieldsg 0:662207e34fba 1444 * Will be set 0 for push-pull, 1 for open-drain.
garfieldsg 0:662207e34fba 1445 * @return Current interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1446 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1447 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1448 */
garfieldsg 0:662207e34fba 1449 bool MPU6050::getInterruptDrive()
garfieldsg 0:662207e34fba 1450 {
garfieldsg 0:662207e34fba 1451 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, buffer);
garfieldsg 0:662207e34fba 1452 return buffer[0];
garfieldsg 0:662207e34fba 1453 }
garfieldsg 0:662207e34fba 1454 /** Set interrupt drive mode.
garfieldsg 0:662207e34fba 1455 * @param drive New interrupt drive mode (0=push-pull, 1=open-drain)
garfieldsg 0:662207e34fba 1456 * @see getInterruptDrive()
garfieldsg 0:662207e34fba 1457 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1458 * @see MPU6050_INTCFG_INT_OPEN_BIT
garfieldsg 0:662207e34fba 1459 */
garfieldsg 0:662207e34fba 1460 void MPU6050::setInterruptDrive(bool drive)
garfieldsg 0:662207e34fba 1461 {
garfieldsg 0:662207e34fba 1462 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_OPEN_BIT, drive);
garfieldsg 0:662207e34fba 1463 }
garfieldsg 0:662207e34fba 1464 /** Get interrupt latch mode.
garfieldsg 0:662207e34fba 1465 * Will be set 0 for 50us-pulse, 1 for latch-until-int-cleared.
garfieldsg 0:662207e34fba 1466 * @return Current latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1467 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1468 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1469 */
garfieldsg 0:662207e34fba 1470 bool MPU6050::getInterruptLatch()
garfieldsg 0:662207e34fba 1471 {
garfieldsg 0:662207e34fba 1472 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1473 return buffer[0];
garfieldsg 0:662207e34fba 1474 }
garfieldsg 0:662207e34fba 1475 /** Set interrupt latch mode.
garfieldsg 0:662207e34fba 1476 * @param latch New latch mode (0=50us-pulse, 1=latch-until-int-cleared)
garfieldsg 0:662207e34fba 1477 * @see getInterruptLatch()
garfieldsg 0:662207e34fba 1478 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1479 * @see MPU6050_INTCFG_LATCH_INT_EN_BIT
garfieldsg 0:662207e34fba 1480 */
garfieldsg 0:662207e34fba 1481 void MPU6050::setInterruptLatch(bool latch)
garfieldsg 0:662207e34fba 1482 {
garfieldsg 0:662207e34fba 1483 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_LATCH_INT_EN_BIT, latch);
garfieldsg 0:662207e34fba 1484 }
garfieldsg 0:662207e34fba 1485 /** Get interrupt latch clear mode.
garfieldsg 0:662207e34fba 1486 * Will be set 0 for status-read-only, 1 for any-register-read.
garfieldsg 0:662207e34fba 1487 * @return Current latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1488 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1489 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1490 */
garfieldsg 0:662207e34fba 1491 bool MPU6050::getInterruptLatchClear()
garfieldsg 0:662207e34fba 1492 {
garfieldsg 0:662207e34fba 1493 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, buffer);
garfieldsg 0:662207e34fba 1494 return buffer[0];
garfieldsg 0:662207e34fba 1495 }
garfieldsg 0:662207e34fba 1496 /** Set interrupt latch clear mode.
garfieldsg 0:662207e34fba 1497 * @param clear New latch clear mode (0=status-read-only, 1=any-register-read)
garfieldsg 0:662207e34fba 1498 * @see getInterruptLatchClear()
garfieldsg 0:662207e34fba 1499 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1500 * @see MPU6050_INTCFG_INT_RD_CLEAR_BIT
garfieldsg 0:662207e34fba 1501 */
garfieldsg 0:662207e34fba 1502 void MPU6050::setInterruptLatchClear(bool clear)
garfieldsg 0:662207e34fba 1503 {
garfieldsg 0:662207e34fba 1504 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_INT_RD_CLEAR_BIT, clear);
garfieldsg 0:662207e34fba 1505 }
garfieldsg 0:662207e34fba 1506 /** Get FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1507 * @return Current FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1508 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1509 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1510 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1511 */
garfieldsg 0:662207e34fba 1512 bool MPU6050::getFSyncInterruptLevel()
garfieldsg 0:662207e34fba 1513 {
garfieldsg 0:662207e34fba 1514 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, buffer);
garfieldsg 0:662207e34fba 1515 return buffer[0];
garfieldsg 0:662207e34fba 1516 }
garfieldsg 0:662207e34fba 1517 /** Set FSYNC interrupt logic level mode.
garfieldsg 0:662207e34fba 1518 * @param mode New FSYNC interrupt mode (0=active-high, 1=active-low)
garfieldsg 0:662207e34fba 1519 * @see getFSyncInterruptMode()
garfieldsg 0:662207e34fba 1520 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1521 * @see MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT
garfieldsg 0:662207e34fba 1522 */
garfieldsg 0:662207e34fba 1523 void MPU6050::setFSyncInterruptLevel(bool level)
garfieldsg 0:662207e34fba 1524 {
garfieldsg 0:662207e34fba 1525 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT, level);
garfieldsg 0:662207e34fba 1526 }
garfieldsg 0:662207e34fba 1527 /** Get FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1528 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1529 * @return Current interrupt enabled setting
garfieldsg 0:662207e34fba 1530 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1531 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1532 */
garfieldsg 0:662207e34fba 1533 bool MPU6050::getFSyncInterruptEnabled()
garfieldsg 0:662207e34fba 1534 {
garfieldsg 0:662207e34fba 1535 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1536 return buffer[0];
garfieldsg 0:662207e34fba 1537 }
garfieldsg 0:662207e34fba 1538 /** Set FSYNC pin interrupt enabled setting.
garfieldsg 0:662207e34fba 1539 * @param enabled New FSYNC pin interrupt enabled setting
garfieldsg 0:662207e34fba 1540 * @see getFSyncInterruptEnabled()
garfieldsg 0:662207e34fba 1541 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1542 * @see MPU6050_INTCFG_FSYNC_INT_EN_BIT
garfieldsg 0:662207e34fba 1543 */
garfieldsg 0:662207e34fba 1544 void MPU6050::setFSyncInterruptEnabled(bool enabled)
garfieldsg 0:662207e34fba 1545 {
garfieldsg 0:662207e34fba 1546 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_FSYNC_INT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1547 }
garfieldsg 0:662207e34fba 1548 /** Get I2C bypass enabled status.
garfieldsg 0:662207e34fba 1549 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1550 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1551 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1552 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1553 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1554 * bit[5]).
garfieldsg 0:662207e34fba 1555 * @return Current I2C bypass enabled status
garfieldsg 0:662207e34fba 1556 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1557 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1558 */
garfieldsg 0:662207e34fba 1559 bool MPU6050::getI2CBypassEnabled()
garfieldsg 0:662207e34fba 1560 {
garfieldsg 0:662207e34fba 1561 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1562 return buffer[0];
garfieldsg 0:662207e34fba 1563 }
garfieldsg 0:662207e34fba 1564 /** Set I2C bypass enabled status.
garfieldsg 0:662207e34fba 1565 * When this bit is equal to 1 and I2C_MST_EN (Register 106 bit[5]) is equal to
garfieldsg 0:662207e34fba 1566 * 0, the host application processor will be able to directly access the
garfieldsg 0:662207e34fba 1567 * auxiliary I2C bus of the MPU-60X0. When this bit is equal to 0, the host
garfieldsg 0:662207e34fba 1568 * application processor will not be able to directly access the auxiliary I2C
garfieldsg 0:662207e34fba 1569 * bus of the MPU-60X0 regardless of the state of I2C_MST_EN (Register 106
garfieldsg 0:662207e34fba 1570 * bit[5]).
garfieldsg 0:662207e34fba 1571 * @param enabled New I2C bypass enabled status
garfieldsg 0:662207e34fba 1572 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1573 * @see MPU6050_INTCFG_I2C_BYPASS_EN_BIT
garfieldsg 0:662207e34fba 1574 */
garfieldsg 0:662207e34fba 1575 void MPU6050::setI2CBypassEnabled(bool enabled)
garfieldsg 0:662207e34fba 1576 {
garfieldsg 0:662207e34fba 1577 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_I2C_BYPASS_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1578 }
garfieldsg 0:662207e34fba 1579 /** Get reference clock output enabled status.
garfieldsg 0:662207e34fba 1580 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1581 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1582 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1583 * Specification document.
garfieldsg 0:662207e34fba 1584 * @return Current reference clock output enabled status
garfieldsg 0:662207e34fba 1585 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1586 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1587 */
garfieldsg 0:662207e34fba 1588 bool MPU6050::getClockOutputEnabled()
garfieldsg 0:662207e34fba 1589 {
garfieldsg 0:662207e34fba 1590 i2Cdev.readBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, buffer);
garfieldsg 0:662207e34fba 1591 return buffer[0];
garfieldsg 0:662207e34fba 1592 }
garfieldsg 0:662207e34fba 1593 /** Set reference clock output enabled status.
garfieldsg 0:662207e34fba 1594 * When this bit is equal to 1, a reference clock output is provided at the
garfieldsg 0:662207e34fba 1595 * CLKOUT pin. When this bit is equal to 0, the clock output is disabled. For
garfieldsg 0:662207e34fba 1596 * further information regarding CLKOUT, please refer to the MPU-60X0 Product
garfieldsg 0:662207e34fba 1597 * Specification document.
garfieldsg 0:662207e34fba 1598 * @param enabled New reference clock output enabled status
garfieldsg 0:662207e34fba 1599 * @see MPU6050_RA_INT_PIN_CFG
garfieldsg 0:662207e34fba 1600 * @see MPU6050_INTCFG_CLKOUT_EN_BIT
garfieldsg 0:662207e34fba 1601 */
garfieldsg 0:662207e34fba 1602 void MPU6050::setClockOutputEnabled(bool enabled)
garfieldsg 0:662207e34fba 1603 {
garfieldsg 0:662207e34fba 1604 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_PIN_CFG, MPU6050_INTCFG_CLKOUT_EN_BIT, enabled);
garfieldsg 0:662207e34fba 1605 }
garfieldsg 0:662207e34fba 1606
garfieldsg 0:662207e34fba 1607 // INT_ENABLE register
garfieldsg 0:662207e34fba 1608
garfieldsg 0:662207e34fba 1609 /** Get full interrupt enabled status.
garfieldsg 0:662207e34fba 1610 * Full register byte for all interrupts, for quick reading. Each bit will be
garfieldsg 0:662207e34fba 1611 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1612 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1613 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1614 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1615 **/
garfieldsg 0:662207e34fba 1616 uint8_t MPU6050::getIntEnabled()
garfieldsg 0:662207e34fba 1617 {
garfieldsg 0:662207e34fba 1618 i2Cdev.readByte(devAddr, MPU6050_RA_INT_ENABLE, buffer);
garfieldsg 0:662207e34fba 1619 return buffer[0];
garfieldsg 0:662207e34fba 1620 }
garfieldsg 0:662207e34fba 1621 /** Set full interrupt enabled status.
garfieldsg 0:662207e34fba 1622 * Full register byte for all interrupts, for quick reading. Each bit should be
garfieldsg 0:662207e34fba 1623 * set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1624 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1625 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1626 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1627 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1628 **/
garfieldsg 0:662207e34fba 1629 void MPU6050::setIntEnabled(uint8_t enabled)
garfieldsg 0:662207e34fba 1630 {
garfieldsg 0:662207e34fba 1631 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, enabled);
garfieldsg 0:662207e34fba 1632 }
garfieldsg 0:662207e34fba 1633 /** Get Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1634 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1635 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1636 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1637 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1638 **/
garfieldsg 0:662207e34fba 1639 bool MPU6050::getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1640 {
garfieldsg 0:662207e34fba 1641 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1642 return buffer[0];
garfieldsg 0:662207e34fba 1643 }
garfieldsg 0:662207e34fba 1644 /** Set Free Fall interrupt enabled status.
garfieldsg 0:662207e34fba 1645 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1646 * @see getIntFreefallEnabled()
garfieldsg 0:662207e34fba 1647 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1648 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1649 **/
garfieldsg 0:662207e34fba 1650 void MPU6050::setIntFreefallEnabled(bool enabled)
garfieldsg 0:662207e34fba 1651 {
garfieldsg 0:662207e34fba 1652 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FF_BIT, enabled);
garfieldsg 0:662207e34fba 1653 }
garfieldsg 0:662207e34fba 1654 /** Get Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1655 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1656 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1657 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1658 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1659 **/
garfieldsg 0:662207e34fba 1660 bool MPU6050::getIntMotionEnabled()
garfieldsg 0:662207e34fba 1661 {
garfieldsg 0:662207e34fba 1662 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1663 return buffer[0];
garfieldsg 0:662207e34fba 1664 }
garfieldsg 0:662207e34fba 1665 /** Set Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1666 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1667 * @see getIntMotionEnabled()
garfieldsg 0:662207e34fba 1668 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1669 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1670 **/
garfieldsg 0:662207e34fba 1671 void MPU6050::setIntMotionEnabled(bool enabled)
garfieldsg 0:662207e34fba 1672 {
garfieldsg 0:662207e34fba 1673 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_MOT_BIT, enabled);
garfieldsg 0:662207e34fba 1674 }
garfieldsg 0:662207e34fba 1675 /** Get Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1676 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1677 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1678 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1679 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1680 **/
garfieldsg 0:662207e34fba 1681 bool MPU6050::getIntZeroMotionEnabled()
garfieldsg 0:662207e34fba 1682 {
garfieldsg 0:662207e34fba 1683 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1684 return buffer[0];
garfieldsg 0:662207e34fba 1685 }
garfieldsg 0:662207e34fba 1686 /** Set Zero Motion Detection interrupt enabled status.
garfieldsg 0:662207e34fba 1687 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1688 * @see getIntZeroMotionEnabled()
garfieldsg 0:662207e34fba 1689 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1690 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1691 **/
garfieldsg 0:662207e34fba 1692 void MPU6050::setIntZeroMotionEnabled(bool enabled)
garfieldsg 0:662207e34fba 1693 {
garfieldsg 0:662207e34fba 1694 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_ZMOT_BIT, enabled);
garfieldsg 0:662207e34fba 1695 }
garfieldsg 0:662207e34fba 1696 /** Get FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1697 * Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1698 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1699 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1700 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1701 **/
garfieldsg 0:662207e34fba 1702 bool MPU6050::getIntFIFOBufferOverflowEnabled()
garfieldsg 0:662207e34fba 1703 {
garfieldsg 0:662207e34fba 1704 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1705 return buffer[0];
garfieldsg 0:662207e34fba 1706 }
garfieldsg 0:662207e34fba 1707 /** Set FIFO Buffer Overflow interrupt enabled status.
garfieldsg 0:662207e34fba 1708 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1709 * @see getIntFIFOBufferOverflowEnabled()
garfieldsg 0:662207e34fba 1710 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1711 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1712 **/
garfieldsg 0:662207e34fba 1713 void MPU6050::setIntFIFOBufferOverflowEnabled(bool enabled)
garfieldsg 0:662207e34fba 1714 {
garfieldsg 0:662207e34fba 1715 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, enabled);
garfieldsg 0:662207e34fba 1716 }
garfieldsg 0:662207e34fba 1717 /** Get I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1718 * This enables any of the I2C Master interrupt sources to generate an
garfieldsg 0:662207e34fba 1719 * interrupt. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1720 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1721 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1722 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1723 **/
garfieldsg 0:662207e34fba 1724 bool MPU6050::getIntI2CMasterEnabled()
garfieldsg 0:662207e34fba 1725 {
garfieldsg 0:662207e34fba 1726 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1727 return buffer[0];
garfieldsg 0:662207e34fba 1728 }
garfieldsg 0:662207e34fba 1729 /** Set I2C Master interrupt enabled status.
garfieldsg 0:662207e34fba 1730 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1731 * @see getIntI2CMasterEnabled()
garfieldsg 0:662207e34fba 1732 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1733 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1734 **/
garfieldsg 0:662207e34fba 1735 void MPU6050::setIntI2CMasterEnabled(bool enabled)
garfieldsg 0:662207e34fba 1736 {
garfieldsg 0:662207e34fba 1737 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_I2C_MST_INT_BIT, enabled);
garfieldsg 0:662207e34fba 1738 }
garfieldsg 0:662207e34fba 1739 /** Get Data Ready interrupt enabled setting.
garfieldsg 0:662207e34fba 1740 * This event occurs each time a write operation to all of the sensor registers
garfieldsg 0:662207e34fba 1741 * has been completed. Will be set 0 for disabled, 1 for enabled.
garfieldsg 0:662207e34fba 1742 * @return Current interrupt enabled status
garfieldsg 0:662207e34fba 1743 * @see MPU6050_RA_INT_ENABLE
garfieldsg 0:662207e34fba 1744 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1745 */
garfieldsg 0:662207e34fba 1746 bool MPU6050::getIntDataReadyEnabled()
garfieldsg 0:662207e34fba 1747 {
garfieldsg 0:662207e34fba 1748 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1749 return buffer[0];
garfieldsg 0:662207e34fba 1750 }
garfieldsg 0:662207e34fba 1751 /** Set Data Ready interrupt enabled status.
garfieldsg 0:662207e34fba 1752 * @param enabled New interrupt enabled status
garfieldsg 0:662207e34fba 1753 * @see getIntDataReadyEnabled()
garfieldsg 0:662207e34fba 1754 * @see MPU6050_RA_INT_CFG
garfieldsg 0:662207e34fba 1755 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1756 */
garfieldsg 0:662207e34fba 1757 void MPU6050::setIntDataReadyEnabled(bool enabled)
garfieldsg 0:662207e34fba 1758 {
garfieldsg 0:662207e34fba 1759 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DATA_RDY_BIT, enabled);
garfieldsg 0:662207e34fba 1760 }
garfieldsg 0:662207e34fba 1761
garfieldsg 0:662207e34fba 1762 // INT_STATUS register
garfieldsg 0:662207e34fba 1763
garfieldsg 0:662207e34fba 1764 /** Get full set of interrupt status bits.
garfieldsg 0:662207e34fba 1765 * These bits clear to 0 after the register has been read. Very useful
garfieldsg 0:662207e34fba 1766 * for getting multiple INT statuses, since each single bit read clears
garfieldsg 0:662207e34fba 1767 * all of them because it has to read the whole byte.
garfieldsg 0:662207e34fba 1768 * @return Current interrupt status
garfieldsg 0:662207e34fba 1769 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1770 */
garfieldsg 0:662207e34fba 1771 uint8_t MPU6050::getIntStatus()
garfieldsg 0:662207e34fba 1772 {
garfieldsg 0:662207e34fba 1773 i2Cdev.readByte(devAddr, MPU6050_RA_INT_STATUS, buffer);
garfieldsg 0:662207e34fba 1774 return buffer[0];
garfieldsg 0:662207e34fba 1775 }
garfieldsg 0:662207e34fba 1776 /** Get Free Fall interrupt status.
garfieldsg 0:662207e34fba 1777 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 1778 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1779 * @return Current interrupt status
garfieldsg 0:662207e34fba 1780 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1781 * @see MPU6050_INTERRUPT_FF_BIT
garfieldsg 0:662207e34fba 1782 */
garfieldsg 0:662207e34fba 1783 bool MPU6050::getIntFreefallStatus()
garfieldsg 0:662207e34fba 1784 {
garfieldsg 0:662207e34fba 1785 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FF_BIT, buffer);
garfieldsg 0:662207e34fba 1786 return buffer[0];
garfieldsg 0:662207e34fba 1787 }
garfieldsg 0:662207e34fba 1788 /** Get Motion Detection interrupt status.
garfieldsg 0:662207e34fba 1789 * This bit automatically sets to 1 when a Motion Detection interrupt has been
garfieldsg 0:662207e34fba 1790 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1791 * @return Current interrupt status
garfieldsg 0:662207e34fba 1792 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1793 * @see MPU6050_INTERRUPT_MOT_BIT
garfieldsg 0:662207e34fba 1794 */
garfieldsg 0:662207e34fba 1795 bool MPU6050::getIntMotionStatus()
garfieldsg 0:662207e34fba 1796 {
garfieldsg 0:662207e34fba 1797 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_MOT_BIT, buffer);
garfieldsg 0:662207e34fba 1798 return buffer[0];
garfieldsg 0:662207e34fba 1799 }
garfieldsg 0:662207e34fba 1800 /** Get Zero Motion Detection interrupt status.
garfieldsg 0:662207e34fba 1801 * This bit automatically sets to 1 when a Zero Motion Detection interrupt has
garfieldsg 0:662207e34fba 1802 * been generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1803 * @return Current interrupt status
garfieldsg 0:662207e34fba 1804 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1805 * @see MPU6050_INTERRUPT_ZMOT_BIT
garfieldsg 0:662207e34fba 1806 */
garfieldsg 0:662207e34fba 1807 bool MPU6050::getIntZeroMotionStatus()
garfieldsg 0:662207e34fba 1808 {
garfieldsg 0:662207e34fba 1809 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_ZMOT_BIT, buffer);
garfieldsg 0:662207e34fba 1810 return buffer[0];
garfieldsg 0:662207e34fba 1811 }
garfieldsg 0:662207e34fba 1812 /** Get FIFO Buffer Overflow interrupt status.
garfieldsg 0:662207e34fba 1813 * This bit automatically sets to 1 when a Free Fall interrupt has been
garfieldsg 0:662207e34fba 1814 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1815 * @return Current interrupt status
garfieldsg 0:662207e34fba 1816 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1817 * @see MPU6050_INTERRUPT_FIFO_OFLOW_BIT
garfieldsg 0:662207e34fba 1818 */
garfieldsg 0:662207e34fba 1819 bool MPU6050::getIntFIFOBufferOverflowStatus()
garfieldsg 0:662207e34fba 1820 {
garfieldsg 0:662207e34fba 1821 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_FIFO_OFLOW_BIT, buffer);
garfieldsg 0:662207e34fba 1822 return buffer[0];
garfieldsg 0:662207e34fba 1823 }
garfieldsg 0:662207e34fba 1824 /** Get I2C Master interrupt status.
garfieldsg 0:662207e34fba 1825 * This bit automatically sets to 1 when an I2C Master interrupt has been
garfieldsg 0:662207e34fba 1826 * generated. For a list of I2C Master interrupts, please refer to Register 54.
garfieldsg 0:662207e34fba 1827 * The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1828 * @return Current interrupt status
garfieldsg 0:662207e34fba 1829 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1830 * @see MPU6050_INTERRUPT_I2C_MST_INT_BIT
garfieldsg 0:662207e34fba 1831 */
garfieldsg 0:662207e34fba 1832 bool MPU6050::getIntI2CMasterStatus()
garfieldsg 0:662207e34fba 1833 {
garfieldsg 0:662207e34fba 1834 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_I2C_MST_INT_BIT, buffer);
garfieldsg 0:662207e34fba 1835 return buffer[0];
garfieldsg 0:662207e34fba 1836 }
garfieldsg 0:662207e34fba 1837 /** Get Data Ready interrupt status.
garfieldsg 0:662207e34fba 1838 * This bit automatically sets to 1 when a Data Ready interrupt has been
garfieldsg 0:662207e34fba 1839 * generated. The bit clears to 0 after the register has been read.
garfieldsg 0:662207e34fba 1840 * @return Current interrupt status
garfieldsg 0:662207e34fba 1841 * @see MPU6050_RA_INT_STATUS
garfieldsg 0:662207e34fba 1842 * @see MPU6050_INTERRUPT_DATA_RDY_BIT
garfieldsg 0:662207e34fba 1843 */
garfieldsg 0:662207e34fba 1844 bool MPU6050::getIntDataReadyStatus()
garfieldsg 0:662207e34fba 1845 {
garfieldsg 0:662207e34fba 1846 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DATA_RDY_BIT, buffer);
garfieldsg 0:662207e34fba 1847 return buffer[0];
garfieldsg 0:662207e34fba 1848 }
garfieldsg 0:662207e34fba 1849
garfieldsg 0:662207e34fba 1850 // ACCEL_*OUT_* registers
garfieldsg 0:662207e34fba 1851
garfieldsg 0:662207e34fba 1852 /** Get raw 9-axis motion sensor readings (accel/gyro/compass).
garfieldsg 0:662207e34fba 1853 * FUNCTION NOT FULLY IMPLEMENTED YET.
garfieldsg 0:662207e34fba 1854 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 1855 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 1856 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 1857 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 1858 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 1859 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 1860 * @param mx 16-bit signed integer container for magnetometer X-axis value
garfieldsg 0:662207e34fba 1861 * @param my 16-bit signed integer container for magnetometer Y-axis value
garfieldsg 0:662207e34fba 1862 * @param mz 16-bit signed integer container for magnetometer Z-axis value
garfieldsg 0:662207e34fba 1863 * @see getMotion6()
garfieldsg 0:662207e34fba 1864 * @see getAcceleration()
garfieldsg 0:662207e34fba 1865 * @see getRotation()
garfieldsg 0:662207e34fba 1866 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1867 */
garfieldsg 0:662207e34fba 1868 void MPU6050::getMotion9(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz, int16_t* mx, int16_t* my, int16_t* mz)
garfieldsg 0:662207e34fba 1869 {
garfieldsg 0:662207e34fba 1870 getMotion6(ax, ay, az, gx, gy, gz);
garfieldsg 0:662207e34fba 1871 // TODO: magnetometer integration
garfieldsg 0:662207e34fba 1872 }
garfieldsg 0:662207e34fba 1873 /** Get raw 6-axis motion sensor readings (accel/gyro).
garfieldsg 0:662207e34fba 1874 * Retrieves all currently available motion sensor values.
garfieldsg 0:662207e34fba 1875 * @param ax 16-bit signed integer container for accelerometer X-axis value
garfieldsg 0:662207e34fba 1876 * @param ay 16-bit signed integer container for accelerometer Y-axis value
garfieldsg 0:662207e34fba 1877 * @param az 16-bit signed integer container for accelerometer Z-axis value
garfieldsg 0:662207e34fba 1878 * @param gx 16-bit signed integer container for gyroscope X-axis value
garfieldsg 0:662207e34fba 1879 * @param gy 16-bit signed integer container for gyroscope Y-axis value
garfieldsg 0:662207e34fba 1880 * @param gz 16-bit signed integer container for gyroscope Z-axis value
garfieldsg 0:662207e34fba 1881 * @see getAcceleration()
garfieldsg 0:662207e34fba 1882 * @see getRotation()
garfieldsg 0:662207e34fba 1883 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1884 */
garfieldsg 0:662207e34fba 1885 void MPU6050::getMotion6(int16_t* ax, int16_t* ay, int16_t* az, int16_t* gx, int16_t* gy, int16_t* gz)
garfieldsg 0:662207e34fba 1886 {
garfieldsg 0:662207e34fba 1887 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 14, buffer);
garfieldsg 0:662207e34fba 1888 *ax = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1889 *ay = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1890 *az = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1891 *gx = (((int16_t)buffer[8]) << 8) | buffer[9];
garfieldsg 0:662207e34fba 1892 *gy = (((int16_t)buffer[10]) << 8) | buffer[11];
garfieldsg 0:662207e34fba 1893 *gz = (((int16_t)buffer[12]) << 8) | buffer[13];
garfieldsg 0:662207e34fba 1894 }
garfieldsg 0:662207e34fba 1895 /** Get 3-axis accelerometer readings.
garfieldsg 0:662207e34fba 1896 * These registers store the most recent accelerometer measurements.
garfieldsg 0:662207e34fba 1897 * Accelerometer measurements are written to these registers at the Sample Rate
garfieldsg 0:662207e34fba 1898 * as defined in Register 25.
garfieldsg 0:662207e34fba 1899 *
garfieldsg 0:662207e34fba 1900 * The accelerometer measurement registers, along with the temperature
garfieldsg 0:662207e34fba 1901 * measurement registers, gyroscope measurement registers, and external sensor
garfieldsg 0:662207e34fba 1902 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 1903 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 1904 *
garfieldsg 0:662207e34fba 1905 * The data within the accelerometer sensors' internal register set is always
garfieldsg 0:662207e34fba 1906 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 1907 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 1908 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 1909 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 1910 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1911 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1912 *
garfieldsg 0:662207e34fba 1913 * Each 16-bit accelerometer measurement has a full scale defined in ACCEL_FS
garfieldsg 0:662207e34fba 1914 * (Register 28). For each full scale setting, the accelerometers' sensitivity
garfieldsg 0:662207e34fba 1915 * per LSB in ACCEL_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 1916 *
garfieldsg 0:662207e34fba 1917 * <pre>
garfieldsg 0:662207e34fba 1918 * AFS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 1919 * --------+------------------+----------------
garfieldsg 0:662207e34fba 1920 * 0 | +/- 2g | 8192 LSB/mg
garfieldsg 0:662207e34fba 1921 * 1 | +/- 4g | 4096 LSB/mg
garfieldsg 0:662207e34fba 1922 * 2 | +/- 8g | 2048 LSB/mg
garfieldsg 0:662207e34fba 1923 * 3 | +/- 16g | 1024 LSB/mg
garfieldsg 0:662207e34fba 1924 * </pre>
garfieldsg 0:662207e34fba 1925 *
garfieldsg 0:662207e34fba 1926 * @param x 16-bit signed integer container for X-axis acceleration
garfieldsg 0:662207e34fba 1927 * @param y 16-bit signed integer container for Y-axis acceleration
garfieldsg 0:662207e34fba 1928 * @param z 16-bit signed integer container for Z-axis acceleration
garfieldsg 0:662207e34fba 1929 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 1930 */
garfieldsg 0:662207e34fba 1931 void MPU6050::getAcceleration(int16_t* x, int16_t* y, int16_t* z)
garfieldsg 0:662207e34fba 1932 {
garfieldsg 0:662207e34fba 1933 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 1934 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1935 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 1936 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 1937 }
garfieldsg 0:662207e34fba 1938 /** Get X-axis accelerometer reading.
garfieldsg 0:662207e34fba 1939 * @return X-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1940 * @see getMotion6()
garfieldsg 0:662207e34fba 1941 * @see MPU6050_RA_ACCEL_XOUT_H
garfieldsg 0:662207e34fba 1942 */
garfieldsg 0:662207e34fba 1943 int16_t MPU6050::getAccelerationX()
garfieldsg 0:662207e34fba 1944 {
garfieldsg 0:662207e34fba 1945 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1946 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1947 }
garfieldsg 0:662207e34fba 1948 /** Get Y-axis accelerometer reading.
garfieldsg 0:662207e34fba 1949 * @return Y-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1950 * @see getMotion6()
garfieldsg 0:662207e34fba 1951 * @see MPU6050_RA_ACCEL_YOUT_H
garfieldsg 0:662207e34fba 1952 */
garfieldsg 0:662207e34fba 1953 int16_t MPU6050::getAccelerationY()
garfieldsg 0:662207e34fba 1954 {
garfieldsg 0:662207e34fba 1955 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1956 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1957 }
garfieldsg 0:662207e34fba 1958 /** Get Z-axis accelerometer reading.
garfieldsg 0:662207e34fba 1959 * @return Z-axis acceleration measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1960 * @see getMotion6()
garfieldsg 0:662207e34fba 1961 * @see MPU6050_RA_ACCEL_ZOUT_H
garfieldsg 0:662207e34fba 1962 */
garfieldsg 0:662207e34fba 1963 int16_t MPU6050::getAccelerationZ()
garfieldsg 0:662207e34fba 1964 {
garfieldsg 0:662207e34fba 1965 i2Cdev.readBytes(devAddr, MPU6050_RA_ACCEL_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1966 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1967 }
garfieldsg 0:662207e34fba 1968
garfieldsg 0:662207e34fba 1969 // TEMP_OUT_* registers
garfieldsg 0:662207e34fba 1970
garfieldsg 0:662207e34fba 1971 /** Get current internal temperature.
garfieldsg 0:662207e34fba 1972 * @return Temperature reading in 16-bit 2's complement format
garfieldsg 0:662207e34fba 1973 * @see MPU6050_RA_TEMP_OUT_H
garfieldsg 0:662207e34fba 1974 */
garfieldsg 0:662207e34fba 1975 int16_t MPU6050::getTemperature()
garfieldsg 0:662207e34fba 1976 {
garfieldsg 0:662207e34fba 1977 i2Cdev.readBytes(devAddr, MPU6050_RA_TEMP_OUT_H, 2, buffer);
garfieldsg 0:662207e34fba 1978 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 1979 }
garfieldsg 0:662207e34fba 1980
garfieldsg 0:662207e34fba 1981 // GYRO_*OUT_* registers
garfieldsg 0:662207e34fba 1982
garfieldsg 0:662207e34fba 1983 /** Get 3-axis gyroscope readings.
garfieldsg 0:662207e34fba 1984 * These gyroscope measurement registers, along with the accelerometer
garfieldsg 0:662207e34fba 1985 * measurement registers, temperature measurement registers, and external sensor
garfieldsg 0:662207e34fba 1986 * data registers, are composed of two sets of registers: an internal register
garfieldsg 0:662207e34fba 1987 * set and a user-facing read register set.
garfieldsg 0:662207e34fba 1988 * The data within the gyroscope sensors' internal register set is always
garfieldsg 0:662207e34fba 1989 * updated at the Sample Rate. Meanwhile, the user-facing read register set
garfieldsg 0:662207e34fba 1990 * duplicates the internal register set's data values whenever the serial
garfieldsg 0:662207e34fba 1991 * interface is idle. This guarantees that a burst read of sensor registers will
garfieldsg 0:662207e34fba 1992 * read measurements from the same sampling instant. Note that if burst reads
garfieldsg 0:662207e34fba 1993 * are not used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 1994 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 1995 *
garfieldsg 0:662207e34fba 1996 * Each 16-bit gyroscope measurement has a full scale defined in FS_SEL
garfieldsg 0:662207e34fba 1997 * (Register 27). For each full scale setting, the gyroscopes' sensitivity per
garfieldsg 0:662207e34fba 1998 * LSB in GYRO_xOUT is shown in the table below:
garfieldsg 0:662207e34fba 1999 *
garfieldsg 0:662207e34fba 2000 * <pre>
garfieldsg 0:662207e34fba 2001 * FS_SEL | Full Scale Range | LSB Sensitivity
garfieldsg 0:662207e34fba 2002 * -------+--------------------+----------------
garfieldsg 0:662207e34fba 2003 * 0 | +/- 250 degrees/s | 131 LSB/deg/s
garfieldsg 0:662207e34fba 2004 * 1 | +/- 500 degrees/s | 65.5 LSB/deg/s
garfieldsg 0:662207e34fba 2005 * 2 | +/- 1000 degrees/s | 32.8 LSB/deg/s
garfieldsg 0:662207e34fba 2006 * 3 | +/- 2000 degrees/s | 16.4 LSB/deg/s
garfieldsg 0:662207e34fba 2007 * </pre>
garfieldsg 0:662207e34fba 2008 *
garfieldsg 0:662207e34fba 2009 * @param x 16-bit signed integer container for X-axis rotation
garfieldsg 0:662207e34fba 2010 * @param y 16-bit signed integer container for Y-axis rotation
garfieldsg 0:662207e34fba 2011 * @param z 16-bit signed integer container for Z-axis rotation
garfieldsg 0:662207e34fba 2012 * @see getMotion6()
garfieldsg 0:662207e34fba 2013 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 2014 */
garfieldsg 0:662207e34fba 2015 void MPU6050::getRotation(int16_t* x, int16_t* y, int16_t* z)
garfieldsg 0:662207e34fba 2016 {
garfieldsg 0:662207e34fba 2017 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 6, buffer);
garfieldsg 0:662207e34fba 2018 *x = (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2019 *y = (((int16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2020 *z = (((int16_t)buffer[4]) << 8) | buffer[5];
garfieldsg 0:662207e34fba 2021 }
garfieldsg 0:662207e34fba 2022 /** Get X-axis gyroscope reading.
garfieldsg 0:662207e34fba 2023 * @return X-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2024 * @see getMotion6()
garfieldsg 0:662207e34fba 2025 * @see MPU6050_RA_GYRO_XOUT_H
garfieldsg 0:662207e34fba 2026 */
garfieldsg 0:662207e34fba 2027 int16_t MPU6050::getRotationX()
garfieldsg 0:662207e34fba 2028 {
garfieldsg 0:662207e34fba 2029 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_XOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2030 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2031 }
garfieldsg 0:662207e34fba 2032 /** Get Y-axis gyroscope reading.
garfieldsg 0:662207e34fba 2033 * @return Y-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2034 * @see getMotion6()
garfieldsg 0:662207e34fba 2035 * @see MPU6050_RA_GYRO_YOUT_H
garfieldsg 0:662207e34fba 2036 */
garfieldsg 0:662207e34fba 2037 int16_t MPU6050::getRotationY()
garfieldsg 0:662207e34fba 2038 {
garfieldsg 0:662207e34fba 2039 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_YOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2040 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2041 }
garfieldsg 0:662207e34fba 2042 /** Get Z-axis gyroscope reading.
garfieldsg 0:662207e34fba 2043 * @return Z-axis rotation measurement in 16-bit 2's complement format
garfieldsg 0:662207e34fba 2044 * @see getMotion6()
garfieldsg 0:662207e34fba 2045 * @see MPU6050_RA_GYRO_ZOUT_H
garfieldsg 0:662207e34fba 2046 */
garfieldsg 0:662207e34fba 2047 int16_t MPU6050::getRotationZ()
garfieldsg 0:662207e34fba 2048 {
garfieldsg 0:662207e34fba 2049 i2Cdev.readBytes(devAddr, MPU6050_RA_GYRO_ZOUT_H, 2, buffer);
garfieldsg 0:662207e34fba 2050 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2051 }
garfieldsg 0:662207e34fba 2052
garfieldsg 0:662207e34fba 2053 // EXT_SENS_DATA_* registers
garfieldsg 0:662207e34fba 2054
garfieldsg 0:662207e34fba 2055 /** Read single byte from external sensor data register.
garfieldsg 0:662207e34fba 2056 * These registers store data read from external sensors by the Slave 0, 1, 2,
garfieldsg 0:662207e34fba 2057 * and 3 on the auxiliary I2C interface. Data read by Slave 4 is stored in
garfieldsg 0:662207e34fba 2058 * I2C_SLV4_DI (Register 53).
garfieldsg 0:662207e34fba 2059 *
garfieldsg 0:662207e34fba 2060 * External sensor data is written to these registers at the Sample Rate as
garfieldsg 0:662207e34fba 2061 * defined in Register 25. This access rate can be reduced by using the Slave
garfieldsg 0:662207e34fba 2062 * Delay Enable registers (Register 103).
garfieldsg 0:662207e34fba 2063 *
garfieldsg 0:662207e34fba 2064 * External sensor data registers, along with the gyroscope measurement
garfieldsg 0:662207e34fba 2065 * registers, accelerometer measurement registers, and temperature measurement
garfieldsg 0:662207e34fba 2066 * registers, are composed of two sets of registers: an internal register set
garfieldsg 0:662207e34fba 2067 * and a user-facing read register set.
garfieldsg 0:662207e34fba 2068 *
garfieldsg 0:662207e34fba 2069 * The data within the external sensors' internal register set is always updated
garfieldsg 0:662207e34fba 2070 * at the Sample Rate (or the reduced access rate) whenever the serial interface
garfieldsg 0:662207e34fba 2071 * is idle. This guarantees that a burst read of sensor registers will read
garfieldsg 0:662207e34fba 2072 * measurements from the same sampling instant. Note that if burst reads are not
garfieldsg 0:662207e34fba 2073 * used, the user is responsible for ensuring a set of single byte reads
garfieldsg 0:662207e34fba 2074 * correspond to a single sampling instant by checking the Data Ready interrupt.
garfieldsg 0:662207e34fba 2075 *
garfieldsg 0:662207e34fba 2076 * Data is placed in these external sensor data registers according to
garfieldsg 0:662207e34fba 2077 * I2C_SLV0_CTRL, I2C_SLV1_CTRL, I2C_SLV2_CTRL, and I2C_SLV3_CTRL (Registers 39,
garfieldsg 0:662207e34fba 2078 * 42, 45, and 48). When more than zero bytes are read (I2C_SLVx_LEN > 0) from
garfieldsg 0:662207e34fba 2079 * an enabled slave (I2C_SLVx_EN = 1), the slave is read at the Sample Rate (as
garfieldsg 0:662207e34fba 2080 * defined in Register 25) or delayed rate (if specified in Register 52 and
garfieldsg 0:662207e34fba 2081 * 103). During each Sample cycle, slave reads are performed in order of Slave
garfieldsg 0:662207e34fba 2082 * number. If all slaves are enabled with more than zero bytes to be read, the
garfieldsg 0:662207e34fba 2083 * order will be Slave 0, followed by Slave 1, Slave 2, and Slave 3.
garfieldsg 0:662207e34fba 2084 *
garfieldsg 0:662207e34fba 2085 * Each enabled slave will have EXT_SENS_DATA registers associated with it by
garfieldsg 0:662207e34fba 2086 * number of bytes read (I2C_SLVx_LEN) in order of slave number, starting from
garfieldsg 0:662207e34fba 2087 * EXT_SENS_DATA_00. Note that this means enabling or disabling a slave may
garfieldsg 0:662207e34fba 2088 * change the higher numbered slaves' associated registers. Furthermore, if
garfieldsg 0:662207e34fba 2089 * fewer total bytes are being read from the external sensors as a result of
garfieldsg 0:662207e34fba 2090 * such a change, then the data remaining in the registers which no longer have
garfieldsg 0:662207e34fba 2091 * an associated slave device (i.e. high numbered registers) will remain in
garfieldsg 0:662207e34fba 2092 * these previously allocated registers unless reset.
garfieldsg 0:662207e34fba 2093 *
garfieldsg 0:662207e34fba 2094 * If the sum of the read lengths of all SLVx transactions exceed the number of
garfieldsg 0:662207e34fba 2095 * available EXT_SENS_DATA registers, the excess bytes will be dropped. There
garfieldsg 0:662207e34fba 2096 * are 24 EXT_SENS_DATA registers and hence the total read lengths between all
garfieldsg 0:662207e34fba 2097 * the slaves cannot be greater than 24 or some bytes will be lost.
garfieldsg 0:662207e34fba 2098 *
garfieldsg 0:662207e34fba 2099 * Note: Slave 4's behavior is distinct from that of Slaves 0-3. For further
garfieldsg 0:662207e34fba 2100 * information regarding the characteristics of Slave 4, please refer to
garfieldsg 0:662207e34fba 2101 * Registers 49 to 53.
garfieldsg 0:662207e34fba 2102 *
garfieldsg 0:662207e34fba 2103 * EXAMPLE:
garfieldsg 0:662207e34fba 2104 * Suppose that Slave 0 is enabled with 4 bytes to be read (I2C_SLV0_EN = 1 and
garfieldsg 0:662207e34fba 2105 * I2C_SLV0_LEN = 4) while Slave 1 is enabled with 2 bytes to be read so that
garfieldsg 0:662207e34fba 2106 * I2C_SLV1_EN = 1 and I2C_SLV1_LEN = 2. In such a situation, EXT_SENS_DATA _00
garfieldsg 0:662207e34fba 2107 * through _03 will be associated with Slave 0, while EXT_SENS_DATA _04 and 05
garfieldsg 0:662207e34fba 2108 * will be associated with Slave 1. If Slave 2 is enabled as well, registers
garfieldsg 0:662207e34fba 2109 * starting from EXT_SENS_DATA_06 will be allocated to Slave 2.
garfieldsg 0:662207e34fba 2110 *
garfieldsg 0:662207e34fba 2111 * If Slave 2 is disabled while Slave 3 is enabled in this same situation, then
garfieldsg 0:662207e34fba 2112 * registers starting from EXT_SENS_DATA_06 will be allocated to Slave 3
garfieldsg 0:662207e34fba 2113 * instead.
garfieldsg 0:662207e34fba 2114 *
garfieldsg 0:662207e34fba 2115 * REGISTER ALLOCATION FOR DYNAMIC DISABLE VS. NORMAL DISABLE:
garfieldsg 0:662207e34fba 2116 * If a slave is disabled at any time, the space initially allocated to the
garfieldsg 0:662207e34fba 2117 * slave in the EXT_SENS_DATA register, will remain associated with that slave.
garfieldsg 0:662207e34fba 2118 * This is to avoid dynamic adjustment of the register allocation.
garfieldsg 0:662207e34fba 2119 *
garfieldsg 0:662207e34fba 2120 * The allocation of the EXT_SENS_DATA registers is recomputed only when (1) all
garfieldsg 0:662207e34fba 2121 * slaves are disabled, or (2) the I2C_MST_RST bit is set (Register 106).
garfieldsg 0:662207e34fba 2122 *
garfieldsg 0:662207e34fba 2123 * This above is also true if one of the slaves gets NACKed and stops
garfieldsg 0:662207e34fba 2124 * functioning.
garfieldsg 0:662207e34fba 2125 *
garfieldsg 0:662207e34fba 2126 * @param position Starting position (0-23)
garfieldsg 0:662207e34fba 2127 * @return Byte read from register
garfieldsg 0:662207e34fba 2128 */
garfieldsg 0:662207e34fba 2129 uint8_t MPU6050::getExternalSensorByte(int position)
garfieldsg 0:662207e34fba 2130 {
garfieldsg 0:662207e34fba 2131 i2Cdev.readByte(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, buffer);
garfieldsg 0:662207e34fba 2132 return buffer[0];
garfieldsg 0:662207e34fba 2133 }
garfieldsg 0:662207e34fba 2134 /** Read word (2 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 2135 * @param position Starting position (0-21)
garfieldsg 0:662207e34fba 2136 * @return Word read from register
garfieldsg 0:662207e34fba 2137 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 2138 */
garfieldsg 0:662207e34fba 2139 uint16_t MPU6050::getExternalSensorWord(int position)
garfieldsg 0:662207e34fba 2140 {
garfieldsg 0:662207e34fba 2141 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 2, buffer);
garfieldsg 0:662207e34fba 2142 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2143 }
garfieldsg 0:662207e34fba 2144 /** Read double word (4 bytes) from external sensor data registers.
garfieldsg 0:662207e34fba 2145 * @param position Starting position (0-20)
garfieldsg 0:662207e34fba 2146 * @return Double word read from registers
garfieldsg 0:662207e34fba 2147 * @see getExternalSensorByte()
garfieldsg 0:662207e34fba 2148 */
garfieldsg 0:662207e34fba 2149 uint32_t MPU6050::getExternalSensorDWord(int position)
garfieldsg 0:662207e34fba 2150 {
garfieldsg 0:662207e34fba 2151 i2Cdev.readBytes(devAddr, MPU6050_RA_EXT_SENS_DATA_00 + position, 4, buffer);
garfieldsg 0:662207e34fba 2152 return (((uint32_t)buffer[0]) << 24) | (((uint32_t)buffer[1]) << 16) | (((uint16_t)buffer[2]) << 8) | buffer[3];
garfieldsg 0:662207e34fba 2153 }
garfieldsg 0:662207e34fba 2154
garfieldsg 0:662207e34fba 2155 // MOT_DETECT_STATUS register
garfieldsg 0:662207e34fba 2156
garfieldsg 0:662207e34fba 2157 /** Get X-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2158 * @return Motion detection status
garfieldsg 0:662207e34fba 2159 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2160 * @see MPU6050_MOTION_MOT_XNEG_BIT
garfieldsg 0:662207e34fba 2161 */
garfieldsg 0:662207e34fba 2162 bool MPU6050::getXNegMotionDetected()
garfieldsg 0:662207e34fba 2163 {
garfieldsg 0:662207e34fba 2164 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2165 return buffer[0];
garfieldsg 0:662207e34fba 2166 }
garfieldsg 0:662207e34fba 2167 /** Get X-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2168 * @return Motion detection status
garfieldsg 0:662207e34fba 2169 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2170 * @see MPU6050_MOTION_MOT_XPOS_BIT
garfieldsg 0:662207e34fba 2171 */
garfieldsg 0:662207e34fba 2172 bool MPU6050::getXPosMotionDetected()
garfieldsg 0:662207e34fba 2173 {
garfieldsg 0:662207e34fba 2174 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_XPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2175 return buffer[0];
garfieldsg 0:662207e34fba 2176 }
garfieldsg 0:662207e34fba 2177 /** Get Y-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2178 * @return Motion detection status
garfieldsg 0:662207e34fba 2179 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2180 * @see MPU6050_MOTION_MOT_YNEG_BIT
garfieldsg 0:662207e34fba 2181 */
garfieldsg 0:662207e34fba 2182 bool MPU6050::getYNegMotionDetected()
garfieldsg 0:662207e34fba 2183 {
garfieldsg 0:662207e34fba 2184 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2185 return buffer[0];
garfieldsg 0:662207e34fba 2186 }
garfieldsg 0:662207e34fba 2187 /** Get Y-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2188 * @return Motion detection status
garfieldsg 0:662207e34fba 2189 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2190 * @see MPU6050_MOTION_MOT_YPOS_BIT
garfieldsg 0:662207e34fba 2191 */
garfieldsg 0:662207e34fba 2192 bool MPU6050::getYPosMotionDetected()
garfieldsg 0:662207e34fba 2193 {
garfieldsg 0:662207e34fba 2194 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_YPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2195 return buffer[0];
garfieldsg 0:662207e34fba 2196 }
garfieldsg 0:662207e34fba 2197 /** Get Z-axis negative motion detection interrupt status.
garfieldsg 0:662207e34fba 2198 * @return Motion detection status
garfieldsg 0:662207e34fba 2199 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2200 * @see MPU6050_MOTION_MOT_ZNEG_BIT
garfieldsg 0:662207e34fba 2201 */
garfieldsg 0:662207e34fba 2202 bool MPU6050::getZNegMotionDetected()
garfieldsg 0:662207e34fba 2203 {
garfieldsg 0:662207e34fba 2204 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZNEG_BIT, buffer);
garfieldsg 0:662207e34fba 2205 return buffer[0];
garfieldsg 0:662207e34fba 2206 }
garfieldsg 0:662207e34fba 2207 /** Get Z-axis positive motion detection interrupt status.
garfieldsg 0:662207e34fba 2208 * @return Motion detection status
garfieldsg 0:662207e34fba 2209 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2210 * @see MPU6050_MOTION_MOT_ZPOS_BIT
garfieldsg 0:662207e34fba 2211 */
garfieldsg 0:662207e34fba 2212 bool MPU6050::getZPosMotionDetected()
garfieldsg 0:662207e34fba 2213 {
garfieldsg 0:662207e34fba 2214 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZPOS_BIT, buffer);
garfieldsg 0:662207e34fba 2215 return buffer[0];
garfieldsg 0:662207e34fba 2216 }
garfieldsg 0:662207e34fba 2217 /** Get zero motion detection interrupt status.
garfieldsg 0:662207e34fba 2218 * @return Motion detection status
garfieldsg 0:662207e34fba 2219 * @see MPU6050_RA_MOT_DETECT_STATUS
garfieldsg 0:662207e34fba 2220 * @see MPU6050_MOTION_MOT_ZRMOT_BIT
garfieldsg 0:662207e34fba 2221 */
garfieldsg 0:662207e34fba 2222 bool MPU6050::getZeroMotionDetected()
garfieldsg 0:662207e34fba 2223 {
garfieldsg 0:662207e34fba 2224 i2Cdev.readBit(devAddr, MPU6050_RA_MOT_DETECT_STATUS, MPU6050_MOTION_MOT_ZRMOT_BIT, buffer);
garfieldsg 0:662207e34fba 2225 return buffer[0];
garfieldsg 0:662207e34fba 2226 }
garfieldsg 0:662207e34fba 2227
garfieldsg 0:662207e34fba 2228 // I2C_SLV*_DO register
garfieldsg 0:662207e34fba 2229
garfieldsg 0:662207e34fba 2230 /** Write byte to Data Output container for specified slave.
garfieldsg 0:662207e34fba 2231 * This register holds the output data written into Slave when Slave is set to
garfieldsg 0:662207e34fba 2232 * write mode. For further information regarding Slave control, please
garfieldsg 0:662207e34fba 2233 * refer to Registers 37 to 39 and immediately following.
garfieldsg 0:662207e34fba 2234 * @param num Slave number (0-3)
garfieldsg 0:662207e34fba 2235 * @param data Byte to write
garfieldsg 0:662207e34fba 2236 * @see MPU6050_RA_I2C_SLV0_DO
garfieldsg 0:662207e34fba 2237 */
garfieldsg 0:662207e34fba 2238 void MPU6050::setSlaveOutputByte(uint8_t num, uint8_t data)
garfieldsg 0:662207e34fba 2239 {
garfieldsg 0:662207e34fba 2240 if (num > 3) return;
garfieldsg 0:662207e34fba 2241 i2Cdev.writeByte(devAddr, MPU6050_RA_I2C_SLV0_DO + num, data);
garfieldsg 0:662207e34fba 2242 }
garfieldsg 0:662207e34fba 2243
garfieldsg 0:662207e34fba 2244 // I2C_MST_DELAY_CTRL register
garfieldsg 0:662207e34fba 2245
garfieldsg 0:662207e34fba 2246 /** Get external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2247 * This register is used to specify the timing of external sensor data
garfieldsg 0:662207e34fba 2248 * shadowing. When DELAY_ES_SHADOW is set to 1, shadowing of external
garfieldsg 0:662207e34fba 2249 * sensor data is delayed until all data has been received.
garfieldsg 0:662207e34fba 2250 * @return Current external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2251 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2252 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2253 */
garfieldsg 0:662207e34fba 2254 bool MPU6050::getExternalShadowDelayEnabled()
garfieldsg 0:662207e34fba 2255 {
garfieldsg 0:662207e34fba 2256 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, buffer);
garfieldsg 0:662207e34fba 2257 return buffer[0];
garfieldsg 0:662207e34fba 2258 }
garfieldsg 0:662207e34fba 2259 /** Set external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2260 * @param enabled New external data shadow delay enabled status.
garfieldsg 0:662207e34fba 2261 * @see getExternalShadowDelayEnabled()
garfieldsg 0:662207e34fba 2262 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2263 * @see MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT
garfieldsg 0:662207e34fba 2264 */
garfieldsg 0:662207e34fba 2265 void MPU6050::setExternalShadowDelayEnabled(bool enabled)
garfieldsg 0:662207e34fba 2266 {
garfieldsg 0:662207e34fba 2267 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT, enabled);
garfieldsg 0:662207e34fba 2268 }
garfieldsg 0:662207e34fba 2269 /** Get slave delay enabled status.
garfieldsg 0:662207e34fba 2270 * When a particular slave delay is enabled, the rate of access for the that
garfieldsg 0:662207e34fba 2271 * slave device is reduced. When a slave's access rate is decreased relative to
garfieldsg 0:662207e34fba 2272 * the Sample Rate, the slave is accessed every:
garfieldsg 0:662207e34fba 2273 *
garfieldsg 0:662207e34fba 2274 * 1 / (1 + I2C_MST_DLY) Samples
garfieldsg 0:662207e34fba 2275 *
garfieldsg 0:662207e34fba 2276 * This base Sample Rate in turn is determined by SMPLRT_DIV (register * 25)
garfieldsg 0:662207e34fba 2277 * and DLPF_CFG (register 26).
garfieldsg 0:662207e34fba 2278 *
garfieldsg 0:662207e34fba 2279 * For further information regarding I2C_MST_DLY, please refer to register 52.
garfieldsg 0:662207e34fba 2280 * For further information regarding the Sample Rate, please refer to register 25.
garfieldsg 0:662207e34fba 2281 *
garfieldsg 0:662207e34fba 2282 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2283 * @return Current slave delay enabled status.
garfieldsg 0:662207e34fba 2284 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2285 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2286 */
garfieldsg 0:662207e34fba 2287 bool MPU6050::getSlaveDelayEnabled(uint8_t num)
garfieldsg 0:662207e34fba 2288 {
garfieldsg 0:662207e34fba 2289 // MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT is 4, SLV3 is 3, etc.
garfieldsg 0:662207e34fba 2290 if (num > 4) return 0;
garfieldsg 0:662207e34fba 2291 i2Cdev.readBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, buffer);
garfieldsg 0:662207e34fba 2292 return buffer[0];
garfieldsg 0:662207e34fba 2293 }
garfieldsg 0:662207e34fba 2294 /** Set slave delay enabled status.
garfieldsg 0:662207e34fba 2295 * @param num Slave number (0-4)
garfieldsg 0:662207e34fba 2296 * @param enabled New slave delay enabled status.
garfieldsg 0:662207e34fba 2297 * @see MPU6050_RA_I2C_MST_DELAY_CTRL
garfieldsg 0:662207e34fba 2298 * @see MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT
garfieldsg 0:662207e34fba 2299 */
garfieldsg 0:662207e34fba 2300 void MPU6050::setSlaveDelayEnabled(uint8_t num, bool enabled)
garfieldsg 0:662207e34fba 2301 {
garfieldsg 0:662207e34fba 2302 i2Cdev.writeBit(devAddr, MPU6050_RA_I2C_MST_DELAY_CTRL, num, enabled);
garfieldsg 0:662207e34fba 2303 }
garfieldsg 0:662207e34fba 2304
garfieldsg 0:662207e34fba 2305 // SIGNAL_PATH_RESET register
garfieldsg 0:662207e34fba 2306
garfieldsg 0:662207e34fba 2307 /** Reset gyroscope signal path.
garfieldsg 0:662207e34fba 2308 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2309 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2310 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2311 * @see MPU6050_PATHRESET_GYRO_RESET_BIT
garfieldsg 0:662207e34fba 2312 */
garfieldsg 0:662207e34fba 2313 void MPU6050::resetGyroscopePath()
garfieldsg 0:662207e34fba 2314 {
garfieldsg 0:662207e34fba 2315 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_GYRO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2316 }
garfieldsg 0:662207e34fba 2317 /** Reset accelerometer signal path.
garfieldsg 0:662207e34fba 2318 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2319 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2320 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2321 * @see MPU6050_PATHRESET_ACCEL_RESET_BIT
garfieldsg 0:662207e34fba 2322 */
garfieldsg 0:662207e34fba 2323 void MPU6050::resetAccelerometerPath()
garfieldsg 0:662207e34fba 2324 {
garfieldsg 0:662207e34fba 2325 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_ACCEL_RESET_BIT, true);
garfieldsg 0:662207e34fba 2326 }
garfieldsg 0:662207e34fba 2327 /** Reset temperature sensor signal path.
garfieldsg 0:662207e34fba 2328 * The reset will revert the signal path analog to digital converters and
garfieldsg 0:662207e34fba 2329 * filters to their power up configurations.
garfieldsg 0:662207e34fba 2330 * @see MPU6050_RA_SIGNAL_PATH_RESET
garfieldsg 0:662207e34fba 2331 * @see MPU6050_PATHRESET_TEMP_RESET_BIT
garfieldsg 0:662207e34fba 2332 */
garfieldsg 0:662207e34fba 2333 void MPU6050::resetTemperaturePath()
garfieldsg 0:662207e34fba 2334 {
garfieldsg 0:662207e34fba 2335 i2Cdev.writeBit(devAddr, MPU6050_RA_SIGNAL_PATH_RESET, MPU6050_PATHRESET_TEMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 2336 }
garfieldsg 0:662207e34fba 2337
garfieldsg 0:662207e34fba 2338 // MOT_DETECT_CTRL register
garfieldsg 0:662207e34fba 2339
garfieldsg 0:662207e34fba 2340 /** Get accelerometer power-on delay.
garfieldsg 0:662207e34fba 2341 * The accelerometer data path provides samples to the sensor registers, Motion
garfieldsg 0:662207e34fba 2342 * detection, Zero Motion detection, and Free Fall detection modules. The
garfieldsg 0:662207e34fba 2343 * signal path contains filters which must be flushed on wake-up with new
garfieldsg 0:662207e34fba 2344 * samples before the detection modules begin operations. The default wake-up
garfieldsg 0:662207e34fba 2345 * delay, of 4ms can be lengthened by up to 3ms. This additional delay is
garfieldsg 0:662207e34fba 2346 * specified in ACCEL_ON_DELAY in units of 1 LSB = 1 ms. The user may select
garfieldsg 0:662207e34fba 2347 * any value above zero unless instructed otherwise by InvenSense. Please refer
garfieldsg 0:662207e34fba 2348 * to Section 8 of the MPU-6000/MPU-6050 Product Specification document for
garfieldsg 0:662207e34fba 2349 * further information regarding the detection modules.
garfieldsg 0:662207e34fba 2350 * @return Current accelerometer power-on delay
garfieldsg 0:662207e34fba 2351 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2352 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2353 */
garfieldsg 0:662207e34fba 2354 uint8_t MPU6050::getAccelerometerPowerOnDelay()
garfieldsg 0:662207e34fba 2355 {
garfieldsg 0:662207e34fba 2356 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, buffer);
garfieldsg 0:662207e34fba 2357 return buffer[0];
garfieldsg 0:662207e34fba 2358 }
garfieldsg 0:662207e34fba 2359 /** Set accelerometer power-on delay.
garfieldsg 0:662207e34fba 2360 * @param delay New accelerometer power-on delay (0-3)
garfieldsg 0:662207e34fba 2361 * @see getAccelerometerPowerOnDelay()
garfieldsg 0:662207e34fba 2362 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2363 * @see MPU6050_DETECT_ACCEL_ON_DELAY_BIT
garfieldsg 0:662207e34fba 2364 */
garfieldsg 0:662207e34fba 2365 void MPU6050::setAccelerometerPowerOnDelay(uint8_t delay)
garfieldsg 0:662207e34fba 2366 {
garfieldsg 0:662207e34fba 2367 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_ACCEL_ON_DELAY_BIT, MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH, delay);
garfieldsg 0:662207e34fba 2368 }
garfieldsg 0:662207e34fba 2369 /** Get Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2370 * Detection is registered by the Free Fall detection module after accelerometer
garfieldsg 0:662207e34fba 2371 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2372 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2373 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2374 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2375 * configuring FF_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2376 * following table:
garfieldsg 0:662207e34fba 2377 *
garfieldsg 0:662207e34fba 2378 * <pre>
garfieldsg 0:662207e34fba 2379 * FF_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2380 * ---------+------------------
garfieldsg 0:662207e34fba 2381 * 0 | Reset
garfieldsg 0:662207e34fba 2382 * 1 | 1
garfieldsg 0:662207e34fba 2383 * 2 | 2
garfieldsg 0:662207e34fba 2384 * 3 | 4
garfieldsg 0:662207e34fba 2385 * </pre>
garfieldsg 0:662207e34fba 2386 *
garfieldsg 0:662207e34fba 2387 * When FF_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2388 * reset the counter to 0. For further information on Free Fall detection,
garfieldsg 0:662207e34fba 2389 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2390 *
garfieldsg 0:662207e34fba 2391 * @return Current decrement configuration
garfieldsg 0:662207e34fba 2392 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2393 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2394 */
garfieldsg 0:662207e34fba 2395 uint8_t MPU6050::getFreefallDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2396 {
garfieldsg 0:662207e34fba 2397 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2398 return buffer[0];
garfieldsg 0:662207e34fba 2399 }
garfieldsg 0:662207e34fba 2400 /** Set Free Fall detection counter decrement configuration.
garfieldsg 0:662207e34fba 2401 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2402 * @see getFreefallDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2403 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2404 * @see MPU6050_DETECT_FF_COUNT_BIT
garfieldsg 0:662207e34fba 2405 */
garfieldsg 0:662207e34fba 2406 void MPU6050::setFreefallDetectionCounterDecrement(uint8_t decrement)
garfieldsg 0:662207e34fba 2407 {
garfieldsg 0:662207e34fba 2408 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_FF_COUNT_BIT, MPU6050_DETECT_FF_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2409 }
garfieldsg 0:662207e34fba 2410 /** Get Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2411 * Detection is registered by the Motion detection module after accelerometer
garfieldsg 0:662207e34fba 2412 * measurements meet their respective threshold conditions over a specified
garfieldsg 0:662207e34fba 2413 * number of samples. When the threshold conditions are met, the corresponding
garfieldsg 0:662207e34fba 2414 * detection counter increments by 1. The user may control the rate at which the
garfieldsg 0:662207e34fba 2415 * detection counter decrements when the threshold condition is not met by
garfieldsg 0:662207e34fba 2416 * configuring MOT_COUNT. The decrement rate can be set according to the
garfieldsg 0:662207e34fba 2417 * following table:
garfieldsg 0:662207e34fba 2418 *
garfieldsg 0:662207e34fba 2419 * <pre>
garfieldsg 0:662207e34fba 2420 * MOT_COUNT | Counter Decrement
garfieldsg 0:662207e34fba 2421 * ----------+------------------
garfieldsg 0:662207e34fba 2422 * 0 | Reset
garfieldsg 0:662207e34fba 2423 * 1 | 1
garfieldsg 0:662207e34fba 2424 * 2 | 2
garfieldsg 0:662207e34fba 2425 * 3 | 4
garfieldsg 0:662207e34fba 2426 * </pre>
garfieldsg 0:662207e34fba 2427 *
garfieldsg 0:662207e34fba 2428 * When MOT_COUNT is configured to 0 (reset), any non-qualifying sample will
garfieldsg 0:662207e34fba 2429 * reset the counter to 0. For further information on Motion detection,
garfieldsg 0:662207e34fba 2430 * please refer to Registers 29 to 32.
garfieldsg 0:662207e34fba 2431 *
garfieldsg 0:662207e34fba 2432 */
garfieldsg 0:662207e34fba 2433 uint8_t MPU6050::getMotionDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2434 {
garfieldsg 0:662207e34fba 2435 i2Cdev.readBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, buffer);
garfieldsg 0:662207e34fba 2436 return buffer[0];
garfieldsg 0:662207e34fba 2437 }
garfieldsg 0:662207e34fba 2438 /** Set Motion detection counter decrement configuration.
garfieldsg 0:662207e34fba 2439 * @param decrement New decrement configuration value
garfieldsg 0:662207e34fba 2440 * @see getMotionDetectionCounterDecrement()
garfieldsg 0:662207e34fba 2441 * @see MPU6050_RA_MOT_DETECT_CTRL
garfieldsg 0:662207e34fba 2442 * @see MPU6050_DETECT_MOT_COUNT_BIT
garfieldsg 0:662207e34fba 2443 */
garfieldsg 0:662207e34fba 2444 void MPU6050::setMotionDetectionCounterDecrement(uint8_t decrement)
garfieldsg 0:662207e34fba 2445 {
garfieldsg 0:662207e34fba 2446 i2Cdev.writeBits(devAddr, MPU6050_RA_MOT_DETECT_CTRL, MPU6050_DETECT_MOT_COUNT_BIT, MPU6050_DETECT_MOT_COUNT_LENGTH, decrement);
garfieldsg 0:662207e34fba 2447 }
garfieldsg 0:662207e34fba 2448
garfieldsg 0:662207e34fba 2449 // USER_CTRL register
garfieldsg 0:662207e34fba 2450
garfieldsg 0:662207e34fba 2451 /** Get FIFO enabled status.
garfieldsg 0:662207e34fba 2452 * When this bit is set to 0, the FIFO buffer is disabled. The FIFO buffer
garfieldsg 0:662207e34fba 2453 * cannot be written to or read from while disabled. The FIFO buffer's state
garfieldsg 0:662207e34fba 2454 * does not change unless the MPU-60X0 is power cycled.
garfieldsg 0:662207e34fba 2455 * @return Current FIFO enabled status
garfieldsg 0:662207e34fba 2456 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2457 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2458 */
garfieldsg 0:662207e34fba 2459 bool MPU6050::getFIFOEnabled()
garfieldsg 0:662207e34fba 2460 {
garfieldsg 0:662207e34fba 2461 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2462 return buffer[0];
garfieldsg 0:662207e34fba 2463 }
garfieldsg 0:662207e34fba 2464 /** Set FIFO enabled status.
garfieldsg 0:662207e34fba 2465 * @param enabled New FIFO enabled status
garfieldsg 0:662207e34fba 2466 * @see getFIFOEnabled()
garfieldsg 0:662207e34fba 2467 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2468 * @see MPU6050_USERCTRL_FIFO_EN_BIT
garfieldsg 0:662207e34fba 2469 */
garfieldsg 0:662207e34fba 2470 void MPU6050::setFIFOEnabled(bool enabled)
garfieldsg 0:662207e34fba 2471 {
garfieldsg 0:662207e34fba 2472 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2473 }
garfieldsg 0:662207e34fba 2474 /** Get I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2475 * When this mode is enabled, the MPU-60X0 acts as the I2C Master to the
garfieldsg 0:662207e34fba 2476 * external sensor slave devices on the auxiliary I2C bus. When this bit is
garfieldsg 0:662207e34fba 2477 * cleared to 0, the auxiliary I2C bus lines (AUX_DA and AUX_CL) are logically
garfieldsg 0:662207e34fba 2478 * driven by the primary I2C bus (SDA and SCL). This is a precondition to
garfieldsg 0:662207e34fba 2479 * enabling Bypass Mode. For further information regarding Bypass Mode, please
garfieldsg 0:662207e34fba 2480 * refer to Register 55.
garfieldsg 0:662207e34fba 2481 * @return Current I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2482 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2483 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2484 */
garfieldsg 0:662207e34fba 2485 bool MPU6050::getI2CMasterModeEnabled()
garfieldsg 0:662207e34fba 2486 {
garfieldsg 0:662207e34fba 2487 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, buffer);
garfieldsg 0:662207e34fba 2488 return buffer[0];
garfieldsg 0:662207e34fba 2489 }
garfieldsg 0:662207e34fba 2490 /** Set I2C Master Mode enabled status.
garfieldsg 0:662207e34fba 2491 * @param enabled New I2C Master Mode enabled status
garfieldsg 0:662207e34fba 2492 * @see getI2CMasterModeEnabled()
garfieldsg 0:662207e34fba 2493 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2494 * @see MPU6050_USERCTRL_I2C_MST_EN_BIT
garfieldsg 0:662207e34fba 2495 */
garfieldsg 0:662207e34fba 2496 void MPU6050::setI2CMasterModeEnabled(bool enabled)
garfieldsg 0:662207e34fba 2497 {
garfieldsg 0:662207e34fba 2498 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_EN_BIT, enabled);
garfieldsg 0:662207e34fba 2499 }
garfieldsg 0:662207e34fba 2500 /** Switch from I2C to SPI mode (MPU-6000 only)
garfieldsg 0:662207e34fba 2501 * If this is set, the primary SPI interface will be enabled in place of the
garfieldsg 0:662207e34fba 2502 * disabled primary I2C interface.
garfieldsg 0:662207e34fba 2503 */
garfieldsg 0:662207e34fba 2504 void MPU6050::switchSPIEnabled(bool enabled)
garfieldsg 0:662207e34fba 2505 {
garfieldsg 0:662207e34fba 2506 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_IF_DIS_BIT, enabled);
garfieldsg 0:662207e34fba 2507 }
garfieldsg 0:662207e34fba 2508 /** Reset the FIFO.
garfieldsg 0:662207e34fba 2509 * This bit resets the FIFO buffer when set to 1 while FIFO_EN equals 0. This
garfieldsg 0:662207e34fba 2510 * bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2511 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2512 * @see MPU6050_USERCTRL_FIFO_RESET_BIT
garfieldsg 0:662207e34fba 2513 */
garfieldsg 0:662207e34fba 2514 void MPU6050::resetFIFO()
garfieldsg 0:662207e34fba 2515 {
garfieldsg 0:662207e34fba 2516 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_FIFO_RESET_BIT, true);
garfieldsg 0:662207e34fba 2517 }
garfieldsg 0:662207e34fba 2518 /** Reset the I2C Master.
garfieldsg 0:662207e34fba 2519 * This bit resets the I2C Master when set to 1 while I2C_MST_EN equals 0.
garfieldsg 0:662207e34fba 2520 * This bit automatically clears to 0 after the reset has been triggered.
garfieldsg 0:662207e34fba 2521 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2522 * @see MPU6050_USERCTRL_I2C_MST_RESET_BIT
garfieldsg 0:662207e34fba 2523 */
garfieldsg 0:662207e34fba 2524 void MPU6050::resetI2CMaster()
garfieldsg 0:662207e34fba 2525 {
garfieldsg 0:662207e34fba 2526 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_I2C_MST_RESET_BIT, true);
garfieldsg 0:662207e34fba 2527 }
garfieldsg 0:662207e34fba 2528 /** Reset all sensor registers and signal paths.
garfieldsg 0:662207e34fba 2529 * When set to 1, this bit resets the signal paths for all sensors (gyroscopes,
garfieldsg 0:662207e34fba 2530 * accelerometers, and temperature sensor). This operation will also clear the
garfieldsg 0:662207e34fba 2531 * sensor registers. This bit automatically clears to 0 after the reset has been
garfieldsg 0:662207e34fba 2532 * triggered.
garfieldsg 0:662207e34fba 2533 *
garfieldsg 0:662207e34fba 2534 * When resetting only the signal path (and not the sensor registers), please
garfieldsg 0:662207e34fba 2535 * use Register 104, SIGNAL_PATH_RESET.
garfieldsg 0:662207e34fba 2536 *
garfieldsg 0:662207e34fba 2537 * @see MPU6050_RA_USER_CTRL
garfieldsg 0:662207e34fba 2538 * @see MPU6050_USERCTRL_SIG_COND_RESET_BIT
garfieldsg 0:662207e34fba 2539 */
garfieldsg 0:662207e34fba 2540 void MPU6050::resetSensors()
garfieldsg 0:662207e34fba 2541 {
garfieldsg 0:662207e34fba 2542 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_SIG_COND_RESET_BIT, true);
garfieldsg 0:662207e34fba 2543 }
garfieldsg 0:662207e34fba 2544
garfieldsg 0:662207e34fba 2545 // PWR_MGMT_1 register
garfieldsg 0:662207e34fba 2546
garfieldsg 0:662207e34fba 2547 /** Trigger a full device reset.
garfieldsg 0:662207e34fba 2548 * A small delay of ~50ms may be desirable after triggering a reset.
garfieldsg 0:662207e34fba 2549 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2550 * @see MPU6050_PWR1_DEVICE_RESET_BIT
garfieldsg 0:662207e34fba 2551 */
garfieldsg 0:662207e34fba 2552 void MPU6050::reset()
garfieldsg 0:662207e34fba 2553 {
garfieldsg 0:662207e34fba 2554 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_DEVICE_RESET_BIT, true);
garfieldsg 0:662207e34fba 2555 }
garfieldsg 0:662207e34fba 2556 /** Get sleep mode status.
garfieldsg 0:662207e34fba 2557 * Setting the SLEEP bit in the register puts the device into very low power
garfieldsg 0:662207e34fba 2558 * sleep mode. In this mode, only the serial interface and internal registers
garfieldsg 0:662207e34fba 2559 * remain active, allowing for a very low standby current. Clearing this bit
garfieldsg 0:662207e34fba 2560 * puts the device back into normal mode. To save power, the individual standby
garfieldsg 0:662207e34fba 2561 * selections for each of the gyros should be used if any gyro axis is not used
garfieldsg 0:662207e34fba 2562 * by the application.
garfieldsg 0:662207e34fba 2563 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2564 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2565 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2566 */
garfieldsg 0:662207e34fba 2567 bool MPU6050::getSleepEnabled()
garfieldsg 0:662207e34fba 2568 {
garfieldsg 0:662207e34fba 2569 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, buffer);
garfieldsg 0:662207e34fba 2570 return buffer[0];
garfieldsg 0:662207e34fba 2571 }
garfieldsg 0:662207e34fba 2572 /** Set sleep mode status.
garfieldsg 0:662207e34fba 2573 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2574 * @see getSleepEnabled()
garfieldsg 0:662207e34fba 2575 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2576 * @see MPU6050_PWR1_SLEEP_BIT
garfieldsg 0:662207e34fba 2577 */
garfieldsg 0:662207e34fba 2578 void MPU6050::setSleepEnabled(bool enabled)
garfieldsg 0:662207e34fba 2579 {
garfieldsg 0:662207e34fba 2580 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, enabled);
garfieldsg 0:662207e34fba 2581 }
garfieldsg 0:662207e34fba 2582 /** Get wake cycle enabled status.
garfieldsg 0:662207e34fba 2583 * When this bit is set to 1 and SLEEP is disabled, the MPU-60X0 will cycle
garfieldsg 0:662207e34fba 2584 * between sleep mode and waking up to take a single sample of data from active
garfieldsg 0:662207e34fba 2585 * sensors at a rate determined by LP_WAKE_CTRL (register 108).
garfieldsg 0:662207e34fba 2586 * @return Current sleep mode enabled status
garfieldsg 0:662207e34fba 2587 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2588 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2589 */
garfieldsg 0:662207e34fba 2590 bool MPU6050::getWakeCycleEnabled()
garfieldsg 0:662207e34fba 2591 {
garfieldsg 0:662207e34fba 2592 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, buffer);
garfieldsg 0:662207e34fba 2593 return buffer[0];
garfieldsg 0:662207e34fba 2594 }
garfieldsg 0:662207e34fba 2595 /** Set wake cycle enabled status.
garfieldsg 0:662207e34fba 2596 * @param enabled New sleep mode enabled status
garfieldsg 0:662207e34fba 2597 * @see getWakeCycleEnabled()
garfieldsg 0:662207e34fba 2598 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2599 * @see MPU6050_PWR1_CYCLE_BIT
garfieldsg 0:662207e34fba 2600 */
garfieldsg 0:662207e34fba 2601 void MPU6050::setWakeCycleEnabled(bool enabled)
garfieldsg 0:662207e34fba 2602 {
garfieldsg 0:662207e34fba 2603 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CYCLE_BIT, enabled);
garfieldsg 0:662207e34fba 2604 }
garfieldsg 0:662207e34fba 2605 /** Get temperature sensor enabled status.
garfieldsg 0:662207e34fba 2606 * Control the usage of the internal temperature sensor.
garfieldsg 0:662207e34fba 2607 *
garfieldsg 0:662207e34fba 2608 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2609 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2610 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2611 *
garfieldsg 0:662207e34fba 2612 * @return Current temperature sensor enabled status
garfieldsg 0:662207e34fba 2613 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2614 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2615 */
garfieldsg 0:662207e34fba 2616 bool MPU6050::getTempSensorEnabled()
garfieldsg 0:662207e34fba 2617 {
garfieldsg 0:662207e34fba 2618 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, buffer);
garfieldsg 0:662207e34fba 2619 return buffer[0] == 0; // 1 is actually disabled here
garfieldsg 0:662207e34fba 2620 }
garfieldsg 0:662207e34fba 2621 /** Set temperature sensor enabled status.
garfieldsg 0:662207e34fba 2622 * Note: this register stores the *disabled* value, but for consistency with the
garfieldsg 0:662207e34fba 2623 * rest of the code, the function is named and used with standard true/false
garfieldsg 0:662207e34fba 2624 * values to indicate whether the sensor is enabled or disabled, respectively.
garfieldsg 0:662207e34fba 2625 *
garfieldsg 0:662207e34fba 2626 * @param enabled New temperature sensor enabled status
garfieldsg 0:662207e34fba 2627 * @see getTempSensorEnabled()
garfieldsg 0:662207e34fba 2628 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2629 * @see MPU6050_PWR1_TEMP_DIS_BIT
garfieldsg 0:662207e34fba 2630 */
garfieldsg 0:662207e34fba 2631 void MPU6050::setTempSensorEnabled(bool enabled)
garfieldsg 0:662207e34fba 2632 {
garfieldsg 0:662207e34fba 2633 // 1 is actually disabled here
garfieldsg 0:662207e34fba 2634 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_TEMP_DIS_BIT, !enabled);
garfieldsg 0:662207e34fba 2635 }
garfieldsg 0:662207e34fba 2636 /** Get clock source setting.
garfieldsg 0:662207e34fba 2637 * @return Current clock source setting
garfieldsg 0:662207e34fba 2638 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2639 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2640 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2641 */
garfieldsg 0:662207e34fba 2642 uint8_t MPU6050::getClockSource()
garfieldsg 0:662207e34fba 2643 {
garfieldsg 0:662207e34fba 2644 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2645 return buffer[0];
garfieldsg 0:662207e34fba 2646 }
garfieldsg 0:662207e34fba 2647 /** Set clock source setting.
garfieldsg 0:662207e34fba 2648 * An internal 8MHz oscillator, gyroscope based clock, or external sources can
garfieldsg 0:662207e34fba 2649 * be selected as the MPU-60X0 clock source. When the internal 8 MHz oscillator
garfieldsg 0:662207e34fba 2650 * or an external source is chosen as the clock source, the MPU-60X0 can operate
garfieldsg 0:662207e34fba 2651 * in low power modes with the gyroscopes disabled.
garfieldsg 0:662207e34fba 2652 *
garfieldsg 0:662207e34fba 2653 * Upon power up, the MPU-60X0 clock source defaults to the internal oscillator.
garfieldsg 0:662207e34fba 2654 * However, it is highly recommended that the device be configured to use one of
garfieldsg 0:662207e34fba 2655 * the gyroscopes (or an external clock source) as the clock reference for
garfieldsg 0:662207e34fba 2656 * improved stability. The clock source can be selected according to the following table:
garfieldsg 0:662207e34fba 2657 *
garfieldsg 0:662207e34fba 2658 * <pre>
garfieldsg 0:662207e34fba 2659 * CLK_SEL | Clock Source
garfieldsg 0:662207e34fba 2660 * --------+--------------------------------------
garfieldsg 0:662207e34fba 2661 * 0 | Internal oscillator
garfieldsg 0:662207e34fba 2662 * 1 | PLL with X Gyro reference
garfieldsg 0:662207e34fba 2663 * 2 | PLL with Y Gyro reference
garfieldsg 0:662207e34fba 2664 * 3 | PLL with Z Gyro reference
garfieldsg 0:662207e34fba 2665 * 4 | PLL with external 32.768kHz reference
garfieldsg 0:662207e34fba 2666 * 5 | PLL with external 19.2MHz reference
garfieldsg 0:662207e34fba 2667 * 6 | Reserved
garfieldsg 0:662207e34fba 2668 * 7 | Stops the clock and keeps the timing generator in reset
garfieldsg 0:662207e34fba 2669 * </pre>
garfieldsg 0:662207e34fba 2670 *
garfieldsg 0:662207e34fba 2671 * @param source New clock source setting
garfieldsg 0:662207e34fba 2672 * @see getClockSource()
garfieldsg 0:662207e34fba 2673 * @see MPU6050_RA_PWR_MGMT_1
garfieldsg 0:662207e34fba 2674 * @see MPU6050_PWR1_CLKSEL_BIT
garfieldsg 0:662207e34fba 2675 * @see MPU6050_PWR1_CLKSEL_LENGTH
garfieldsg 0:662207e34fba 2676 */
garfieldsg 0:662207e34fba 2677 void MPU6050::setClockSource(uint8_t source)
garfieldsg 0:662207e34fba 2678 {
garfieldsg 0:662207e34fba 2679 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, source);
garfieldsg 0:662207e34fba 2680 }
garfieldsg 0:662207e34fba 2681
garfieldsg 0:662207e34fba 2682 // PWR_MGMT_2 register
garfieldsg 0:662207e34fba 2683
garfieldsg 0:662207e34fba 2684 /** Get wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2685 * The MPU-60X0 can be put into Accerlerometer Only Low Power Mode by setting
garfieldsg 0:662207e34fba 2686 * PWRSEL to 1 in the Power Management 1 register (Register 107). In this mode,
garfieldsg 0:662207e34fba 2687 * the device will power off all devices except for the primary I2C interface,
garfieldsg 0:662207e34fba 2688 * waking only the accelerometer at fixed intervals to take a single
garfieldsg 0:662207e34fba 2689 * measurement. The frequency of wake-ups can be configured with LP_WAKE_CTRL
garfieldsg 0:662207e34fba 2690 * as shown below:
garfieldsg 0:662207e34fba 2691 *
garfieldsg 0:662207e34fba 2692 * <pre>
garfieldsg 0:662207e34fba 2693 * LP_WAKE_CTRL | Wake-up Frequency
garfieldsg 0:662207e34fba 2694 * -------------+------------------
garfieldsg 0:662207e34fba 2695 * 0 | 1.25 Hz
garfieldsg 0:662207e34fba 2696 * 1 | 2.5 Hz
garfieldsg 0:662207e34fba 2697 * 2 | 5 Hz
garfieldsg 0:662207e34fba 2698 * 3 | 10 Hz
garfieldsg 0:662207e34fba 2699 * <pre>
garfieldsg 0:662207e34fba 2700 *
garfieldsg 0:662207e34fba 2701 * For further information regarding the MPU-60X0's power modes, please refer to
garfieldsg 0:662207e34fba 2702 * Register 107.
garfieldsg 0:662207e34fba 2703 *
garfieldsg 0:662207e34fba 2704 * @return Current wake frequency
garfieldsg 0:662207e34fba 2705 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2706 */
garfieldsg 0:662207e34fba 2707 uint8_t MPU6050::getWakeFrequency()
garfieldsg 0:662207e34fba 2708 {
garfieldsg 0:662207e34fba 2709 i2Cdev.readBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, buffer);
garfieldsg 0:662207e34fba 2710 return buffer[0];
garfieldsg 0:662207e34fba 2711 }
garfieldsg 0:662207e34fba 2712 /** Set wake frequency in Accel-Only Low Power Mode.
garfieldsg 0:662207e34fba 2713 * @param frequency New wake frequency
garfieldsg 0:662207e34fba 2714 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2715 */
garfieldsg 0:662207e34fba 2716 void MPU6050::setWakeFrequency(uint8_t frequency)
garfieldsg 0:662207e34fba 2717 {
garfieldsg 0:662207e34fba 2718 i2Cdev.writeBits(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_LP_WAKE_CTRL_BIT, MPU6050_PWR2_LP_WAKE_CTRL_LENGTH, frequency);
garfieldsg 0:662207e34fba 2719 }
garfieldsg 0:662207e34fba 2720
garfieldsg 0:662207e34fba 2721 /** Get X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2722 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2723 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2724 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2725 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2726 */
garfieldsg 0:662207e34fba 2727 bool MPU6050::getStandbyXAccelEnabled()
garfieldsg 0:662207e34fba 2728 {
garfieldsg 0:662207e34fba 2729 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, buffer);
garfieldsg 0:662207e34fba 2730 return buffer[0];
garfieldsg 0:662207e34fba 2731 }
garfieldsg 0:662207e34fba 2732 /** Set X-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2733 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2734 * @see getStandbyXAccelEnabled()
garfieldsg 0:662207e34fba 2735 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2736 * @see MPU6050_PWR2_STBY_XA_BIT
garfieldsg 0:662207e34fba 2737 */
garfieldsg 0:662207e34fba 2738 void MPU6050::setStandbyXAccelEnabled(bool enabled)
garfieldsg 0:662207e34fba 2739 {
garfieldsg 0:662207e34fba 2740 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XA_BIT, enabled);
garfieldsg 0:662207e34fba 2741 }
garfieldsg 0:662207e34fba 2742 /** Get Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2743 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2744 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2745 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2746 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2747 */
garfieldsg 0:662207e34fba 2748 bool MPU6050::getStandbyYAccelEnabled()
garfieldsg 0:662207e34fba 2749 {
garfieldsg 0:662207e34fba 2750 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, buffer);
garfieldsg 0:662207e34fba 2751 return buffer[0];
garfieldsg 0:662207e34fba 2752 }
garfieldsg 0:662207e34fba 2753 /** Set Y-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2754 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2755 * @see getStandbyYAccelEnabled()
garfieldsg 0:662207e34fba 2756 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2757 * @see MPU6050_PWR2_STBY_YA_BIT
garfieldsg 0:662207e34fba 2758 */
garfieldsg 0:662207e34fba 2759 void MPU6050::setStandbyYAccelEnabled(bool enabled)
garfieldsg 0:662207e34fba 2760 {
garfieldsg 0:662207e34fba 2761 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YA_BIT, enabled);
garfieldsg 0:662207e34fba 2762 }
garfieldsg 0:662207e34fba 2763 /** Get Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2764 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2765 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2766 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2767 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2768 */
garfieldsg 0:662207e34fba 2769 bool MPU6050::getStandbyZAccelEnabled()
garfieldsg 0:662207e34fba 2770 {
garfieldsg 0:662207e34fba 2771 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, buffer);
garfieldsg 0:662207e34fba 2772 return buffer[0];
garfieldsg 0:662207e34fba 2773 }
garfieldsg 0:662207e34fba 2774 /** Set Z-axis accelerometer standby enabled status.
garfieldsg 0:662207e34fba 2775 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 2776 * @see getStandbyZAccelEnabled()
garfieldsg 0:662207e34fba 2777 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2778 * @see MPU6050_PWR2_STBY_ZA_BIT
garfieldsg 0:662207e34fba 2779 */
garfieldsg 0:662207e34fba 2780 void MPU6050::setStandbyZAccelEnabled(bool enabled)
garfieldsg 0:662207e34fba 2781 {
garfieldsg 0:662207e34fba 2782 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZA_BIT, enabled);
garfieldsg 0:662207e34fba 2783 }
garfieldsg 0:662207e34fba 2784 /** Get X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2785 * If enabled, the X-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2786 * @return Current X-axis standby enabled status
garfieldsg 0:662207e34fba 2787 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2788 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 2789 */
garfieldsg 0:662207e34fba 2790 bool MPU6050::getStandbyXGyroEnabled()
garfieldsg 0:662207e34fba 2791 {
garfieldsg 0:662207e34fba 2792 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, buffer);
garfieldsg 0:662207e34fba 2793 return buffer[0];
garfieldsg 0:662207e34fba 2794 }
garfieldsg 0:662207e34fba 2795 /** Set X-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2796 * @param New X-axis standby enabled status
garfieldsg 0:662207e34fba 2797 * @see getStandbyXGyroEnabled()
garfieldsg 0:662207e34fba 2798 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2799 * @see MPU6050_PWR2_STBY_XG_BIT
garfieldsg 0:662207e34fba 2800 */
garfieldsg 0:662207e34fba 2801 void MPU6050::setStandbyXGyroEnabled(bool enabled)
garfieldsg 0:662207e34fba 2802 {
garfieldsg 0:662207e34fba 2803 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_XG_BIT, enabled);
garfieldsg 0:662207e34fba 2804 }
garfieldsg 0:662207e34fba 2805 /** Get Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2806 * If enabled, the Y-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2807 * @return Current Y-axis standby enabled status
garfieldsg 0:662207e34fba 2808 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2809 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 2810 */
garfieldsg 0:662207e34fba 2811 bool MPU6050::getStandbyYGyroEnabled()
garfieldsg 0:662207e34fba 2812 {
garfieldsg 0:662207e34fba 2813 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, buffer);
garfieldsg 0:662207e34fba 2814 return buffer[0];
garfieldsg 0:662207e34fba 2815 }
garfieldsg 0:662207e34fba 2816 /** Set Y-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2817 * @param New Y-axis standby enabled status
garfieldsg 0:662207e34fba 2818 * @see getStandbyYGyroEnabled()
garfieldsg 0:662207e34fba 2819 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2820 * @see MPU6050_PWR2_STBY_YG_BIT
garfieldsg 0:662207e34fba 2821 */
garfieldsg 0:662207e34fba 2822 void MPU6050::setStandbyYGyroEnabled(bool enabled)
garfieldsg 0:662207e34fba 2823 {
garfieldsg 0:662207e34fba 2824 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_YG_BIT, enabled);
garfieldsg 0:662207e34fba 2825 }
garfieldsg 0:662207e34fba 2826 /** Get Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2827 * If enabled, the Z-axis will not gather or report data (or use power).
garfieldsg 0:662207e34fba 2828 * @return Current Z-axis standby enabled status
garfieldsg 0:662207e34fba 2829 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2830 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 2831 */
garfieldsg 0:662207e34fba 2832 bool MPU6050::getStandbyZGyroEnabled()
garfieldsg 0:662207e34fba 2833 {
garfieldsg 0:662207e34fba 2834 i2Cdev.readBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, buffer);
garfieldsg 0:662207e34fba 2835 return buffer[0];
garfieldsg 0:662207e34fba 2836 }
garfieldsg 0:662207e34fba 2837 /** Set Z-axis gyroscope standby enabled status.
garfieldsg 0:662207e34fba 2838 * @param New Z-axis standby enabled status
garfieldsg 0:662207e34fba 2839 * @see getStandbyZGyroEnabled()
garfieldsg 0:662207e34fba 2840 * @see MPU6050_RA_PWR_MGMT_2
garfieldsg 0:662207e34fba 2841 * @see MPU6050_PWR2_STBY_ZG_BIT
garfieldsg 0:662207e34fba 2842 */
garfieldsg 0:662207e34fba 2843 void MPU6050::setStandbyZGyroEnabled(bool enabled)
garfieldsg 0:662207e34fba 2844 {
garfieldsg 0:662207e34fba 2845 i2Cdev.writeBit(devAddr, MPU6050_RA_PWR_MGMT_2, MPU6050_PWR2_STBY_ZG_BIT, enabled);
garfieldsg 0:662207e34fba 2846 }
garfieldsg 0:662207e34fba 2847
garfieldsg 0:662207e34fba 2848 // FIFO_COUNT* registers
garfieldsg 0:662207e34fba 2849
garfieldsg 0:662207e34fba 2850 /** Get current FIFO buffer size.
garfieldsg 0:662207e34fba 2851 * This value indicates the number of bytes stored in the FIFO buffer. This
garfieldsg 0:662207e34fba 2852 * number is in turn the number of bytes that can be read from the FIFO buffer
garfieldsg 0:662207e34fba 2853 * and it is directly proportional to the number of samples available given the
garfieldsg 0:662207e34fba 2854 * set of sensor data bound to be stored in the FIFO (register 35 and 36).
garfieldsg 0:662207e34fba 2855 * @return Current FIFO buffer size
garfieldsg 0:662207e34fba 2856 */
garfieldsg 0:662207e34fba 2857 uint16_t MPU6050::getFIFOCount()
garfieldsg 0:662207e34fba 2858 {
garfieldsg 0:662207e34fba 2859 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
garfieldsg 0:662207e34fba 2860 return (((uint16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 2861 }
garfieldsg 0:662207e34fba 2862
garfieldsg 0:662207e34fba 2863 // FIFO_R_W register
garfieldsg 0:662207e34fba 2864
garfieldsg 0:662207e34fba 2865 /** Get byte from FIFO buffer.
garfieldsg 0:662207e34fba 2866 * This register is used to read and write data from the FIFO buffer. Data is
garfieldsg 0:662207e34fba 2867 * written to the FIFO in order of register number (from lowest to highest). If
garfieldsg 0:662207e34fba 2868 * all the FIFO enable flags (see below) are enabled and all External Sensor
garfieldsg 0:662207e34fba 2869 * Data registers (Registers 73 to 96) are associated with a Slave device, the
garfieldsg 0:662207e34fba 2870 * contents of registers 59 through 96 will be written in order at the Sample
garfieldsg 0:662207e34fba 2871 * Rate.
garfieldsg 0:662207e34fba 2872 *
garfieldsg 0:662207e34fba 2873 * The contents of the sensor data registers (Registers 59 to 96) are written
garfieldsg 0:662207e34fba 2874 * into the FIFO buffer when their corresponding FIFO enable flags are set to 1
garfieldsg 0:662207e34fba 2875 * in FIFO_EN (Register 35). An additional flag for the sensor data registers
garfieldsg 0:662207e34fba 2876 * associated with I2C Slave 3 can be found in I2C_MST_CTRL (Register 36).
garfieldsg 0:662207e34fba 2877 *
garfieldsg 0:662207e34fba 2878 * If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is
garfieldsg 0:662207e34fba 2879 * automatically set to 1. This bit is located in INT_STATUS (Register 58).
garfieldsg 0:662207e34fba 2880 * When the FIFO buffer has overflowed, the oldest data will be lost and new
garfieldsg 0:662207e34fba 2881 * data will be written to the FIFO.
garfieldsg 0:662207e34fba 2882 *
garfieldsg 0:662207e34fba 2883 * If the FIFO buffer is empty, reading this register will return the last byte
garfieldsg 0:662207e34fba 2884 * that was previously read from the FIFO until new data is available. The user
garfieldsg 0:662207e34fba 2885 * should check FIFO_COUNT to ensure that the FIFO buffer is not read when
garfieldsg 0:662207e34fba 2886 * empty.
garfieldsg 0:662207e34fba 2887 *
garfieldsg 0:662207e34fba 2888 * @return Byte from FIFO buffer
garfieldsg 0:662207e34fba 2889 */
garfieldsg 0:662207e34fba 2890 uint8_t MPU6050::getFIFOByte()
garfieldsg 0:662207e34fba 2891 {
garfieldsg 0:662207e34fba 2892 i2Cdev.readByte(devAddr, MPU6050_RA_FIFO_R_W, buffer);
garfieldsg 0:662207e34fba 2893 return buffer[0];
garfieldsg 0:662207e34fba 2894 }
garfieldsg 0:662207e34fba 2895 void MPU6050::getFIFOBytes(uint8_t *data, uint8_t length)
garfieldsg 0:662207e34fba 2896 {
garfieldsg 0:662207e34fba 2897 i2Cdev.readBytes(devAddr, MPU6050_RA_FIFO_R_W, length, data);
garfieldsg 0:662207e34fba 2898 }
garfieldsg 0:662207e34fba 2899 /** Write byte to FIFO buffer.
garfieldsg 0:662207e34fba 2900 * @see getFIFOByte()
garfieldsg 0:662207e34fba 2901 * @see MPU6050_RA_FIFO_R_W
garfieldsg 0:662207e34fba 2902 */
garfieldsg 0:662207e34fba 2903 void MPU6050::setFIFOByte(uint8_t data)
garfieldsg 0:662207e34fba 2904 {
garfieldsg 0:662207e34fba 2905 i2Cdev.writeByte(devAddr, MPU6050_RA_FIFO_R_W, data);
garfieldsg 0:662207e34fba 2906 }
garfieldsg 0:662207e34fba 2907
garfieldsg 0:662207e34fba 2908 // WHO_AM_I register
garfieldsg 0:662207e34fba 2909
garfieldsg 0:662207e34fba 2910 /** Get Device ID.
garfieldsg 0:662207e34fba 2911 * This register is used to verify the identity of the device (0b110100, 0x34).
garfieldsg 0:662207e34fba 2912 * @return Device ID (6 bits only! should be 0x34)
garfieldsg 0:662207e34fba 2913 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 2914 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 2915 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 2916 */
garfieldsg 0:662207e34fba 2917 uint8_t MPU6050::getDeviceID()
garfieldsg 0:662207e34fba 2918 {
garfieldsg 0:662207e34fba 2919 i2Cdev.readBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, buffer);
garfieldsg 0:662207e34fba 2920 return buffer[0];
garfieldsg 0:662207e34fba 2921 }
garfieldsg 0:662207e34fba 2922 /** Set Device ID.
garfieldsg 0:662207e34fba 2923 * Write a new ID into the WHO_AM_I register (no idea why this should ever be
garfieldsg 0:662207e34fba 2924 * necessary though).
garfieldsg 0:662207e34fba 2925 * @param id New device ID to set.
garfieldsg 0:662207e34fba 2926 * @see getDeviceID()
garfieldsg 0:662207e34fba 2927 * @see MPU6050_RA_WHO_AM_I
garfieldsg 0:662207e34fba 2928 * @see MPU6050_WHO_AM_I_BIT
garfieldsg 0:662207e34fba 2929 * @see MPU6050_WHO_AM_I_LENGTH
garfieldsg 0:662207e34fba 2930 */
garfieldsg 0:662207e34fba 2931 void MPU6050::setDeviceID(uint8_t id)
garfieldsg 0:662207e34fba 2932 {
garfieldsg 0:662207e34fba 2933 i2Cdev.writeBits(devAddr, MPU6050_RA_WHO_AM_I, MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, id);
garfieldsg 0:662207e34fba 2934 }
garfieldsg 0:662207e34fba 2935
garfieldsg 0:662207e34fba 2936 // ======== UNDOCUMENTED/DMP REGISTERS/METHODS ========
garfieldsg 0:662207e34fba 2937
garfieldsg 0:662207e34fba 2938 // XG_OFFS_TC register
garfieldsg 0:662207e34fba 2939
garfieldsg 0:662207e34fba 2940 uint8_t MPU6050::getOTPBankValid()
garfieldsg 0:662207e34fba 2941 {
garfieldsg 0:662207e34fba 2942 i2Cdev.readBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, buffer);
garfieldsg 0:662207e34fba 2943 return buffer[0];
garfieldsg 0:662207e34fba 2944 }
garfieldsg 0:662207e34fba 2945 void MPU6050::setOTPBankValid(bool enabled)
garfieldsg 0:662207e34fba 2946 {
garfieldsg 0:662207e34fba 2947 i2Cdev.writeBit(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OTP_BNK_VLD_BIT, enabled);
garfieldsg 0:662207e34fba 2948 }
garfieldsg 0:662207e34fba 2949 int8_t MPU6050::getXGyroOffset()
garfieldsg 0:662207e34fba 2950 {
garfieldsg 0:662207e34fba 2951 i2Cdev.readBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2952 return buffer[0];
garfieldsg 0:662207e34fba 2953 }
garfieldsg 0:662207e34fba 2954 void MPU6050::setXGyroOffset(int8_t offset)
garfieldsg 0:662207e34fba 2955 {
garfieldsg 0:662207e34fba 2956 i2Cdev.writeBits(devAddr, MPU6050_RA_XG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2957 }
garfieldsg 0:662207e34fba 2958
garfieldsg 0:662207e34fba 2959 // YG_OFFS_TC register
garfieldsg 0:662207e34fba 2960
garfieldsg 0:662207e34fba 2961 int8_t MPU6050::getYGyroOffset()
garfieldsg 0:662207e34fba 2962 {
garfieldsg 0:662207e34fba 2963 i2Cdev.readBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2964 return buffer[0];
garfieldsg 0:662207e34fba 2965 }
garfieldsg 0:662207e34fba 2966 void MPU6050::setYGyroOffset(int8_t offset)
garfieldsg 0:662207e34fba 2967 {
garfieldsg 0:662207e34fba 2968 i2Cdev.writeBits(devAddr, MPU6050_RA_YG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2969 }
garfieldsg 0:662207e34fba 2970
garfieldsg 0:662207e34fba 2971 // ZG_OFFS_TC register
garfieldsg 0:662207e34fba 2972
garfieldsg 0:662207e34fba 2973 int8_t MPU6050::getZGyroOffset()
garfieldsg 0:662207e34fba 2974 {
garfieldsg 0:662207e34fba 2975 i2Cdev.readBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, buffer);
garfieldsg 0:662207e34fba 2976 return buffer[0];
garfieldsg 0:662207e34fba 2977 }
garfieldsg 0:662207e34fba 2978 void MPU6050::setZGyroOffset(int8_t offset)
garfieldsg 0:662207e34fba 2979 {
garfieldsg 0:662207e34fba 2980 i2Cdev.writeBits(devAddr, MPU6050_RA_ZG_OFFS_TC, MPU6050_TC_OFFSET_BIT, MPU6050_TC_OFFSET_LENGTH, offset);
garfieldsg 0:662207e34fba 2981 }
garfieldsg 0:662207e34fba 2982
garfieldsg 0:662207e34fba 2983 // X_FINE_GAIN register
garfieldsg 0:662207e34fba 2984
garfieldsg 0:662207e34fba 2985 int8_t MPU6050::getXFineGain()
garfieldsg 0:662207e34fba 2986 {
garfieldsg 0:662207e34fba 2987 i2Cdev.readByte(devAddr, MPU6050_RA_X_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 2988 return buffer[0];
garfieldsg 0:662207e34fba 2989 }
garfieldsg 0:662207e34fba 2990 void MPU6050::setXFineGain(int8_t gain)
garfieldsg 0:662207e34fba 2991 {
garfieldsg 0:662207e34fba 2992 i2Cdev.writeByte(devAddr, MPU6050_RA_X_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 2993 }
garfieldsg 0:662207e34fba 2994
garfieldsg 0:662207e34fba 2995 // Y_FINE_GAIN register
garfieldsg 0:662207e34fba 2996
garfieldsg 0:662207e34fba 2997 int8_t MPU6050::getYFineGain()
garfieldsg 0:662207e34fba 2998 {
garfieldsg 0:662207e34fba 2999 i2Cdev.readByte(devAddr, MPU6050_RA_Y_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 3000 return buffer[0];
garfieldsg 0:662207e34fba 3001 }
garfieldsg 0:662207e34fba 3002 void MPU6050::setYFineGain(int8_t gain)
garfieldsg 0:662207e34fba 3003 {
garfieldsg 0:662207e34fba 3004 i2Cdev.writeByte(devAddr, MPU6050_RA_Y_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 3005 }
garfieldsg 0:662207e34fba 3006
garfieldsg 0:662207e34fba 3007 // Z_FINE_GAIN register
garfieldsg 0:662207e34fba 3008
garfieldsg 0:662207e34fba 3009 int8_t MPU6050::getZFineGain()
garfieldsg 0:662207e34fba 3010 {
garfieldsg 0:662207e34fba 3011 i2Cdev.readByte(devAddr, MPU6050_RA_Z_FINE_GAIN, buffer);
garfieldsg 0:662207e34fba 3012 return buffer[0];
garfieldsg 0:662207e34fba 3013 }
garfieldsg 0:662207e34fba 3014 void MPU6050::setZFineGain(int8_t gain)
garfieldsg 0:662207e34fba 3015 {
garfieldsg 0:662207e34fba 3016 i2Cdev.writeByte(devAddr, MPU6050_RA_Z_FINE_GAIN, gain);
garfieldsg 0:662207e34fba 3017 }
garfieldsg 0:662207e34fba 3018
garfieldsg 0:662207e34fba 3019 // XA_OFFS_* registers
garfieldsg 0:662207e34fba 3020
garfieldsg 0:662207e34fba 3021 int16_t MPU6050::getXAccelOffset()
garfieldsg 0:662207e34fba 3022 {
garfieldsg 0:662207e34fba 3023 i2Cdev.readBytes(devAddr, MPU6050_RA_XA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 3024 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3025 }
garfieldsg 0:662207e34fba 3026 void MPU6050::setXAccelOffset(int16_t offset)
garfieldsg 0:662207e34fba 3027 {
garfieldsg 0:662207e34fba 3028 i2Cdev.writeWord(devAddr, MPU6050_RA_XA_OFFS_H, offset);
garfieldsg 0:662207e34fba 3029 }
garfieldsg 0:662207e34fba 3030
garfieldsg 0:662207e34fba 3031 // YA_OFFS_* register
garfieldsg 0:662207e34fba 3032
garfieldsg 0:662207e34fba 3033 int16_t MPU6050::getYAccelOffset()
garfieldsg 0:662207e34fba 3034 {
garfieldsg 0:662207e34fba 3035 i2Cdev.readBytes(devAddr, MPU6050_RA_YA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 3036 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3037 }
garfieldsg 0:662207e34fba 3038 void MPU6050::setYAccelOffset(int16_t offset)
garfieldsg 0:662207e34fba 3039 {
garfieldsg 0:662207e34fba 3040 i2Cdev.writeWord(devAddr, MPU6050_RA_YA_OFFS_H, offset);
garfieldsg 0:662207e34fba 3041 }
garfieldsg 0:662207e34fba 3042
garfieldsg 0:662207e34fba 3043 // ZA_OFFS_* register
garfieldsg 0:662207e34fba 3044
garfieldsg 0:662207e34fba 3045 int16_t MPU6050::getZAccelOffset()
garfieldsg 0:662207e34fba 3046 {
garfieldsg 0:662207e34fba 3047 i2Cdev.readBytes(devAddr, MPU6050_RA_ZA_OFFS_H, 2, buffer);
garfieldsg 0:662207e34fba 3048 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3049 }
garfieldsg 0:662207e34fba 3050 void MPU6050::setZAccelOffset(int16_t offset)
garfieldsg 0:662207e34fba 3051 {
garfieldsg 0:662207e34fba 3052 i2Cdev.writeWord(devAddr, MPU6050_RA_ZA_OFFS_H, offset);
garfieldsg 0:662207e34fba 3053 }
garfieldsg 0:662207e34fba 3054
garfieldsg 0:662207e34fba 3055 // XG_OFFS_USR* registers
garfieldsg 0:662207e34fba 3056
garfieldsg 0:662207e34fba 3057 int16_t MPU6050::getXGyroOffsetUser()
garfieldsg 0:662207e34fba 3058 {
garfieldsg 0:662207e34fba 3059 i2Cdev.readBytes(devAddr, MPU6050_RA_XG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 3060 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3061 }
garfieldsg 0:662207e34fba 3062 void MPU6050::setXGyroOffsetUser(int16_t offset)
garfieldsg 0:662207e34fba 3063 {
garfieldsg 0:662207e34fba 3064 i2Cdev.writeWord(devAddr, MPU6050_RA_XG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 3065 }
garfieldsg 0:662207e34fba 3066
garfieldsg 0:662207e34fba 3067 // YG_OFFS_USR* register
garfieldsg 0:662207e34fba 3068
garfieldsg 0:662207e34fba 3069 int16_t MPU6050::getYGyroOffsetUser()
garfieldsg 0:662207e34fba 3070 {
garfieldsg 0:662207e34fba 3071 i2Cdev.readBytes(devAddr, MPU6050_RA_YG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 3072 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3073 }
garfieldsg 0:662207e34fba 3074 void MPU6050::setYGyroOffsetUser(int16_t offset)
garfieldsg 0:662207e34fba 3075 {
garfieldsg 0:662207e34fba 3076 i2Cdev.writeWord(devAddr, MPU6050_RA_YG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 3077 }
garfieldsg 0:662207e34fba 3078
garfieldsg 0:662207e34fba 3079 // ZG_OFFS_USR* register
garfieldsg 0:662207e34fba 3080
garfieldsg 0:662207e34fba 3081 int16_t MPU6050::getZGyroOffsetUser()
garfieldsg 0:662207e34fba 3082 {
garfieldsg 0:662207e34fba 3083 i2Cdev.readBytes(devAddr, MPU6050_RA_ZG_OFFS_USRH, 2, buffer);
garfieldsg 0:662207e34fba 3084 return (((int16_t)buffer[0]) << 8) | buffer[1];
garfieldsg 0:662207e34fba 3085 }
garfieldsg 0:662207e34fba 3086 void MPU6050::setZGyroOffsetUser(int16_t offset)
garfieldsg 0:662207e34fba 3087 {
garfieldsg 0:662207e34fba 3088 i2Cdev.writeWord(devAddr, MPU6050_RA_ZG_OFFS_USRH, offset);
garfieldsg 0:662207e34fba 3089 }
garfieldsg 0:662207e34fba 3090
garfieldsg 0:662207e34fba 3091 // INT_ENABLE register (DMP functions)
garfieldsg 0:662207e34fba 3092
garfieldsg 0:662207e34fba 3093 bool MPU6050::getIntPLLReadyEnabled()
garfieldsg 0:662207e34fba 3094 {
garfieldsg 0:662207e34fba 3095 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3096 return buffer[0];
garfieldsg 0:662207e34fba 3097 }
garfieldsg 0:662207e34fba 3098 void MPU6050::setIntPLLReadyEnabled(bool enabled)
garfieldsg 0:662207e34fba 3099 {
garfieldsg 0:662207e34fba 3100 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, enabled);
garfieldsg 0:662207e34fba 3101 }
garfieldsg 0:662207e34fba 3102 bool MPU6050::getIntDMPEnabled()
garfieldsg 0:662207e34fba 3103 {
garfieldsg 0:662207e34fba 3104 i2Cdev.readBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3105 return buffer[0];
garfieldsg 0:662207e34fba 3106 }
garfieldsg 0:662207e34fba 3107 void MPU6050::setIntDMPEnabled(bool enabled)
garfieldsg 0:662207e34fba 3108 {
garfieldsg 0:662207e34fba 3109 i2Cdev.writeBit(devAddr, MPU6050_RA_INT_ENABLE, MPU6050_INTERRUPT_DMP_INT_BIT, enabled);
garfieldsg 0:662207e34fba 3110 }
garfieldsg 0:662207e34fba 3111
garfieldsg 0:662207e34fba 3112 // DMP_INT_STATUS
garfieldsg 0:662207e34fba 3113
garfieldsg 0:662207e34fba 3114 bool MPU6050::getDMPInt5Status()
garfieldsg 0:662207e34fba 3115 {
garfieldsg 0:662207e34fba 3116 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_5_BIT, buffer);
garfieldsg 0:662207e34fba 3117 return buffer[0];
garfieldsg 0:662207e34fba 3118 }
garfieldsg 0:662207e34fba 3119 bool MPU6050::getDMPInt4Status()
garfieldsg 0:662207e34fba 3120 {
garfieldsg 0:662207e34fba 3121 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_4_BIT, buffer);
garfieldsg 0:662207e34fba 3122 return buffer[0];
garfieldsg 0:662207e34fba 3123 }
garfieldsg 0:662207e34fba 3124 bool MPU6050::getDMPInt3Status()
garfieldsg 0:662207e34fba 3125 {
garfieldsg 0:662207e34fba 3126 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_3_BIT, buffer);
garfieldsg 0:662207e34fba 3127 return buffer[0];
garfieldsg 0:662207e34fba 3128 }
garfieldsg 0:662207e34fba 3129 bool MPU6050::getDMPInt2Status()
garfieldsg 0:662207e34fba 3130 {
garfieldsg 0:662207e34fba 3131 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_2_BIT, buffer);
garfieldsg 0:662207e34fba 3132 return buffer[0];
garfieldsg 0:662207e34fba 3133 }
garfieldsg 0:662207e34fba 3134 bool MPU6050::getDMPInt1Status()
garfieldsg 0:662207e34fba 3135 {
garfieldsg 0:662207e34fba 3136 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_1_BIT, buffer);
garfieldsg 0:662207e34fba 3137 return buffer[0];
garfieldsg 0:662207e34fba 3138 }
garfieldsg 0:662207e34fba 3139 bool MPU6050::getDMPInt0Status()
garfieldsg 0:662207e34fba 3140 {
garfieldsg 0:662207e34fba 3141 i2Cdev.readBit(devAddr, MPU6050_RA_DMP_INT_STATUS, MPU6050_DMPINT_0_BIT, buffer);
garfieldsg 0:662207e34fba 3142 return buffer[0];
garfieldsg 0:662207e34fba 3143 }
garfieldsg 0:662207e34fba 3144
garfieldsg 0:662207e34fba 3145 // INT_STATUS register (DMP functions)
garfieldsg 0:662207e34fba 3146
garfieldsg 0:662207e34fba 3147 bool MPU6050::getIntPLLReadyStatus()
garfieldsg 0:662207e34fba 3148 {
garfieldsg 0:662207e34fba 3149 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_PLL_RDY_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3150 return buffer[0];
garfieldsg 0:662207e34fba 3151 }
garfieldsg 0:662207e34fba 3152 bool MPU6050::getIntDMPStatus()
garfieldsg 0:662207e34fba 3153 {
garfieldsg 0:662207e34fba 3154 i2Cdev.readBit(devAddr, MPU6050_RA_INT_STATUS, MPU6050_INTERRUPT_DMP_INT_BIT, buffer);
garfieldsg 0:662207e34fba 3155 return buffer[0];
garfieldsg 0:662207e34fba 3156 }
garfieldsg 0:662207e34fba 3157
garfieldsg 0:662207e34fba 3158 // USER_CTRL register (DMP functions)
garfieldsg 0:662207e34fba 3159
garfieldsg 0:662207e34fba 3160 bool MPU6050::getDMPEnabled()
garfieldsg 0:662207e34fba 3161 {
garfieldsg 0:662207e34fba 3162 i2Cdev.readBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, buffer);
garfieldsg 0:662207e34fba 3163 return buffer[0];
garfieldsg 0:662207e34fba 3164 }
garfieldsg 0:662207e34fba 3165 void MPU6050::setDMPEnabled(bool enabled)
garfieldsg 0:662207e34fba 3166 {
garfieldsg 0:662207e34fba 3167 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_EN_BIT, enabled);
garfieldsg 0:662207e34fba 3168 }
garfieldsg 0:662207e34fba 3169 void MPU6050::resetDMP()
garfieldsg 0:662207e34fba 3170 {
garfieldsg 0:662207e34fba 3171 i2Cdev.writeBit(devAddr, MPU6050_RA_USER_CTRL, MPU6050_USERCTRL_DMP_RESET_BIT, true);
garfieldsg 0:662207e34fba 3172 }
garfieldsg 0:662207e34fba 3173
garfieldsg 0:662207e34fba 3174 // BANK_SEL register
garfieldsg 0:662207e34fba 3175
garfieldsg 0:662207e34fba 3176 void MPU6050::setMemoryBank(uint8_t bank, bool prefetchEnabled, bool userBank)
garfieldsg 0:662207e34fba 3177 {
garfieldsg 0:662207e34fba 3178 bank &= 0x1F;
garfieldsg 0:662207e34fba 3179 if (userBank) bank |= 0x20;
garfieldsg 0:662207e34fba 3180 if (prefetchEnabled) bank |= 0x40;
garfieldsg 0:662207e34fba 3181 i2Cdev.writeByte(devAddr, MPU6050_RA_BANK_SEL, bank);
garfieldsg 0:662207e34fba 3182 }
garfieldsg 0:662207e34fba 3183
garfieldsg 0:662207e34fba 3184 // MEM_START_ADDR register
garfieldsg 0:662207e34fba 3185
garfieldsg 0:662207e34fba 3186 void MPU6050::setMemoryStartAddress(uint8_t address)
garfieldsg 0:662207e34fba 3187 {
garfieldsg 0:662207e34fba 3188 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_START_ADDR, address);
garfieldsg 0:662207e34fba 3189 }
garfieldsg 0:662207e34fba 3190
garfieldsg 0:662207e34fba 3191 // MEM_R_W register
garfieldsg 0:662207e34fba 3192
garfieldsg 0:662207e34fba 3193 uint8_t MPU6050::readMemoryByte()
garfieldsg 0:662207e34fba 3194 {
garfieldsg 0:662207e34fba 3195 i2Cdev.readByte(devAddr, MPU6050_RA_MEM_R_W, buffer);
garfieldsg 0:662207e34fba 3196 return buffer[0];
garfieldsg 0:662207e34fba 3197 }
garfieldsg 0:662207e34fba 3198 void MPU6050::writeMemoryByte(uint8_t data)
garfieldsg 0:662207e34fba 3199 {
garfieldsg 0:662207e34fba 3200 i2Cdev.writeByte(devAddr, MPU6050_RA_MEM_R_W, data);
garfieldsg 0:662207e34fba 3201 }
garfieldsg 0:662207e34fba 3202 void MPU6050::readMemoryBlock(uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address)
garfieldsg 0:662207e34fba 3203 {
garfieldsg 0:662207e34fba 3204 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3205 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3206 uint8_t chunkSize;
garfieldsg 0:662207e34fba 3207 for (uint16_t i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3208 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 3209 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 3210
garfieldsg 0:662207e34fba 3211 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 3212 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 3213
garfieldsg 0:662207e34fba 3214 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 3215 if (chunkSize > 256 - address) chunkSize = 256 - address;
garfieldsg 0:662207e34fba 3216
garfieldsg 0:662207e34fba 3217 // read the chunk of data as specified
garfieldsg 0:662207e34fba 3218 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, data + i);
garfieldsg 0:662207e34fba 3219
garfieldsg 0:662207e34fba 3220 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 3221 i += chunkSize;
garfieldsg 0:662207e34fba 3222
garfieldsg 0:662207e34fba 3223 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 3224 address += chunkSize;
garfieldsg 0:662207e34fba 3225
garfieldsg 0:662207e34fba 3226 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 3227 if (i < dataSize) {
garfieldsg 0:662207e34fba 3228 if (address == 0) bank++;
garfieldsg 0:662207e34fba 3229 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3230 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3231 }
garfieldsg 0:662207e34fba 3232 }
garfieldsg 0:662207e34fba 3233 }
garfieldsg 0:662207e34fba 3234 bool MPU6050::writeMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify, bool useProgMem)
garfieldsg 0:662207e34fba 3235 {
garfieldsg 0:662207e34fba 3236 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3237 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3238 uint8_t chunkSize;
garfieldsg 0:662207e34fba 3239 uint8_t *verifyBuffer;
garfieldsg 0:662207e34fba 3240 uint8_t *progBuffer;
garfieldsg 0:662207e34fba 3241 uint16_t i;
garfieldsg 0:662207e34fba 3242 uint8_t j;
garfieldsg 0:662207e34fba 3243 if (verify) verifyBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 3244 if (useProgMem) progBuffer = (uint8_t *)malloc(MPU6050_DMP_MEMORY_CHUNK_SIZE);
garfieldsg 0:662207e34fba 3245 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3246 // determine correct chunk size according to bank position and data size
garfieldsg 0:662207e34fba 3247 chunkSize = MPU6050_DMP_MEMORY_CHUNK_SIZE;
garfieldsg 0:662207e34fba 3248
garfieldsg 0:662207e34fba 3249 // make sure we don't go past the data size
garfieldsg 0:662207e34fba 3250 if (i + chunkSize > dataSize) chunkSize = dataSize - i;
garfieldsg 0:662207e34fba 3251
garfieldsg 0:662207e34fba 3252 // make sure this chunk doesn't go past the bank boundary (256 bytes)
garfieldsg 0:662207e34fba 3253 if (chunkSize > 256 - address) chunkSize = 256 - address;
garfieldsg 0:662207e34fba 3254
garfieldsg 0:662207e34fba 3255 if (useProgMem) {
garfieldsg 0:662207e34fba 3256 // write the chunk of data as specified
garfieldsg 0:662207e34fba 3257 for (j = 0; j < chunkSize; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3258 } else {
garfieldsg 0:662207e34fba 3259 // write the chunk of data as specified
garfieldsg 0:662207e34fba 3260 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3261 }
garfieldsg 0:662207e34fba 3262
garfieldsg 0:662207e34fba 3263 i2Cdev.writeBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, progBuffer);
garfieldsg 0:662207e34fba 3264
garfieldsg 0:662207e34fba 3265 // verify data if needed
garfieldsg 0:662207e34fba 3266 if (verify && verifyBuffer) {
garfieldsg 0:662207e34fba 3267 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3268 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3269 i2Cdev.readBytes(devAddr, MPU6050_RA_MEM_R_W, chunkSize, verifyBuffer);
garfieldsg 0:662207e34fba 3270 if (memcmp(progBuffer, verifyBuffer, chunkSize) != 0) {
garfieldsg 0:662207e34fba 3271 /*Serial.print("Block write verification error, bank ");
garfieldsg 0:662207e34fba 3272 Serial.print(bank, DEC);
garfieldsg 0:662207e34fba 3273 Serial.print(", address ");
garfieldsg 0:662207e34fba 3274 Serial.print(address, DEC);
garfieldsg 0:662207e34fba 3275 Serial.print("!\nExpected:");
garfieldsg 0:662207e34fba 3276 for (j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3277 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3278 if (progBuffer[j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3279 Serial.print(progBuffer[j], HEX);
garfieldsg 0:662207e34fba 3280 }
garfieldsg 0:662207e34fba 3281 Serial.print("\nReceived:");
garfieldsg 0:662207e34fba 3282 for (uint8_t j = 0; j < chunkSize; j++) {
garfieldsg 0:662207e34fba 3283 Serial.print(" 0x");
garfieldsg 0:662207e34fba 3284 if (verifyBuffer[i + j] < 16) Serial.print("0");
garfieldsg 0:662207e34fba 3285 Serial.print(verifyBuffer[i + j], HEX);
garfieldsg 0:662207e34fba 3286 }
garfieldsg 0:662207e34fba 3287 Serial.print("\n");*/
garfieldsg 0:662207e34fba 3288 free(verifyBuffer);
garfieldsg 0:662207e34fba 3289 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3290 return false; // uh oh.
garfieldsg 0:662207e34fba 3291 }
garfieldsg 0:662207e34fba 3292 }
garfieldsg 0:662207e34fba 3293
garfieldsg 0:662207e34fba 3294 // increase byte index by [chunkSize]
garfieldsg 0:662207e34fba 3295 i += chunkSize;
garfieldsg 0:662207e34fba 3296
garfieldsg 0:662207e34fba 3297 // uint8_t automatically wraps to 0 at 256
garfieldsg 0:662207e34fba 3298 address += chunkSize;
garfieldsg 0:662207e34fba 3299
garfieldsg 0:662207e34fba 3300 // if we aren't done, update bank (if necessary) and address
garfieldsg 0:662207e34fba 3301 if (i < dataSize) {
garfieldsg 0:662207e34fba 3302 if (address == 0) bank++;
garfieldsg 0:662207e34fba 3303 setMemoryBank(bank);
garfieldsg 0:662207e34fba 3304 setMemoryStartAddress(address);
garfieldsg 0:662207e34fba 3305 }
garfieldsg 0:662207e34fba 3306 }
garfieldsg 0:662207e34fba 3307 if (verify) free(verifyBuffer);
garfieldsg 0:662207e34fba 3308 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3309 return true;
garfieldsg 0:662207e34fba 3310 }
garfieldsg 0:662207e34fba 3311 bool MPU6050::writeProgMemoryBlock(const uint8_t *data, uint16_t dataSize, uint8_t bank, uint8_t address, bool verify)
garfieldsg 0:662207e34fba 3312 {
garfieldsg 0:662207e34fba 3313 return writeMemoryBlock(data, dataSize, bank, address, verify, true);
garfieldsg 0:662207e34fba 3314 }
garfieldsg 0:662207e34fba 3315 bool MPU6050::writeDMPConfigurationSet(const uint8_t *data, uint16_t dataSize, bool useProgMem)
garfieldsg 0:662207e34fba 3316 {
garfieldsg 0:662207e34fba 3317 uint8_t *progBuffer, success, special;
garfieldsg 0:662207e34fba 3318 uint16_t i, j;
garfieldsg 0:662207e34fba 3319 if (useProgMem) {
garfieldsg 0:662207e34fba 3320 progBuffer = (uint8_t *)malloc(8); // assume 8-byte blocks, realloc later if necessary
garfieldsg 0:662207e34fba 3321 }
garfieldsg 0:662207e34fba 3322
garfieldsg 0:662207e34fba 3323 // config set data is a long string of blocks with the following structure:
garfieldsg 0:662207e34fba 3324 // [bank] [offset] [length] [byte[0], byte[1], ..., byte[length]]
garfieldsg 0:662207e34fba 3325 uint8_t bank, offset, length;
garfieldsg 0:662207e34fba 3326 for (i = 0; i < dataSize;) {
garfieldsg 0:662207e34fba 3327 if (useProgMem) {
garfieldsg 0:662207e34fba 3328 bank = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3329 offset = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3330 length = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3331 } else {
garfieldsg 0:662207e34fba 3332 bank = data[i++];
garfieldsg 0:662207e34fba 3333 offset = data[i++];
garfieldsg 0:662207e34fba 3334 length = data[i++];
garfieldsg 0:662207e34fba 3335 }
garfieldsg 0:662207e34fba 3336
garfieldsg 0:662207e34fba 3337 // write data or perform special action
garfieldsg 0:662207e34fba 3338 if (length > 0) {
garfieldsg 0:662207e34fba 3339 // regular block of data to write
garfieldsg 0:662207e34fba 3340 /*Serial.print("Writing config block to bank ");
garfieldsg 0:662207e34fba 3341 Serial.print(bank);
garfieldsg 0:662207e34fba 3342 Serial.print(", offset ");
garfieldsg 0:662207e34fba 3343 Serial.print(offset);
garfieldsg 0:662207e34fba 3344 Serial.print(", length=");
garfieldsg 0:662207e34fba 3345 Serial.println(length);*/
garfieldsg 0:662207e34fba 3346 if (useProgMem) {
garfieldsg 0:662207e34fba 3347 if (sizeof(progBuffer) < length) progBuffer = (uint8_t *)realloc(progBuffer, length);
garfieldsg 0:662207e34fba 3348 for (j = 0; j < length; j++) progBuffer[j] = pgm_read_byte(data + i + j);
garfieldsg 0:662207e34fba 3349 } else {
garfieldsg 0:662207e34fba 3350 progBuffer = (uint8_t *)data + i;
garfieldsg 0:662207e34fba 3351 }
garfieldsg 0:662207e34fba 3352 success = writeMemoryBlock(progBuffer, length, bank, offset, true);
garfieldsg 0:662207e34fba 3353 i += length;
garfieldsg 0:662207e34fba 3354 } else {
garfieldsg 0:662207e34fba 3355 // special instruction
garfieldsg 0:662207e34fba 3356 // NOTE: this kind of behavior (what and when to do certain things)
garfieldsg 0:662207e34fba 3357 // is totally undocumented. This code is in here based on observed
garfieldsg 0:662207e34fba 3358 // behavior only, and exactly why (or even whether) it has to be here
garfieldsg 0:662207e34fba 3359 // is anybody's guess for now.
garfieldsg 0:662207e34fba 3360 if (useProgMem) {
garfieldsg 0:662207e34fba 3361 special = pgm_read_byte(data + i++);
garfieldsg 0:662207e34fba 3362 } else {
garfieldsg 0:662207e34fba 3363 special = data[i++];
garfieldsg 0:662207e34fba 3364 }
garfieldsg 0:662207e34fba 3365 /*Serial.print("Special command code ");
garfieldsg 0:662207e34fba 3366 Serial.print(special, HEX);
garfieldsg 0:662207e34fba 3367 Serial.println(" found...");*/
garfieldsg 0:662207e34fba 3368 if (special == 0x01) {
garfieldsg 0:662207e34fba 3369 // enable DMP-related interrupts
garfieldsg 0:662207e34fba 3370
garfieldsg 0:662207e34fba 3371 //setIntZeroMotionEnabled(true);
garfieldsg 0:662207e34fba 3372 //setIntFIFOBufferOverflowEnabled(true);
garfieldsg 0:662207e34fba 3373 //setIntDMPEnabled(true);
garfieldsg 0:662207e34fba 3374 i2Cdev.writeByte(devAddr, MPU6050_RA_INT_ENABLE, 0x32); // single operation
garfieldsg 0:662207e34fba 3375
garfieldsg 0:662207e34fba 3376 success = true;
garfieldsg 0:662207e34fba 3377 } else {
garfieldsg 0:662207e34fba 3378 // unknown special command
garfieldsg 0:662207e34fba 3379 success = false;
garfieldsg 0:662207e34fba 3380 }
garfieldsg 0:662207e34fba 3381 }
garfieldsg 0:662207e34fba 3382
garfieldsg 0:662207e34fba 3383 if (!success) {
garfieldsg 0:662207e34fba 3384 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3385 return false; // uh oh
garfieldsg 0:662207e34fba 3386 }
garfieldsg 0:662207e34fba 3387 }
garfieldsg 0:662207e34fba 3388 if (useProgMem) free(progBuffer);
garfieldsg 0:662207e34fba 3389 return true;
garfieldsg 0:662207e34fba 3390 }
garfieldsg 0:662207e34fba 3391 bool MPU6050::writeProgDMPConfigurationSet(const uint8_t *data, uint16_t dataSize)
garfieldsg 0:662207e34fba 3392 {
garfieldsg 0:662207e34fba 3393 return writeDMPConfigurationSet(data, dataSize, false);
garfieldsg 0:662207e34fba 3394 }
garfieldsg 0:662207e34fba 3395
garfieldsg 0:662207e34fba 3396 // DMP_CFG_1 register
garfieldsg 0:662207e34fba 3397
garfieldsg 0:662207e34fba 3398 uint8_t MPU6050::getDMPConfig1()
garfieldsg 0:662207e34fba 3399 {
garfieldsg 0:662207e34fba 3400 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_1, buffer);
garfieldsg 0:662207e34fba 3401 return buffer[0];
garfieldsg 0:662207e34fba 3402 }
garfieldsg 0:662207e34fba 3403 void MPU6050::setDMPConfig1(uint8_t config)
garfieldsg 0:662207e34fba 3404 {
garfieldsg 0:662207e34fba 3405 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_1, config);
garfieldsg 0:662207e34fba 3406 }
garfieldsg 0:662207e34fba 3407
garfieldsg 0:662207e34fba 3408 // DMP_CFG_2 register
garfieldsg 0:662207e34fba 3409
garfieldsg 0:662207e34fba 3410 uint8_t MPU6050::getDMPConfig2()
garfieldsg 0:662207e34fba 3411 {
garfieldsg 0:662207e34fba 3412 i2Cdev.readByte(devAddr, MPU6050_RA_DMP_CFG_2, buffer);
garfieldsg 0:662207e34fba 3413 return buffer[0];
garfieldsg 0:662207e34fba 3414 }
garfieldsg 0:662207e34fba 3415 void MPU6050::setDMPConfig2(uint8_t config)
garfieldsg 0:662207e34fba 3416 {
garfieldsg 0:662207e34fba 3417 i2Cdev.writeByte(devAddr, MPU6050_RA_DMP_CFG_2, config);
Yihui Xiong 2:8c562a8fed36 3418 }