東北大学学友会準加盟団体 From The Earth の高高度ロケットFTE-06(通称:海豚)にて使用したソフトウェアです.ご自由にお使いください.このプログラムによって生じた損害について当団体は一切責任を負いません.また,各モジュールのライブラリは当団体が作成したものではないので再配布は禁止します.
Dependencies: mbed FATFileSystem
Fork of FTE-06 by
BME280/BME280.cpp
- Committer:
- mizuki_akaike
- Date:
- 2017-08-14
- Revision:
- 23:9be034083282
- Child:
- 44:4e10bf6f9213
File content as of revision 23:9be034083282:
/** * BME280 Combined humidity and pressure sensor library * * @author Toyomasa Watarai * @version 1.0 * @date 06-April-2015 * * Library for "BME280 temperature, humidity and pressure sensor module" from Switch Science * https://www.switch-science.com/catalog/2236/ * * For more information about the BME280: * http://ae-bst.resource.bosch.com/media/products/dokumente/bme280/BST-BME280_DS001-10.pdf */ #include "mbed.h" #include "BME280.h" BME280::BME280(PinName sda, PinName scl, char slave_adr) : i2c_p(new I2C(sda, scl)), i2c(*i2c_p), address(slave_adr), t_fine(0) { initialize(); } BME280::BME280(I2C &i2c_obj, char slave_adr) : i2c_p(NULL), i2c(i2c_obj), address(slave_adr), t_fine(0) { initialize(); } BME280::~BME280() { if (NULL != i2c_p) delete i2c_p; } void BME280::initialize() { char cmd[18]; cmd[0] = 0xf2; // ctrl_hum cmd[1] = 0x01; // Humidity oversampling x1 i2c.write(address, cmd, 2); cmd[0] = 0xf4; // ctrl_meas cmd[1] = 0x27; // Temparature oversampling x1, Pressure oversampling x1, Normal mode i2c.write(address, cmd, 2); cmd[0] = 0xf5; // config cmd[1] = 0xa0; // Standby 1000ms, Filter off i2c.write(address, cmd, 2); cmd[0] = 0x88; // read dig_T regs i2c.write(address, cmd, 1); i2c.read(address, cmd, 6); dig_T1 = (cmd[1] << 8) | cmd[0]; dig_T2 = (cmd[3] << 8) | cmd[2]; dig_T3 = (cmd[5] << 8) | cmd[4]; DEBUG_PRINT("dig_T = 0x%x, 0x%x, 0x%x\n", dig_T1, dig_T2, dig_T3); cmd[0] = 0x8E; // read dig_P regs i2c.write(address, cmd, 1); i2c.read(address, cmd, 18); dig_P1 = (cmd[ 1] << 8) | cmd[ 0]; dig_P2 = (cmd[ 3] << 8) | cmd[ 2]; dig_P3 = (cmd[ 5] << 8) | cmd[ 4]; dig_P4 = (cmd[ 7] << 8) | cmd[ 6]; dig_P5 = (cmd[ 9] << 8) | cmd[ 8]; dig_P6 = (cmd[11] << 8) | cmd[10]; dig_P7 = (cmd[13] << 8) | cmd[12]; dig_P8 = (cmd[15] << 8) | cmd[14]; dig_P9 = (cmd[17] << 8) | cmd[16]; DEBUG_PRINT("dig_P = 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", dig_P1, dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9); cmd[0] = 0xA1; // read dig_H regs i2c.write(address, cmd, 1); i2c.read(address, cmd, 1); cmd[1] = 0xE1; // read dig_H regs i2c.write(address, &cmd[1], 1); i2c.read(address, &cmd[1], 7); dig_H1 = cmd[0]; dig_H2 = (cmd[2] << 8) | cmd[1]; dig_H3 = cmd[3]; dig_H4 = (cmd[4] << 4) | (cmd[5] & 0x0f); dig_H5 = (cmd[6] << 4) | ((cmd[5]>>4) & 0x0f); dig_H6 = cmd[7]; DEBUG_PRINT("dig_H = 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", dig_H1, dig_H2, dig_H3, dig_H4, dig_H5, dig_H6); } float BME280::getTemperature() { uint32_t temp_raw; float tempf; char cmd[4]; cmd[0] = 0xfa; // temp_msb i2c.write(address, cmd, 1); i2c.read(address, &cmd[1], 3); temp_raw = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4); int32_t temp; temp = (((((temp_raw >> 3) - (dig_T1 << 1))) * dig_T2) >> 11) + ((((((temp_raw >> 4) - dig_T1) * ((temp_raw >> 4) - dig_T1)) >> 12) * dig_T3) >> 14); t_fine = temp; temp = (temp * 5 + 128) >> 8; tempf = (float)temp; return (tempf/100.0f); } float BME280::getPressure() { uint32_t press_raw; float pressf; char cmd[4]; cmd[0] = 0xf7; // press_msb i2c.write(address, cmd, 1); i2c.read(address, &cmd[1], 3); press_raw = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4); int32_t var1, var2; uint32_t press; var1 = (t_fine >> 1) - 64000; var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * dig_P6; var2 = var2 + ((var1 * dig_P5) << 1); var2 = (var2 >> 2) + (dig_P4 << 16); var1 = (((dig_P3 * (((var1 >> 2)*(var1 >> 2)) >> 13)) >> 3) + ((dig_P2 * var1) >> 1)) >> 18; var1 = ((32768 + var1) * dig_P1) >> 15; if (var1 == 0) { return 0; } press = (((1048576 - press_raw) - (var2 >> 12))) * 3125; if(press < 0x80000000) { press = (press << 1) / var1; } else { press = (press / var1) * 2; } var1 = ((int32_t)dig_P9 * ((int32_t)(((press >> 3) * (press >> 3)) >> 13))) >> 12; var2 = (((int32_t)(press >> 2)) * (int32_t)dig_P8) >> 13; press = (press + ((var1 + var2 + dig_P7) >> 4)); pressf = (float)press; return (pressf/100.0f); } float BME280::getHumidity() { uint32_t hum_raw; float humf; char cmd[4]; cmd[0] = 0xfd; // hum_msb i2c.write(address, cmd, 1); i2c.read(address, &cmd[1], 2); hum_raw = (cmd[1] << 8) | cmd[2]; int32_t v_x1; v_x1 = t_fine - 76800; v_x1 = (((((hum_raw << 14) -(((int32_t)dig_H4) << 20) - (((int32_t)dig_H5) * v_x1)) + ((int32_t)16384)) >> 15) * (((((((v_x1 * (int32_t)dig_H6) >> 10) * (((v_x1 * ((int32_t)dig_H3)) >> 11) + 32768)) >> 10) + 2097152) * (int32_t)dig_H2 + 8192) >> 14)); v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7) * (int32_t)dig_H1) >> 4)); v_x1 = (v_x1 < 0 ? 0 : v_x1); v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1); humf = (float)(v_x1 >> 12); return (humf/1024.0f); }