gy

Dependencies:   mbed

Committer:
palmdotax
Date:
Mon Dec 07 09:20:21 2015 +0000
Revision:
0:ad7593dc27a6
gy

Who changed what in which revision?

UserRevisionLine numberNew contents of line
palmdotax 0:ad7593dc27a6 1 /*****
palmdotax 0:ad7593dc27a6 2 Library based on MPU-9250_Snowda library. It has been modified by Josu? Olmeda Castell? for imasD Tecnolog?a. It uses the
palmdotax 0:ad7593dc27a6 3 mbed I2C class for comunications between the sensor and the master controller.
palmdotax 0:ad7593dc27a6 4 Methods related with data filtering have not been tested.
palmdotax 0:ad7593dc27a6 5 AD0 should be connected to GND.
palmdotax 0:ad7593dc27a6 6 04/05/2015
palmdotax 0:ad7593dc27a6 7 *****/
palmdotax 0:ad7593dc27a6 8
palmdotax 0:ad7593dc27a6 9 #ifndef MPU9250_H
palmdotax 0:ad7593dc27a6 10 #define MPU9250_H
palmdotax 0:ad7593dc27a6 11
palmdotax 0:ad7593dc27a6 12 #include "mbed.h"
palmdotax 0:ad7593dc27a6 13 #include "math.h"
palmdotax 0:ad7593dc27a6 14
palmdotax 0:ad7593dc27a6 15 #define M_PI 3.14159265358979323846
palmdotax 0:ad7593dc27a6 16
palmdotax 0:ad7593dc27a6 17 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
palmdotax 0:ad7593dc27a6 18 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
palmdotax 0:ad7593dc27a6 19 //
palmdotax 0:ad7593dc27a6 20 //Magnetometer Registers
palmdotax 0:ad7593dc27a6 21 #define AK8963_ADDRESS 0x0C<<1
palmdotax 0:ad7593dc27a6 22 #define WHO_AM_I_AK8963 0x00 // should return 0x48
palmdotax 0:ad7593dc27a6 23 #define INFO 0x01
palmdotax 0:ad7593dc27a6 24 #define AK8963_ST1 0x02 // data ready status bit 0
palmdotax 0:ad7593dc27a6 25 #define AK8963_XOUT_L 0x03 // data
palmdotax 0:ad7593dc27a6 26 #define AK8963_XOUT_H 0x04
palmdotax 0:ad7593dc27a6 27 #define AK8963_YOUT_L 0x05
palmdotax 0:ad7593dc27a6 28 #define AK8963_YOUT_H 0x06
palmdotax 0:ad7593dc27a6 29 #define AK8963_ZOUT_L 0x07
palmdotax 0:ad7593dc27a6 30 #define AK8963_ZOUT_H 0x08
palmdotax 0:ad7593dc27a6 31 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
palmdotax 0:ad7593dc27a6 32 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
palmdotax 0:ad7593dc27a6 33 #define AK8963_ASTC 0x0C // Self test control
palmdotax 0:ad7593dc27a6 34 #define AK8963_I2CDIS 0x0F // I2C disable
palmdotax 0:ad7593dc27a6 35 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
palmdotax 0:ad7593dc27a6 36 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
palmdotax 0:ad7593dc27a6 37 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
palmdotax 0:ad7593dc27a6 38
palmdotax 0:ad7593dc27a6 39 #define SELF_TEST_X_GYRO 0x00
palmdotax 0:ad7593dc27a6 40 #define SELF_TEST_Y_GYRO 0x01
palmdotax 0:ad7593dc27a6 41 #define SELF_TEST_Z_GYRO 0x02
palmdotax 0:ad7593dc27a6 42
palmdotax 0:ad7593dc27a6 43 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
palmdotax 0:ad7593dc27a6 44 #define Y_FINE_GAIN 0x04
palmdotax 0:ad7593dc27a6 45 #define Z_FINE_GAIN 0x05
palmdotax 0:ad7593dc27a6 46 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
palmdotax 0:ad7593dc27a6 47 #define XA_OFFSET_L_TC 0x07
palmdotax 0:ad7593dc27a6 48 #define YA_OFFSET_H 0x08
palmdotax 0:ad7593dc27a6 49 #define YA_OFFSET_L_TC 0x09
palmdotax 0:ad7593dc27a6 50 #define ZA_OFFSET_H 0x0A
palmdotax 0:ad7593dc27a6 51 #define ZA_OFFSET_L_TC 0x0B */
palmdotax 0:ad7593dc27a6 52
palmdotax 0:ad7593dc27a6 53 #define SELF_TEST_X_ACCEL 0x0D
palmdotax 0:ad7593dc27a6 54 #define SELF_TEST_Y_ACCEL 0x0E
palmdotax 0:ad7593dc27a6 55 #define SELF_TEST_Z_ACCEL 0x0F
palmdotax 0:ad7593dc27a6 56
palmdotax 0:ad7593dc27a6 57 #define SELF_TEST_A 0x10
palmdotax 0:ad7593dc27a6 58
palmdotax 0:ad7593dc27a6 59 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
palmdotax 0:ad7593dc27a6 60 #define XG_OFFSET_L 0x14
palmdotax 0:ad7593dc27a6 61 #define YG_OFFSET_H 0x15
palmdotax 0:ad7593dc27a6 62 #define YG_OFFSET_L 0x16
palmdotax 0:ad7593dc27a6 63 #define ZG_OFFSET_H 0x17
palmdotax 0:ad7593dc27a6 64 #define ZG_OFFSET_L 0x18
palmdotax 0:ad7593dc27a6 65 #define SMPLRT_DIV 0x19
palmdotax 0:ad7593dc27a6 66 #define CONFIG 0x1A
palmdotax 0:ad7593dc27a6 67 #define GYRO_CONFIG 0x1B
palmdotax 0:ad7593dc27a6 68 #define ACCEL_CONFIG 0x1C
palmdotax 0:ad7593dc27a6 69 #define ACCEL_CONFIG2 0x1D
palmdotax 0:ad7593dc27a6 70 #define LP_ACCEL_ODR 0x1E
palmdotax 0:ad7593dc27a6 71 #define WOM_THR 0x1F
palmdotax 0:ad7593dc27a6 72
palmdotax 0:ad7593dc27a6 73 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
palmdotax 0:ad7593dc27a6 74 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
palmdotax 0:ad7593dc27a6 75 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
palmdotax 0:ad7593dc27a6 76
palmdotax 0:ad7593dc27a6 77 #define FIFO_EN 0x23
palmdotax 0:ad7593dc27a6 78 #define I2C_MST_CTRL 0x24
palmdotax 0:ad7593dc27a6 79 #define I2C_SLV0_ADDR 0x25
palmdotax 0:ad7593dc27a6 80 #define I2C_SLV0_REG 0x26
palmdotax 0:ad7593dc27a6 81 #define I2C_SLV0_CTRL 0x27
palmdotax 0:ad7593dc27a6 82 #define I2C_SLV1_ADDR 0x28
palmdotax 0:ad7593dc27a6 83 #define I2C_SLV1_REG 0x29
palmdotax 0:ad7593dc27a6 84 #define I2C_SLV1_CTRL 0x2A
palmdotax 0:ad7593dc27a6 85 #define I2C_SLV2_ADDR 0x2B
palmdotax 0:ad7593dc27a6 86 #define I2C_SLV2_REG 0x2C
palmdotax 0:ad7593dc27a6 87 #define I2C_SLV2_CTRL 0x2D
palmdotax 0:ad7593dc27a6 88 #define I2C_SLV3_ADDR 0x2E
palmdotax 0:ad7593dc27a6 89 #define I2C_SLV3_REG 0x2F
palmdotax 0:ad7593dc27a6 90 #define I2C_SLV3_CTRL 0x30
palmdotax 0:ad7593dc27a6 91 #define I2C_SLV4_ADDR 0x31
palmdotax 0:ad7593dc27a6 92 #define I2C_SLV4_REG 0x32
palmdotax 0:ad7593dc27a6 93 #define I2C_SLV4_DO 0x33
palmdotax 0:ad7593dc27a6 94 #define I2C_SLV4_CTRL 0x34
palmdotax 0:ad7593dc27a6 95 #define I2C_SLV4_DI 0x35
palmdotax 0:ad7593dc27a6 96 #define I2C_MST_STATUS 0x36
palmdotax 0:ad7593dc27a6 97 #define INT_PIN_CFG 0x37
palmdotax 0:ad7593dc27a6 98 #define INT_ENABLE 0x38
palmdotax 0:ad7593dc27a6 99 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
palmdotax 0:ad7593dc27a6 100 #define INT_STATUS 0x3A
palmdotax 0:ad7593dc27a6 101 #define ACCEL_XOUT_H 0x3B
palmdotax 0:ad7593dc27a6 102 #define ACCEL_XOUT_L 0x3C
palmdotax 0:ad7593dc27a6 103 #define ACCEL_YOUT_H 0x3D
palmdotax 0:ad7593dc27a6 104 #define ACCEL_YOUT_L 0x3E
palmdotax 0:ad7593dc27a6 105 #define ACCEL_ZOUT_H 0x3F
palmdotax 0:ad7593dc27a6 106 #define ACCEL_ZOUT_L 0x40
palmdotax 0:ad7593dc27a6 107 #define TEMP_OUT_H 0x41
palmdotax 0:ad7593dc27a6 108 #define TEMP_OUT_L 0x42
palmdotax 0:ad7593dc27a6 109 #define GYRO_XOUT_H 0x43
palmdotax 0:ad7593dc27a6 110 #define GYRO_XOUT_L 0x44
palmdotax 0:ad7593dc27a6 111 #define GYRO_YOUT_H 0x45
palmdotax 0:ad7593dc27a6 112 #define GYRO_YOUT_L 0x46
palmdotax 0:ad7593dc27a6 113 #define GYRO_ZOUT_H 0x47
palmdotax 0:ad7593dc27a6 114 #define GYRO_ZOUT_L 0x48
palmdotax 0:ad7593dc27a6 115 #define EXT_SENS_DATA_00 0x49
palmdotax 0:ad7593dc27a6 116 #define EXT_SENS_DATA_01 0x4A
palmdotax 0:ad7593dc27a6 117 #define EXT_SENS_DATA_02 0x4B
palmdotax 0:ad7593dc27a6 118 #define EXT_SENS_DATA_03 0x4C
palmdotax 0:ad7593dc27a6 119 #define EXT_SENS_DATA_04 0x4D
palmdotax 0:ad7593dc27a6 120 #define EXT_SENS_DATA_05 0x4E
palmdotax 0:ad7593dc27a6 121 #define EXT_SENS_DATA_06 0x4F
palmdotax 0:ad7593dc27a6 122 #define EXT_SENS_DATA_07 0x50
palmdotax 0:ad7593dc27a6 123 #define EXT_SENS_DATA_08 0x51
palmdotax 0:ad7593dc27a6 124 #define EXT_SENS_DATA_09 0x52
palmdotax 0:ad7593dc27a6 125 #define EXT_SENS_DATA_10 0x53
palmdotax 0:ad7593dc27a6 126 #define EXT_SENS_DATA_11 0x54
palmdotax 0:ad7593dc27a6 127 #define EXT_SENS_DATA_12 0x55
palmdotax 0:ad7593dc27a6 128 #define EXT_SENS_DATA_13 0x56
palmdotax 0:ad7593dc27a6 129 #define EXT_SENS_DATA_14 0x57
palmdotax 0:ad7593dc27a6 130 #define EXT_SENS_DATA_15 0x58
palmdotax 0:ad7593dc27a6 131 #define EXT_SENS_DATA_16 0x59
palmdotax 0:ad7593dc27a6 132 #define EXT_SENS_DATA_17 0x5A
palmdotax 0:ad7593dc27a6 133 #define EXT_SENS_DATA_18 0x5B
palmdotax 0:ad7593dc27a6 134 #define EXT_SENS_DATA_19 0x5C
palmdotax 0:ad7593dc27a6 135 #define EXT_SENS_DATA_20 0x5D
palmdotax 0:ad7593dc27a6 136 #define EXT_SENS_DATA_21 0x5E
palmdotax 0:ad7593dc27a6 137 #define EXT_SENS_DATA_22 0x5F
palmdotax 0:ad7593dc27a6 138 #define EXT_SENS_DATA_23 0x60
palmdotax 0:ad7593dc27a6 139 #define MOT_DETECT_STATUS 0x61
palmdotax 0:ad7593dc27a6 140 #define I2C_SLV0_DO 0x63
palmdotax 0:ad7593dc27a6 141 #define I2C_SLV1_DO 0x64
palmdotax 0:ad7593dc27a6 142 #define I2C_SLV2_DO 0x65
palmdotax 0:ad7593dc27a6 143 #define I2C_SLV3_DO 0x66
palmdotax 0:ad7593dc27a6 144 #define I2C_MST_DELAY_CTRL 0x67
palmdotax 0:ad7593dc27a6 145 #define SIGNAL_PATH_RESET 0x68
palmdotax 0:ad7593dc27a6 146 #define MOT_DETECT_CTRL 0x69
palmdotax 0:ad7593dc27a6 147 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
palmdotax 0:ad7593dc27a6 148 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
palmdotax 0:ad7593dc27a6 149 #define PWR_MGMT_2 0x6C
palmdotax 0:ad7593dc27a6 150 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
palmdotax 0:ad7593dc27a6 151 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
palmdotax 0:ad7593dc27a6 152 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
palmdotax 0:ad7593dc27a6 153 #define DMP_REG_1 0x70
palmdotax 0:ad7593dc27a6 154 #define DMP_REG_2 0x71
palmdotax 0:ad7593dc27a6 155 #define FIFO_COUNTH 0x72
palmdotax 0:ad7593dc27a6 156 #define FIFO_COUNTL 0x73
palmdotax 0:ad7593dc27a6 157 #define FIFO_R_W 0x74
palmdotax 0:ad7593dc27a6 158 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
palmdotax 0:ad7593dc27a6 159 #define XA_OFFSET_H 0x77
palmdotax 0:ad7593dc27a6 160 #define XA_OFFSET_L 0x78
palmdotax 0:ad7593dc27a6 161 #define YA_OFFSET_H 0x7A
palmdotax 0:ad7593dc27a6 162 #define YA_OFFSET_L 0x7B
palmdotax 0:ad7593dc27a6 163 #define ZA_OFFSET_H 0x7D
palmdotax 0:ad7593dc27a6 164 #define ZA_OFFSET_L 0x7E
palmdotax 0:ad7593dc27a6 165
palmdotax 0:ad7593dc27a6 166 // Using the MSENSR-9250 breakout board, ADO is set to 0
palmdotax 0:ad7593dc27a6 167 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
palmdotax 0:ad7593dc27a6 168 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
palmdotax 0:ad7593dc27a6 169 #define ADO 0
palmdotax 0:ad7593dc27a6 170 #if ADO
palmdotax 0:ad7593dc27a6 171 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
palmdotax 0:ad7593dc27a6 172 #else
palmdotax 0:ad7593dc27a6 173 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
palmdotax 0:ad7593dc27a6 174 #endif
palmdotax 0:ad7593dc27a6 175
palmdotax 0:ad7593dc27a6 176 // Set initial input parameters
palmdotax 0:ad7593dc27a6 177 enum Ascale {
palmdotax 0:ad7593dc27a6 178 AFS_2G = 0,
palmdotax 0:ad7593dc27a6 179 AFS_4G,
palmdotax 0:ad7593dc27a6 180 AFS_8G,
palmdotax 0:ad7593dc27a6 181 AFS_16G
palmdotax 0:ad7593dc27a6 182 };
palmdotax 0:ad7593dc27a6 183
palmdotax 0:ad7593dc27a6 184 enum Gscale {
palmdotax 0:ad7593dc27a6 185 GFS_250DPS = 0,
palmdotax 0:ad7593dc27a6 186 GFS_500DPS,
palmdotax 0:ad7593dc27a6 187 GFS_1000DPS,
palmdotax 0:ad7593dc27a6 188 GFS_2000DPS
palmdotax 0:ad7593dc27a6 189 };
palmdotax 0:ad7593dc27a6 190
palmdotax 0:ad7593dc27a6 191 enum Mscale {
palmdotax 0:ad7593dc27a6 192 MFS_14BITS = 0, // 0.6 mG per LSB
palmdotax 0:ad7593dc27a6 193 MFS_16BITS // 0.15 mG per LSB
palmdotax 0:ad7593dc27a6 194 };
palmdotax 0:ad7593dc27a6 195
palmdotax 0:ad7593dc27a6 196 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
palmdotax 0:ad7593dc27a6 197 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
palmdotax 0:ad7593dc27a6 198 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
palmdotax 0:ad7593dc27a6 199 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
palmdotax 0:ad7593dc27a6 200 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
palmdotax 0:ad7593dc27a6 201 int I2Cstate=1; // If I2Cstate!=0, I2C read or write operation has failed
palmdotax 0:ad7593dc27a6 202
palmdotax 0:ad7593dc27a6 203 //Set up I2C, (SDA,SCL)
palmdotax 0:ad7593dc27a6 204 I2C i2c(D14, D15);
palmdotax 0:ad7593dc27a6 205
palmdotax 0:ad7593dc27a6 206 DigitalOut myled(LED1);
palmdotax 0:ad7593dc27a6 207
palmdotax 0:ad7593dc27a6 208 // Pin definitions
palmdotax 0:ad7593dc27a6 209 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
palmdotax 0:ad7593dc27a6 210
palmdotax 0:ad7593dc27a6 211 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
palmdotax 0:ad7593dc27a6 212 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
palmdotax 0:ad7593dc27a6 213 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
palmdotax 0:ad7593dc27a6 214 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
palmdotax 0:ad7593dc27a6 215 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
palmdotax 0:ad7593dc27a6 216 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
palmdotax 0:ad7593dc27a6 217 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
palmdotax 0:ad7593dc27a6 218 float temperature;
palmdotax 0:ad7593dc27a6 219 float SelfTest[6];
palmdotax 0:ad7593dc27a6 220 float orientation[1];
palmdotax 0:ad7593dc27a6 221 float magn_x, magn_y;
palmdotax 0:ad7593dc27a6 222
palmdotax 0:ad7593dc27a6 223 int delt_t = 0; // used to control display output rate
palmdotax 0:ad7593dc27a6 224 int count = 0; // used to control display output rate
palmdotax 0:ad7593dc27a6 225
palmdotax 0:ad7593dc27a6 226 // parameters for 6 DoF sensor fusion calculations
palmdotax 0:ad7593dc27a6 227 float PI = 3.14159265358979323846f;
palmdotax 0:ad7593dc27a6 228 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
palmdotax 0:ad7593dc27a6 229 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
palmdotax 0:ad7593dc27a6 230 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
palmdotax 0:ad7593dc27a6 231 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
palmdotax 0:ad7593dc27a6 232 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
palmdotax 0:ad7593dc27a6 233 #define Ki 0.0f
palmdotax 0:ad7593dc27a6 234
palmdotax 0:ad7593dc27a6 235 float pitch, yaw, roll;
palmdotax 0:ad7593dc27a6 236 float deltat = 0.0f; // integration interval for both filter schemes
palmdotax 0:ad7593dc27a6 237 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
palmdotax 0:ad7593dc27a6 238 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
palmdotax 0:ad7593dc27a6 239 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
palmdotax 0:ad7593dc27a6 240
palmdotax 0:ad7593dc27a6 241 class MPU9250 {
palmdotax 0:ad7593dc27a6 242
palmdotax 0:ad7593dc27a6 243 protected:
palmdotax 0:ad7593dc27a6 244
palmdotax 0:ad7593dc27a6 245 public:
palmdotax 0:ad7593dc27a6 246 //===================================================================================================================
palmdotax 0:ad7593dc27a6 247 //====== Set of useful function to access acceleration, gyroscope, and temperature data
palmdotax 0:ad7593dc27a6 248 //===================================================================================================================
palmdotax 0:ad7593dc27a6 249
palmdotax 0:ad7593dc27a6 250 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
palmdotax 0:ad7593dc27a6 251 {
palmdotax 0:ad7593dc27a6 252 char data_write[2];
palmdotax 0:ad7593dc27a6 253 data_write[0] = subAddress;
palmdotax 0:ad7593dc27a6 254 data_write[1] = data;
palmdotax 0:ad7593dc27a6 255 I2Cstate = i2c.write(address, data_write, 2, 0);
palmdotax 0:ad7593dc27a6 256 }
palmdotax 0:ad7593dc27a6 257
palmdotax 0:ad7593dc27a6 258 char readByte(uint8_t address, uint8_t subAddress)
palmdotax 0:ad7593dc27a6 259 {
palmdotax 0:ad7593dc27a6 260 char data[1]; // `data` will store the register data
palmdotax 0:ad7593dc27a6 261 char data_write[1];
palmdotax 0:ad7593dc27a6 262 data_write[0] = subAddress;
palmdotax 0:ad7593dc27a6 263 I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
palmdotax 0:ad7593dc27a6 264 I2Cstate = i2c.read(address, data, 1, 0);
palmdotax 0:ad7593dc27a6 265 return data[0];
palmdotax 0:ad7593dc27a6 266 }
palmdotax 0:ad7593dc27a6 267
palmdotax 0:ad7593dc27a6 268 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) // count=n? of bytes to read / dest=destiny where data is stored
palmdotax 0:ad7593dc27a6 269 {
palmdotax 0:ad7593dc27a6 270 char data[14];
palmdotax 0:ad7593dc27a6 271 char data_write[1];
palmdotax 0:ad7593dc27a6 272 data_write[0] = subAddress;
palmdotax 0:ad7593dc27a6 273 I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
palmdotax 0:ad7593dc27a6 274 I2Cstate = i2c.read(address, data, count, 0);
palmdotax 0:ad7593dc27a6 275 for(int ii = 0; ii < count; ii++) {
palmdotax 0:ad7593dc27a6 276 dest[ii] = data[ii];
palmdotax 0:ad7593dc27a6 277 }
palmdotax 0:ad7593dc27a6 278 }
palmdotax 0:ad7593dc27a6 279
palmdotax 0:ad7593dc27a6 280 void getMres() {
palmdotax 0:ad7593dc27a6 281 switch (Mscale)
palmdotax 0:ad7593dc27a6 282 {
palmdotax 0:ad7593dc27a6 283 // Possible magnetometer scales (and their register bit settings) are:
palmdotax 0:ad7593dc27a6 284 // 14 bit resolution (0) and 16 bit resolution (1)
palmdotax 0:ad7593dc27a6 285 case MFS_14BITS:
palmdotax 0:ad7593dc27a6 286 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
palmdotax 0:ad7593dc27a6 287 break;
palmdotax 0:ad7593dc27a6 288 case MFS_16BITS:
palmdotax 0:ad7593dc27a6 289 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
palmdotax 0:ad7593dc27a6 290 break;
palmdotax 0:ad7593dc27a6 291 }
palmdotax 0:ad7593dc27a6 292 }
palmdotax 0:ad7593dc27a6 293
palmdotax 0:ad7593dc27a6 294 void getGres() {
palmdotax 0:ad7593dc27a6 295 switch (Gscale)
palmdotax 0:ad7593dc27a6 296 {
palmdotax 0:ad7593dc27a6 297 // Possible gyro scales (and their register bit settings) are:
palmdotax 0:ad7593dc27a6 298 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
palmdotax 0:ad7593dc27a6 299 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
palmdotax 0:ad7593dc27a6 300 case GFS_250DPS:
palmdotax 0:ad7593dc27a6 301 gRes = 250.0/32768.0;
palmdotax 0:ad7593dc27a6 302 break;
palmdotax 0:ad7593dc27a6 303 case GFS_500DPS:
palmdotax 0:ad7593dc27a6 304 gRes = 500.0/32768.0;
palmdotax 0:ad7593dc27a6 305 break;
palmdotax 0:ad7593dc27a6 306 case GFS_1000DPS:
palmdotax 0:ad7593dc27a6 307 gRes = 1000.0/32768.0;
palmdotax 0:ad7593dc27a6 308 break;
palmdotax 0:ad7593dc27a6 309 case GFS_2000DPS:
palmdotax 0:ad7593dc27a6 310 gRes = 2000.0/32768.0;
palmdotax 0:ad7593dc27a6 311 break;
palmdotax 0:ad7593dc27a6 312 }
palmdotax 0:ad7593dc27a6 313 }
palmdotax 0:ad7593dc27a6 314
palmdotax 0:ad7593dc27a6 315 void getAres() {
palmdotax 0:ad7593dc27a6 316 switch (Ascale)
palmdotax 0:ad7593dc27a6 317 {
palmdotax 0:ad7593dc27a6 318 // Possible accelerometer scales (and their register bit settings) are:
palmdotax 0:ad7593dc27a6 319 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
palmdotax 0:ad7593dc27a6 320 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
palmdotax 0:ad7593dc27a6 321 case AFS_2G:
palmdotax 0:ad7593dc27a6 322 aRes = 2.0/32768.0;
palmdotax 0:ad7593dc27a6 323 break;
palmdotax 0:ad7593dc27a6 324 case AFS_4G:
palmdotax 0:ad7593dc27a6 325 aRes = 4.0/32768.0;
palmdotax 0:ad7593dc27a6 326 break;
palmdotax 0:ad7593dc27a6 327 case AFS_8G:
palmdotax 0:ad7593dc27a6 328 aRes = 8.0/32768.0;
palmdotax 0:ad7593dc27a6 329 break;
palmdotax 0:ad7593dc27a6 330 case AFS_16G:
palmdotax 0:ad7593dc27a6 331 aRes = 16.0/32768.0;
palmdotax 0:ad7593dc27a6 332 break;
palmdotax 0:ad7593dc27a6 333 }
palmdotax 0:ad7593dc27a6 334 }
palmdotax 0:ad7593dc27a6 335
palmdotax 0:ad7593dc27a6 336 void readAccelData(int16_t * destination){
palmdotax 0:ad7593dc27a6 337
palmdotax 0:ad7593dc27a6 338 uint8_t rawData[6]; // x/y/z accel register data stored here
palmdotax 0:ad7593dc27a6 339 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
palmdotax 0:ad7593dc27a6 340 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 341 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
palmdotax 0:ad7593dc27a6 342 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
palmdotax 0:ad7593dc27a6 343 }
palmdotax 0:ad7593dc27a6 344
palmdotax 0:ad7593dc27a6 345 void readGyroData(int16_t * destination){
palmdotax 0:ad7593dc27a6 346 uint8_t rawData[6]; // x/y/z gyro register data stored here
palmdotax 0:ad7593dc27a6 347 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
palmdotax 0:ad7593dc27a6 348 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 349 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
palmdotax 0:ad7593dc27a6 350 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
palmdotax 0:ad7593dc27a6 351 }
palmdotax 0:ad7593dc27a6 352
palmdotax 0:ad7593dc27a6 353 void readMagData(int16_t * destination){
palmdotax 0:ad7593dc27a6 354 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
palmdotax 0:ad7593dc27a6 355 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
palmdotax 0:ad7593dc27a6 356 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
palmdotax 0:ad7593dc27a6 357 uint8_t c = rawData[6]; // End data read by reading ST2 register
palmdotax 0:ad7593dc27a6 358 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
palmdotax 0:ad7593dc27a6 359 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 360 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
palmdotax 0:ad7593dc27a6 361 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
palmdotax 0:ad7593dc27a6 362 }
palmdotax 0:ad7593dc27a6 363 }
palmdotax 0:ad7593dc27a6 364 }
palmdotax 0:ad7593dc27a6 365
palmdotax 0:ad7593dc27a6 366 int16_t readTempData(){
palmdotax 0:ad7593dc27a6 367 uint8_t rawData[2]; // x/y/z gyro register data stored here
palmdotax 0:ad7593dc27a6 368 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
palmdotax 0:ad7593dc27a6 369 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
palmdotax 0:ad7593dc27a6 370 }
palmdotax 0:ad7593dc27a6 371
palmdotax 0:ad7593dc27a6 372 void resetMPU9250(){
palmdotax 0:ad7593dc27a6 373 // reset device
palmdotax 0:ad7593dc27a6 374 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
palmdotax 0:ad7593dc27a6 375 wait(0.1);
palmdotax 0:ad7593dc27a6 376 }
palmdotax 0:ad7593dc27a6 377
palmdotax 0:ad7593dc27a6 378 void initAK8963(float * destination){
palmdotax 0:ad7593dc27a6 379 // First extract the factory calibration for each magnetometer axis
palmdotax 0:ad7593dc27a6 380 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
palmdotax 0:ad7593dc27a6 381 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
palmdotax 0:ad7593dc27a6 382 wait(0.01);
palmdotax 0:ad7593dc27a6 383 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
palmdotax 0:ad7593dc27a6 384 wait(0.01);
palmdotax 0:ad7593dc27a6 385 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
palmdotax 0:ad7593dc27a6 386 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
palmdotax 0:ad7593dc27a6 387 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
palmdotax 0:ad7593dc27a6 388 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
palmdotax 0:ad7593dc27a6 389 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
palmdotax 0:ad7593dc27a6 390 wait(0.01);
palmdotax 0:ad7593dc27a6 391 // Configure the magnetometer for continuous read and highest resolution
palmdotax 0:ad7593dc27a6 392 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
palmdotax 0:ad7593dc27a6 393 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
palmdotax 0:ad7593dc27a6 394 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
palmdotax 0:ad7593dc27a6 395 wait(0.01);
palmdotax 0:ad7593dc27a6 396 }
palmdotax 0:ad7593dc27a6 397
palmdotax 0:ad7593dc27a6 398 void initMPU9250(){
palmdotax 0:ad7593dc27a6 399 // Initialize MPU9250 device
palmdotax 0:ad7593dc27a6 400 // wake up device
palmdotax 0:ad7593dc27a6 401 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
palmdotax 0:ad7593dc27a6 402 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
palmdotax 0:ad7593dc27a6 403
palmdotax 0:ad7593dc27a6 404 // get stable time source
palmdotax 0:ad7593dc27a6 405 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
palmdotax 0:ad7593dc27a6 406
palmdotax 0:ad7593dc27a6 407 // Configure Gyro and Accelerometer
palmdotax 0:ad7593dc27a6 408 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
palmdotax 0:ad7593dc27a6 409 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
palmdotax 0:ad7593dc27a6 410 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
palmdotax 0:ad7593dc27a6 411 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
palmdotax 0:ad7593dc27a6 412
palmdotax 0:ad7593dc27a6 413 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
palmdotax 0:ad7593dc27a6 414 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
palmdotax 0:ad7593dc27a6 415
palmdotax 0:ad7593dc27a6 416 // Set gyroscope full scale range
palmdotax 0:ad7593dc27a6 417 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
palmdotax 0:ad7593dc27a6 418 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
palmdotax 0:ad7593dc27a6 419 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
palmdotax 0:ad7593dc27a6 420 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
palmdotax 0:ad7593dc27a6 421 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
palmdotax 0:ad7593dc27a6 422
palmdotax 0:ad7593dc27a6 423 // Set accelerometer configuration
palmdotax 0:ad7593dc27a6 424 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
palmdotax 0:ad7593dc27a6 425 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
palmdotax 0:ad7593dc27a6 426 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
palmdotax 0:ad7593dc27a6 427 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
palmdotax 0:ad7593dc27a6 428
palmdotax 0:ad7593dc27a6 429 // Set accelerometer sample rate configuration
palmdotax 0:ad7593dc27a6 430 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
palmdotax 0:ad7593dc27a6 431 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
palmdotax 0:ad7593dc27a6 432 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
palmdotax 0:ad7593dc27a6 433 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
palmdotax 0:ad7593dc27a6 434 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
palmdotax 0:ad7593dc27a6 435
palmdotax 0:ad7593dc27a6 436 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
palmdotax 0:ad7593dc27a6 437 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
palmdotax 0:ad7593dc27a6 438
palmdotax 0:ad7593dc27a6 439 // Configure Interrupts and Bypass Enable
palmdotax 0:ad7593dc27a6 440 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
palmdotax 0:ad7593dc27a6 441 // can join the I2C bus and all can be controlled by the Arduino as master
palmdotax 0:ad7593dc27a6 442 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
palmdotax 0:ad7593dc27a6 443 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
palmdotax 0:ad7593dc27a6 444 }
palmdotax 0:ad7593dc27a6 445
palmdotax 0:ad7593dc27a6 446 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
palmdotax 0:ad7593dc27a6 447 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
palmdotax 0:ad7593dc27a6 448 void calibrateMPU9250(float * dest1, float * dest2)
palmdotax 0:ad7593dc27a6 449 {
palmdotax 0:ad7593dc27a6 450 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
palmdotax 0:ad7593dc27a6 451 uint16_t ii, packet_count, fifo_count;
palmdotax 0:ad7593dc27a6 452 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
palmdotax 0:ad7593dc27a6 453
palmdotax 0:ad7593dc27a6 454 // reset device, reset all registers, clear gyro and accelerometer bias registers
palmdotax 0:ad7593dc27a6 455 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
palmdotax 0:ad7593dc27a6 456 wait(0.1);
palmdotax 0:ad7593dc27a6 457
palmdotax 0:ad7593dc27a6 458 // get stable time source
palmdotax 0:ad7593dc27a6 459 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
palmdotax 0:ad7593dc27a6 460 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
palmdotax 0:ad7593dc27a6 461 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
palmdotax 0:ad7593dc27a6 462 wait(0.2);
palmdotax 0:ad7593dc27a6 463
palmdotax 0:ad7593dc27a6 464 // Configure device for bias calculation
palmdotax 0:ad7593dc27a6 465 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
palmdotax 0:ad7593dc27a6 466 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
palmdotax 0:ad7593dc27a6 467 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
palmdotax 0:ad7593dc27a6 468 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
palmdotax 0:ad7593dc27a6 469 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
palmdotax 0:ad7593dc27a6 470 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
palmdotax 0:ad7593dc27a6 471 wait(0.015);
palmdotax 0:ad7593dc27a6 472
palmdotax 0:ad7593dc27a6 473 // Configure MPU9250 gyro and accelerometer for bias calculation
palmdotax 0:ad7593dc27a6 474 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
palmdotax 0:ad7593dc27a6 475 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
palmdotax 0:ad7593dc27a6 476 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
palmdotax 0:ad7593dc27a6 477 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
palmdotax 0:ad7593dc27a6 478
palmdotax 0:ad7593dc27a6 479 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
palmdotax 0:ad7593dc27a6 480 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
palmdotax 0:ad7593dc27a6 481
palmdotax 0:ad7593dc27a6 482 // Configure FIFO to capture accelerometer and gyro data. This data will be used for bias calculation
palmdotax 0:ad7593dc27a6 483 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
palmdotax 0:ad7593dc27a6 484 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
palmdotax 0:ad7593dc27a6 485 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
palmdotax 0:ad7593dc27a6 486
palmdotax 0:ad7593dc27a6 487 // At end of sample accumulation, turn off FIFO sensor read
palmdotax 0:ad7593dc27a6 488 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
palmdotax 0:ad7593dc27a6 489 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
palmdotax 0:ad7593dc27a6 490 fifo_count = ((uint16_t)data[0] << 8) | data[1];
palmdotax 0:ad7593dc27a6 491 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
palmdotax 0:ad7593dc27a6 492
palmdotax 0:ad7593dc27a6 493 for (ii = 0; ii < packet_count; ii++) {
palmdotax 0:ad7593dc27a6 494 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
palmdotax 0:ad7593dc27a6 495 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
palmdotax 0:ad7593dc27a6 496 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
palmdotax 0:ad7593dc27a6 497 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
palmdotax 0:ad7593dc27a6 498 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
palmdotax 0:ad7593dc27a6 499 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
palmdotax 0:ad7593dc27a6 500 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
palmdotax 0:ad7593dc27a6 501 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
palmdotax 0:ad7593dc27a6 502
palmdotax 0:ad7593dc27a6 503 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
palmdotax 0:ad7593dc27a6 504 accel_bias[1] += (int32_t) accel_temp[1];
palmdotax 0:ad7593dc27a6 505 accel_bias[2] += (int32_t) accel_temp[2];
palmdotax 0:ad7593dc27a6 506 gyro_bias[0] += (int32_t) gyro_temp[0];
palmdotax 0:ad7593dc27a6 507 gyro_bias[1] += (int32_t) gyro_temp[1];
palmdotax 0:ad7593dc27a6 508 gyro_bias[2] += (int32_t) gyro_temp[2];
palmdotax 0:ad7593dc27a6 509
palmdotax 0:ad7593dc27a6 510 }
palmdotax 0:ad7593dc27a6 511 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
palmdotax 0:ad7593dc27a6 512 accel_bias[1] /= (int32_t) packet_count;
palmdotax 0:ad7593dc27a6 513 accel_bias[2] /= (int32_t) packet_count;
palmdotax 0:ad7593dc27a6 514 gyro_bias[0] /= (int32_t) packet_count;
palmdotax 0:ad7593dc27a6 515 gyro_bias[1] /= (int32_t) packet_count;
palmdotax 0:ad7593dc27a6 516 gyro_bias[2] /= (int32_t) packet_count;
palmdotax 0:ad7593dc27a6 517
palmdotax 0:ad7593dc27a6 518 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
palmdotax 0:ad7593dc27a6 519 else {accel_bias[2] += (int32_t) accelsensitivity;}
palmdotax 0:ad7593dc27a6 520
palmdotax 0:ad7593dc27a6 521 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
palmdotax 0:ad7593dc27a6 522 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
palmdotax 0:ad7593dc27a6 523 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
palmdotax 0:ad7593dc27a6 524 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
palmdotax 0:ad7593dc27a6 525 data[3] = (-gyro_bias[1]/4) & 0xFF;
palmdotax 0:ad7593dc27a6 526 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
palmdotax 0:ad7593dc27a6 527 data[5] = (-gyro_bias[2]/4) & 0xFF;
palmdotax 0:ad7593dc27a6 528
palmdotax 0:ad7593dc27a6 529 /// Push gyro biases to hardware registers
palmdotax 0:ad7593dc27a6 530 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
palmdotax 0:ad7593dc27a6 531 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
palmdotax 0:ad7593dc27a6 532 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
palmdotax 0:ad7593dc27a6 533 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
palmdotax 0:ad7593dc27a6 534 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
palmdotax 0:ad7593dc27a6 535 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
palmdotax 0:ad7593dc27a6 536 */
palmdotax 0:ad7593dc27a6 537 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
palmdotax 0:ad7593dc27a6 538 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
palmdotax 0:ad7593dc27a6 539 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
palmdotax 0:ad7593dc27a6 540
palmdotax 0:ad7593dc27a6 541 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
palmdotax 0:ad7593dc27a6 542 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
palmdotax 0:ad7593dc27a6 543 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
palmdotax 0:ad7593dc27a6 544 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
palmdotax 0:ad7593dc27a6 545 // the accelerometer biases calculated above must be divided by 8.
palmdotax 0:ad7593dc27a6 546
palmdotax 0:ad7593dc27a6 547 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
palmdotax 0:ad7593dc27a6 548 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
palmdotax 0:ad7593dc27a6 549 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
palmdotax 0:ad7593dc27a6 550 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
palmdotax 0:ad7593dc27a6 551 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
palmdotax 0:ad7593dc27a6 552 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
palmdotax 0:ad7593dc27a6 553 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
palmdotax 0:ad7593dc27a6 554
palmdotax 0:ad7593dc27a6 555 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
palmdotax 0:ad7593dc27a6 556 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
palmdotax 0:ad7593dc27a6 557
palmdotax 0:ad7593dc27a6 558 for(ii = 0; ii < 3; ii++) {
palmdotax 0:ad7593dc27a6 559 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
palmdotax 0:ad7593dc27a6 560 }
palmdotax 0:ad7593dc27a6 561
palmdotax 0:ad7593dc27a6 562 // Construct total accelerometer bias, including calculated average accelerometer bias from above
palmdotax 0:ad7593dc27a6 563 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
palmdotax 0:ad7593dc27a6 564 accel_bias_reg[1] -= (accel_bias[1]/8);
palmdotax 0:ad7593dc27a6 565 accel_bias_reg[2] -= (accel_bias[2]/8);
palmdotax 0:ad7593dc27a6 566
palmdotax 0:ad7593dc27a6 567 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
palmdotax 0:ad7593dc27a6 568 data[1] = (accel_bias_reg[0]) & 0xFF;
palmdotax 0:ad7593dc27a6 569 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
palmdotax 0:ad7593dc27a6 570 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
palmdotax 0:ad7593dc27a6 571 data[3] = (accel_bias_reg[1]) & 0xFF;
palmdotax 0:ad7593dc27a6 572 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
palmdotax 0:ad7593dc27a6 573 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
palmdotax 0:ad7593dc27a6 574 data[5] = (accel_bias_reg[2]) & 0xFF;
palmdotax 0:ad7593dc27a6 575 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
palmdotax 0:ad7593dc27a6 576
palmdotax 0:ad7593dc27a6 577 // Apparently this is not working for the acceleration biases in the MPU-9250
palmdotax 0:ad7593dc27a6 578 // Are we handling the temperature correction bit properly?
palmdotax 0:ad7593dc27a6 579 // Push accelerometer biases to hardware registers
palmdotax 0:ad7593dc27a6 580 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
palmdotax 0:ad7593dc27a6 581 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
palmdotax 0:ad7593dc27a6 582 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
palmdotax 0:ad7593dc27a6 583 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
palmdotax 0:ad7593dc27a6 584 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
palmdotax 0:ad7593dc27a6 585 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
palmdotax 0:ad7593dc27a6 586 */
palmdotax 0:ad7593dc27a6 587 // Output scaled accelerometer biases for manual subtraction in the main program
palmdotax 0:ad7593dc27a6 588 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
palmdotax 0:ad7593dc27a6 589 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
palmdotax 0:ad7593dc27a6 590 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
palmdotax 0:ad7593dc27a6 591 }
palmdotax 0:ad7593dc27a6 592
palmdotax 0:ad7593dc27a6 593
palmdotax 0:ad7593dc27a6 594 // Accelerometer and gyroscope self test; check calibration wrt factory settings
palmdotax 0:ad7593dc27a6 595 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
palmdotax 0:ad7593dc27a6 596 {
palmdotax 0:ad7593dc27a6 597 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
palmdotax 0:ad7593dc27a6 598 uint8_t selfTest[6];
palmdotax 0:ad7593dc27a6 599 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
palmdotax 0:ad7593dc27a6 600 float factoryTrim[6];
palmdotax 0:ad7593dc27a6 601 uint8_t FS = 0;
palmdotax 0:ad7593dc27a6 602
palmdotax 0:ad7593dc27a6 603 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
palmdotax 0:ad7593dc27a6 604 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
palmdotax 0:ad7593dc27a6 605 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
palmdotax 0:ad7593dc27a6 606 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
palmdotax 0:ad7593dc27a6 607 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
palmdotax 0:ad7593dc27a6 608
palmdotax 0:ad7593dc27a6 609 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
palmdotax 0:ad7593dc27a6 610
palmdotax 0:ad7593dc27a6 611 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
palmdotax 0:ad7593dc27a6 612 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 613 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
palmdotax 0:ad7593dc27a6 614 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
palmdotax 0:ad7593dc27a6 615
palmdotax 0:ad7593dc27a6 616 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
palmdotax 0:ad7593dc27a6 617 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 618 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
palmdotax 0:ad7593dc27a6 619 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
palmdotax 0:ad7593dc27a6 620 }
palmdotax 0:ad7593dc27a6 621
palmdotax 0:ad7593dc27a6 622 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
palmdotax 0:ad7593dc27a6 623 aAvg[ii] /= 200;
palmdotax 0:ad7593dc27a6 624 gAvg[ii] /= 200;
palmdotax 0:ad7593dc27a6 625 }
palmdotax 0:ad7593dc27a6 626
palmdotax 0:ad7593dc27a6 627 // Configure the accelerometer for self-test
palmdotax 0:ad7593dc27a6 628 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
palmdotax 0:ad7593dc27a6 629 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
palmdotax 0:ad7593dc27a6 630 wait_ms(25); // Delay a while to let the device stabilize
palmdotax 0:ad7593dc27a6 631
palmdotax 0:ad7593dc27a6 632 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
palmdotax 0:ad7593dc27a6 633
palmdotax 0:ad7593dc27a6 634 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
palmdotax 0:ad7593dc27a6 635 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 636 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
palmdotax 0:ad7593dc27a6 637 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
palmdotax 0:ad7593dc27a6 638
palmdotax 0:ad7593dc27a6 639 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
palmdotax 0:ad7593dc27a6 640 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
palmdotax 0:ad7593dc27a6 641 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
palmdotax 0:ad7593dc27a6 642 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
palmdotax 0:ad7593dc27a6 643 }
palmdotax 0:ad7593dc27a6 644
palmdotax 0:ad7593dc27a6 645 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
palmdotax 0:ad7593dc27a6 646 aSTAvg[ii] /= 200;
palmdotax 0:ad7593dc27a6 647 gSTAvg[ii] /= 200;
palmdotax 0:ad7593dc27a6 648 }
palmdotax 0:ad7593dc27a6 649
palmdotax 0:ad7593dc27a6 650 // Configure the gyro and accelerometer for normal operation
palmdotax 0:ad7593dc27a6 651 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
palmdotax 0:ad7593dc27a6 652 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
palmdotax 0:ad7593dc27a6 653 //delay(25); // Delay a while to let the device stabilize
palmdotax 0:ad7593dc27a6 654 wait_ms(25); // Delay a while to let the device stabilize
palmdotax 0:ad7593dc27a6 655
palmdotax 0:ad7593dc27a6 656 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
palmdotax 0:ad7593dc27a6 657 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
palmdotax 0:ad7593dc27a6 658 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
palmdotax 0:ad7593dc27a6 659 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
palmdotax 0:ad7593dc27a6 660 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
palmdotax 0:ad7593dc27a6 661 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
palmdotax 0:ad7593dc27a6 662 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
palmdotax 0:ad7593dc27a6 663
palmdotax 0:ad7593dc27a6 664 // Retrieve factory self-test value from self-test code reads
palmdotax 0:ad7593dc27a6 665 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
palmdotax 0:ad7593dc27a6 666 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
palmdotax 0:ad7593dc27a6 667 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
palmdotax 0:ad7593dc27a6 668 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
palmdotax 0:ad7593dc27a6 669 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
palmdotax 0:ad7593dc27a6 670 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
palmdotax 0:ad7593dc27a6 671
palmdotax 0:ad7593dc27a6 672 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
palmdotax 0:ad7593dc27a6 673 // To get percent, must multiply by 100
palmdotax 0:ad7593dc27a6 674 for (int i = 0; i < 3; i++) {
palmdotax 0:ad7593dc27a6 675 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
palmdotax 0:ad7593dc27a6 676 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
palmdotax 0:ad7593dc27a6 677 }
palmdotax 0:ad7593dc27a6 678 }
palmdotax 0:ad7593dc27a6 679
palmdotax 0:ad7593dc27a6 680
palmdotax 0:ad7593dc27a6 681
palmdotax 0:ad7593dc27a6 682 void getCompassOrientation(float * orient){ // Obtains the orientation of the device in degrees. 0 degrees North. 180 degrees South.
palmdotax 0:ad7593dc27a6 683 /*
palmdotax 0:ad7593dc27a6 684 Remember that it is the earth's rotational axis that defines the geographic north and south poles that we use for map references.
palmdotax 0:ad7593dc27a6 685 It turns out that there is a discrepancy of about 11.5 degrees between the geographic poles and the magnetic poles. The last is
palmdotax 0:ad7593dc27a6 686 what the magnetometer will read. A value, called the declination angle, can be applied to the magnetic direction to correct for this.
palmdotax 0:ad7593dc27a6 687 On Valencia (Spain) this value is about 0 degrees.
palmdotax 0:ad7593dc27a6 688 */
palmdotax 0:ad7593dc27a6 689
palmdotax 0:ad7593dc27a6 690 // First of all measure 3 axis magnetometer values (only X and Y axis is used):
palmdotax 0:ad7593dc27a6 691 readMagData(magCount); // Read the x/y/z adc values
palmdotax 0:ad7593dc27a6 692 // Calculate the magnetometer values in milliGauss
palmdotax 0:ad7593dc27a6 693 // Include factory calibration per data sheet and user environmental corrections
palmdotax 0:ad7593dc27a6 694 if (I2Cstate == 0){ // no error on I2C
palmdotax 0:ad7593dc27a6 695 I2Cstate = 1;
palmdotax 0:ad7593dc27a6 696 magn_x = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
palmdotax 0:ad7593dc27a6 697 magn_y = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
palmdotax 0:ad7593dc27a6 698 }
palmdotax 0:ad7593dc27a6 699
palmdotax 0:ad7593dc27a6 700 // Now obtains the orientation value:
palmdotax 0:ad7593dc27a6 701 if (magn_y>0)
palmdotax 0:ad7593dc27a6 702 orient[0] = 90.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
palmdotax 0:ad7593dc27a6 703 else if (magn_y<0)
palmdotax 0:ad7593dc27a6 704 orient[0] = 270.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
palmdotax 0:ad7593dc27a6 705 else if (magn_y == 0){
palmdotax 0:ad7593dc27a6 706 if (magn_x<0)
palmdotax 0:ad7593dc27a6 707 orient[0] = 180.0;
palmdotax 0:ad7593dc27a6 708 else
palmdotax 0:ad7593dc27a6 709 orient[0] = 0.0;
palmdotax 0:ad7593dc27a6 710 }
palmdotax 0:ad7593dc27a6 711 }
palmdotax 0:ad7593dc27a6 712
palmdotax 0:ad7593dc27a6 713
palmdotax 0:ad7593dc27a6 714
palmdotax 0:ad7593dc27a6 715
palmdotax 0:ad7593dc27a6 716
palmdotax 0:ad7593dc27a6 717
palmdotax 0:ad7593dc27a6 718 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
palmdotax 0:ad7593dc27a6 719 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
palmdotax 0:ad7593dc27a6 720 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
palmdotax 0:ad7593dc27a6 721 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
palmdotax 0:ad7593dc27a6 722 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
palmdotax 0:ad7593dc27a6 723 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
palmdotax 0:ad7593dc27a6 724 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
palmdotax 0:ad7593dc27a6 725 {
palmdotax 0:ad7593dc27a6 726 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
palmdotax 0:ad7593dc27a6 727 float norm;
palmdotax 0:ad7593dc27a6 728 float hx, hy, _2bx, _2bz;
palmdotax 0:ad7593dc27a6 729 float s1, s2, s3, s4;
palmdotax 0:ad7593dc27a6 730 float qDot1, qDot2, qDot3, qDot4;
palmdotax 0:ad7593dc27a6 731
palmdotax 0:ad7593dc27a6 732 // Auxiliary variables to avoid repeated arithmetic
palmdotax 0:ad7593dc27a6 733 float _2q1mx;
palmdotax 0:ad7593dc27a6 734 float _2q1my;
palmdotax 0:ad7593dc27a6 735 float _2q1mz;
palmdotax 0:ad7593dc27a6 736 float _2q2mx;
palmdotax 0:ad7593dc27a6 737 float _4bx;
palmdotax 0:ad7593dc27a6 738 float _4bz;
palmdotax 0:ad7593dc27a6 739 float _2q1 = 2.0f * q1;
palmdotax 0:ad7593dc27a6 740 float _2q2 = 2.0f * q2;
palmdotax 0:ad7593dc27a6 741 float _2q3 = 2.0f * q3;
palmdotax 0:ad7593dc27a6 742 float _2q4 = 2.0f * q4;
palmdotax 0:ad7593dc27a6 743 float _2q1q3 = 2.0f * q1 * q3;
palmdotax 0:ad7593dc27a6 744 float _2q3q4 = 2.0f * q3 * q4;
palmdotax 0:ad7593dc27a6 745 float q1q1 = q1 * q1;
palmdotax 0:ad7593dc27a6 746 float q1q2 = q1 * q2;
palmdotax 0:ad7593dc27a6 747 float q1q3 = q1 * q3;
palmdotax 0:ad7593dc27a6 748 float q1q4 = q1 * q4;
palmdotax 0:ad7593dc27a6 749 float q2q2 = q2 * q2;
palmdotax 0:ad7593dc27a6 750 float q2q3 = q2 * q3;
palmdotax 0:ad7593dc27a6 751 float q2q4 = q2 * q4;
palmdotax 0:ad7593dc27a6 752 float q3q3 = q3 * q3;
palmdotax 0:ad7593dc27a6 753 float q3q4 = q3 * q4;
palmdotax 0:ad7593dc27a6 754 float q4q4 = q4 * q4;
palmdotax 0:ad7593dc27a6 755
palmdotax 0:ad7593dc27a6 756 // Normalise accelerometer measurement
palmdotax 0:ad7593dc27a6 757 norm = sqrt(ax * ax + ay * ay + az * az);
palmdotax 0:ad7593dc27a6 758 if (norm == 0.0f) return; // handle NaN
palmdotax 0:ad7593dc27a6 759 norm = 1.0f/norm;
palmdotax 0:ad7593dc27a6 760 ax *= norm;
palmdotax 0:ad7593dc27a6 761 ay *= norm;
palmdotax 0:ad7593dc27a6 762 az *= norm;
palmdotax 0:ad7593dc27a6 763
palmdotax 0:ad7593dc27a6 764 // Normalise magnetometer measurement
palmdotax 0:ad7593dc27a6 765 norm = sqrt(mx * mx + my * my + mz * mz);
palmdotax 0:ad7593dc27a6 766 if (norm == 0.0f) return; // handle NaN
palmdotax 0:ad7593dc27a6 767 norm = 1.0f/norm;
palmdotax 0:ad7593dc27a6 768 mx *= norm;
palmdotax 0:ad7593dc27a6 769 my *= norm;
palmdotax 0:ad7593dc27a6 770 mz *= norm;
palmdotax 0:ad7593dc27a6 771
palmdotax 0:ad7593dc27a6 772 // Reference direction of Earth's magnetic field
palmdotax 0:ad7593dc27a6 773 _2q1mx = 2.0f * q1 * mx;
palmdotax 0:ad7593dc27a6 774 _2q1my = 2.0f * q1 * my;
palmdotax 0:ad7593dc27a6 775 _2q1mz = 2.0f * q1 * mz;
palmdotax 0:ad7593dc27a6 776 _2q2mx = 2.0f * q2 * mx;
palmdotax 0:ad7593dc27a6 777 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
palmdotax 0:ad7593dc27a6 778 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
palmdotax 0:ad7593dc27a6 779 _2bx = sqrt(hx * hx + hy * hy);
palmdotax 0:ad7593dc27a6 780 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
palmdotax 0:ad7593dc27a6 781 _4bx = 2.0f * _2bx;
palmdotax 0:ad7593dc27a6 782 _4bz = 2.0f * _2bz;
palmdotax 0:ad7593dc27a6 783
palmdotax 0:ad7593dc27a6 784 // Gradient decent algorithm corrective step
palmdotax 0:ad7593dc27a6 785 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
palmdotax 0:ad7593dc27a6 786 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
palmdotax 0:ad7593dc27a6 787 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
palmdotax 0:ad7593dc27a6 788 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
palmdotax 0:ad7593dc27a6 789 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
palmdotax 0:ad7593dc27a6 790 norm = 1.0f/norm;
palmdotax 0:ad7593dc27a6 791 s1 *= norm;
palmdotax 0:ad7593dc27a6 792 s2 *= norm;
palmdotax 0:ad7593dc27a6 793 s3 *= norm;
palmdotax 0:ad7593dc27a6 794 s4 *= norm;
palmdotax 0:ad7593dc27a6 795
palmdotax 0:ad7593dc27a6 796 // Compute rate of change of quaternion
palmdotax 0:ad7593dc27a6 797 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
palmdotax 0:ad7593dc27a6 798 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
palmdotax 0:ad7593dc27a6 799 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
palmdotax 0:ad7593dc27a6 800 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
palmdotax 0:ad7593dc27a6 801
palmdotax 0:ad7593dc27a6 802 // Integrate to yield quaternion
palmdotax 0:ad7593dc27a6 803 q1 += qDot1 * deltat;
palmdotax 0:ad7593dc27a6 804 q2 += qDot2 * deltat;
palmdotax 0:ad7593dc27a6 805 q3 += qDot3 * deltat;
palmdotax 0:ad7593dc27a6 806 q4 += qDot4 * deltat;
palmdotax 0:ad7593dc27a6 807 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
palmdotax 0:ad7593dc27a6 808 norm = 1.0f/norm;
palmdotax 0:ad7593dc27a6 809 q[0] = q1 * norm;
palmdotax 0:ad7593dc27a6 810 q[1] = q2 * norm;
palmdotax 0:ad7593dc27a6 811 q[2] = q3 * norm;
palmdotax 0:ad7593dc27a6 812 q[3] = q4 * norm;
palmdotax 0:ad7593dc27a6 813
palmdotax 0:ad7593dc27a6 814 }
palmdotax 0:ad7593dc27a6 815
palmdotax 0:ad7593dc27a6 816
palmdotax 0:ad7593dc27a6 817
palmdotax 0:ad7593dc27a6 818 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
palmdotax 0:ad7593dc27a6 819 // measured ones.
palmdotax 0:ad7593dc27a6 820 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
palmdotax 0:ad7593dc27a6 821 {
palmdotax 0:ad7593dc27a6 822 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
palmdotax 0:ad7593dc27a6 823 float norm;
palmdotax 0:ad7593dc27a6 824 float hx, hy, bx, bz;
palmdotax 0:ad7593dc27a6 825 float vx, vy, vz, wx, wy, wz;
palmdotax 0:ad7593dc27a6 826 float ex, ey, ez;
palmdotax 0:ad7593dc27a6 827 float pa, pb, pc;
palmdotax 0:ad7593dc27a6 828
palmdotax 0:ad7593dc27a6 829 // Auxiliary variables to avoid repeated arithmetic
palmdotax 0:ad7593dc27a6 830 float q1q1 = q1 * q1;
palmdotax 0:ad7593dc27a6 831 float q1q2 = q1 * q2;
palmdotax 0:ad7593dc27a6 832 float q1q3 = q1 * q3;
palmdotax 0:ad7593dc27a6 833 float q1q4 = q1 * q4;
palmdotax 0:ad7593dc27a6 834 float q2q2 = q2 * q2;
palmdotax 0:ad7593dc27a6 835 float q2q3 = q2 * q3;
palmdotax 0:ad7593dc27a6 836 float q2q4 = q2 * q4;
palmdotax 0:ad7593dc27a6 837 float q3q3 = q3 * q3;
palmdotax 0:ad7593dc27a6 838 float q3q4 = q3 * q4;
palmdotax 0:ad7593dc27a6 839 float q4q4 = q4 * q4;
palmdotax 0:ad7593dc27a6 840
palmdotax 0:ad7593dc27a6 841 // Normalise accelerometer measurement
palmdotax 0:ad7593dc27a6 842 norm = sqrt(ax * ax + ay * ay + az * az);
palmdotax 0:ad7593dc27a6 843 if (norm == 0.0f) return; // handle NaN
palmdotax 0:ad7593dc27a6 844 norm = 1.0f / norm; // use reciprocal for division
palmdotax 0:ad7593dc27a6 845 ax *= norm;
palmdotax 0:ad7593dc27a6 846 ay *= norm;
palmdotax 0:ad7593dc27a6 847 az *= norm;
palmdotax 0:ad7593dc27a6 848
palmdotax 0:ad7593dc27a6 849 // Normalise magnetometer measurement
palmdotax 0:ad7593dc27a6 850 norm = sqrt(mx * mx + my * my + mz * mz);
palmdotax 0:ad7593dc27a6 851 if (norm == 0.0f) return; // handle NaN
palmdotax 0:ad7593dc27a6 852 norm = 1.0f / norm; // use reciprocal for division
palmdotax 0:ad7593dc27a6 853 mx *= norm;
palmdotax 0:ad7593dc27a6 854 my *= norm;
palmdotax 0:ad7593dc27a6 855 mz *= norm;
palmdotax 0:ad7593dc27a6 856
palmdotax 0:ad7593dc27a6 857 // Reference direction of Earth's magnetic field
palmdotax 0:ad7593dc27a6 858 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
palmdotax 0:ad7593dc27a6 859 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
palmdotax 0:ad7593dc27a6 860 bx = sqrt((hx * hx) + (hy * hy));
palmdotax 0:ad7593dc27a6 861 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
palmdotax 0:ad7593dc27a6 862
palmdotax 0:ad7593dc27a6 863 // Estimated direction of gravity and magnetic field
palmdotax 0:ad7593dc27a6 864 vx = 2.0f * (q2q4 - q1q3);
palmdotax 0:ad7593dc27a6 865 vy = 2.0f * (q1q2 + q3q4);
palmdotax 0:ad7593dc27a6 866 vz = q1q1 - q2q2 - q3q3 + q4q4;
palmdotax 0:ad7593dc27a6 867 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
palmdotax 0:ad7593dc27a6 868 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
palmdotax 0:ad7593dc27a6 869 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
palmdotax 0:ad7593dc27a6 870
palmdotax 0:ad7593dc27a6 871 // Error is cross product between estimated direction and measured direction of gravity
palmdotax 0:ad7593dc27a6 872 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
palmdotax 0:ad7593dc27a6 873 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
palmdotax 0:ad7593dc27a6 874 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
palmdotax 0:ad7593dc27a6 875 if (Ki > 0.0f)
palmdotax 0:ad7593dc27a6 876 {
palmdotax 0:ad7593dc27a6 877 eInt[0] += ex; // accumulate integral error
palmdotax 0:ad7593dc27a6 878 eInt[1] += ey;
palmdotax 0:ad7593dc27a6 879 eInt[2] += ez;
palmdotax 0:ad7593dc27a6 880 }
palmdotax 0:ad7593dc27a6 881 else
palmdotax 0:ad7593dc27a6 882 {
palmdotax 0:ad7593dc27a6 883 eInt[0] = 0.0f; // prevent integral wind up
palmdotax 0:ad7593dc27a6 884 eInt[1] = 0.0f;
palmdotax 0:ad7593dc27a6 885 eInt[2] = 0.0f;
palmdotax 0:ad7593dc27a6 886 }
palmdotax 0:ad7593dc27a6 887
palmdotax 0:ad7593dc27a6 888 // Apply feedback terms
palmdotax 0:ad7593dc27a6 889 gx = gx + Kp * ex + Ki * eInt[0];
palmdotax 0:ad7593dc27a6 890 gy = gy + Kp * ey + Ki * eInt[1];
palmdotax 0:ad7593dc27a6 891 gz = gz + Kp * ez + Ki * eInt[2];
palmdotax 0:ad7593dc27a6 892
palmdotax 0:ad7593dc27a6 893 // Integrate rate of change of quaternion
palmdotax 0:ad7593dc27a6 894 pa = q2;
palmdotax 0:ad7593dc27a6 895 pb = q3;
palmdotax 0:ad7593dc27a6 896 pc = q4;
palmdotax 0:ad7593dc27a6 897 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
palmdotax 0:ad7593dc27a6 898 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
palmdotax 0:ad7593dc27a6 899 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
palmdotax 0:ad7593dc27a6 900 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
palmdotax 0:ad7593dc27a6 901
palmdotax 0:ad7593dc27a6 902 // Normalise quaternion
palmdotax 0:ad7593dc27a6 903 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
palmdotax 0:ad7593dc27a6 904 norm = 1.0f / norm;
palmdotax 0:ad7593dc27a6 905 q[0] = q1 * norm;
palmdotax 0:ad7593dc27a6 906 q[1] = q2 * norm;
palmdotax 0:ad7593dc27a6 907 q[2] = q3 * norm;
palmdotax 0:ad7593dc27a6 908 q[3] = q4 * norm;
palmdotax 0:ad7593dc27a6 909
palmdotax 0:ad7593dc27a6 910 }
palmdotax 0:ad7593dc27a6 911 };
palmdotax 0:ad7593dc27a6 912 #endif