B16
Dependencies: mbed
Revision 0:b0ed3674f5b2, committed 2015-12-09
- Comitter:
- 57340500084
- Date:
- Wed Dec 09 02:50:22 2015 +0000
- Commit message:
- 16B
Changed in this revision
diff -r 000000000000 -r b0ed3674f5b2 Code.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Code.cpp Wed Dec 09 02:50:22 2015 +0000 @@ -0,0 +1,466 @@ +/***** + Algorithm based on MPU-9250_Snowda program. It has been modified by Josu? Olmeda Castell? for imasD Tecnolog?a. + + This algorithm calibrates and reads data from accelerometer, gyroscope, magnetometer and the + internal temperature sensor. The lecture is made each time has a new mesured value (both gyro and accel data). + A comunication with a computer is made using serial interface. The user can see the data measured with 1 second update rate. + + This algorithm uses the STM32L152 development board and the MPU-9250 9-axis InvenSense movement sensor. The communication + between both devices is made through I2C serial interface. + + AD0 should be connected to GND. + + 04/05/2015 +*****/ + +#include "mbed.h" +#include "mpu9250.h" +#include "DHT.h" + +Serial pc(D8,D2); // Huyperterminal default config: 9600 bauds, 8-bit data, 1 stop bit, no parity +Serial bell(PA_11,PA_12); +MPU9250 mpu9250; +Timer t; +Timer t2; +DigitalOut myled1(LED1); +DigitalOut myledred(D10); +DigitalOut myledblue(D9); +DigitalOut myledbuzzer(D7); +DHT sensor(D4,22); // Use the SEN11301P sensor + +void StopCon(float,float,float); +void WalkCon(float); +void RunCon(float); +void checkTemp(float); +void timer2(float,float,float); + +float sum = 0; +uint32_t sumCount = 0; +char buffer[14]; +uint8_t dato_leido[2]; +uint8_t whoami; +char showtimez[10]; +int timez=0; +int err; +int cont = 0; +int sw = 1; +int check = 0; +int a=0; +float y1 = 0; +float y2 = 0; +float newyaw = 0; + +uint8_t state_menu = 0; +uint8_t state_show = 0; +uint8_t state_exit = 0; +uint8_t data; + +int main() +{ + + //___ Set up I2C: use fast (400 kHz) I2C ___ + i2c.frequency(400000); + + pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + + t.start(); // Timer ON + + // Read the WHO_AM_I register, this is a good test of communication + whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); + + pc.printf("I AM 0x%x\n\r", whoami); + pc.printf("I SHOULD BE 0x71\n\r"); + if (I2Cstate != 0) // error on I2C + pc.printf("I2C failure while reading WHO_AM_I register"); + + if (whoami == 0x71) { // WHO_AM_I should always be 0x71 + pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); + pc.printf("MPU9250 is online...\n\r"); + sprintf(buffer, "0x%x", whoami); + wait(1); + + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) + pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); + pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); + pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); + pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); + pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); + pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); + + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers + pc.printf("x gyro bias = %f\n\r", gyroBias[0]); + pc.printf("y gyro bias = %f\n\r", gyroBias[1]); + pc.printf("z gyro bias = %f\n\r", gyroBias[2]); + pc.printf("x accel bias = %f\n\r", accelBias[0]); + pc.printf("y accel bias = %f\n\r", accelBias[1]); + pc.printf("z accel bias = %f\n\r", accelBias[2]); + wait(2); + + // Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initMPU9250(); + //pc.printf("MPU9250 initialized for active data mode....\n\r"); + + // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. + mpu9250.initAK8963(magCalibration); + pc.printf("AK8963 initialized for active data mode....\n\r"); + pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); + pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); + if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); + if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); + if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); + wait(1); + } + + else { // Connection failure + pc.printf("Could not connect to MPU9250: \n\r"); + pc.printf("%#x \n", whoami); + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + while(1) ; // Loop forever if communication doesn't happen + } + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity + pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); + pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); + pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); + magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated + magbias[1] = +120.; // User environmental x-axis correction in milliGauss + magbias[2] = +125.; // User environmental x-axis correction in milliGauss + + while(1) { + + // If intPin goes high, all data registers have new data + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); + else { // I2C read or write ok + I2Cstate = 1; + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + } + + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); + else { // I2C read or write ok + I2Cstate = 1; + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + } + + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); + else { // I2C read or write ok + I2Cstate = 1; + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + } + + mpu9250.getCompassOrientation(orientation); + } + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + sum += deltat; + sumCount++; + + // Pass gyro rate as rad/s + // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + + + // Serial print and/or display at 1.5 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 100) { // update LCD once per half-second independent of read rate + + + + tempCount = mpu9250.readTempData(); // Read the adc values + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); + else { // I2C read or write ok + I2Cstate = 1; + temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade + + + + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + roll *= 180.0f / PI; + + timer2(yaw,pitch,roll); + sensor.readData(); + checkTemp(sensor.ReadTemperature(CELCIUS)); + + if(state_show == 0) { + pc.printf("\nWelcome to Project Digital B16\nplease select 1 or 2\n"); + pc.printf("1. Mode a\n"); + pc.printf("2. Mode b\n"); + state_show = 1; + } + if(pc.readable()) { + data = pc.getc(); + pc.printf("\n"); + state_show = 0; + state_exit = 0; + } + switch(data) { + case '1': + do { + if(state_menu == 0) { + pc.printf("Temperature is %4.2f C \r\n",sensor.ReadTemperature(CELCIUS)); + pc.printf("Temperature is %4.2f F \r\n",sensor.ReadTemperature(FARENHEIT)); + pc.printf("Temperature is %4.2f K \r\n",sensor.ReadTemperature(KELVIN)); + pc.printf("Humidity is %4.2f \r\n",sensor.ReadHumidity()); + pc.printf("x.Exit\n"); + state_menu = 1; + } + if(pc.readable()) { + data = pc.getc(); + pc.printf("\n"); + state_menu=0; + + switch(data) { + case'x': + state_exit = 1; + break; + + default: + pc.printf("plz select x for exit\n"); + pc.printf("\n\n"); + break; + } + } + } while(state_exit ==0); + pc.printf("\n\n"); + break; + + case'2': + do { + if(state_menu == 0) { + pc.printf("Check Status\n"); + StopCon(yaw,pitch,roll); + WalkCon(az); + RunCon(roll); + pc.printf("x.Exit\n"); + state_menu = 1; + } + if(pc.readable()) { + data = pc.getc(); + pc.printf("\n"); + state_menu=0; + + switch(data) { + case'x': + state_exit = 1; + break; + + default: + pc.printf("plz select x for exit\n"); + pc.printf("\n\n"); + break; + } + } + } while(state_exit ==0); + pc.printf("\n\n"); + break; + } + + //pc.printf("Ax , Ay , Az : %f %f %f\n\r", 10*ax , 10*ay , 10*az); + pc.printf(" %f %f %f\n\r", yaw, pitch, roll); + + } + } + } +} + +void StopCon(float Y,float P,float R) +{ + while((Y == Y)&&(P >= -3.0f) && (P <= 3.0f) && (R >= -3.0f) && (R <= 3.0f)) { + cont++; + wait(1); + if(cont == 10) { + pc.printf("Stopping\n"); + cont = 0; + /*myledblue = 1; + wait(3); + myledblue = 0;*/ + break; + } + } + +} +void WalkCon(float Z) +{ + Z = Z*10; + while(Z >= 11.0f) { + cont++; + wait(1); + if(cont == 10) { + pc.printf("Walking\n"); + /*myledred = 1; + wait(3); + myledred = 0;*/ + cont = 0; + break; + } + } +} +void RunCon(float R) +{ + while(R >= 10) { + cont++; + wait(1); + if(cont == 10) { + pc.printf("Running\n"); + cont = 0; + /*myledblue = 1; + myledred = 1; + wait(0.25); + myledblue = 0; + myledred = 0; + myledblue = 1; + myledred = 1; + wait(0.25); + myledblue = 0; + myledred = 0; + wait(0.25); + myledblue = 1; + myledred = 1; + wait(0.25); + myledblue = 0; + myledred = 0; + myledblue = 1; + myledred = 1; + wait(0.25); + myledblue = 0; + myledred = 0; + myledblue = 1; + myledred = 1; + wait(0.25); + myledblue = 0; + myledred = 0; + wait(0.25); + myledblue = 1; + myledred = 1; + wait(0.25); + myledblue = 0; + myledred = 0;*/ + break; + } + } +} +void checkTemp(float T) +{ + if(T >= 38 && T <= 39) { + myledblue = 1; + } else myledblue = 0; + if(T >= 40) { + myledred = 1; + } else myledred = 0; +} +void timer2(float y,float p,float r) +{ + y2 = y; + newyaw = y1 - y2; + y1 = y2; + + if((newyaw <= -10 || newyaw >= 10) && (p <= -13 || p >= 13)&& (r <= -15 || r >= 5 ) && sw == 1) { + pc.printf(" *****444444******* \n "); + check=1; + t2.start(); + sw=0; + } + if(t2.read() < 30 &&(newyaw <= 5 && newyaw >= -5)&& (p <= 5 && p >= -5) &&(r <= 5 && r >= -5) && sw == 0) { + pc.printf(" *****6666666******* "); + a++; + pc.printf("\t\t****Tend : %d****\t\t\n",a); + sw=1; + + } + if(t2.read()>30 && check==1) { + if(a==4) { + // pc.printf(" You stumbles LV1. "); + myledred =1; + wait(1); + myledred =0; + myledblue =1; + wait(1); + myledblue =0; + myledbuzzer =1; + wait(2); + myledbuzzer=0; + wait(0.5); + myledbuzzer=1; + wait(2); + myledbuzzer=0; + myledred =1; + wait(1); + myledred =0; + myledblue =1; + wait(1); + myledblue =0; + } + if(a>=5) { + myledbuzzer =1; + wait(0.5); + myledbuzzer =0; + wait(0.5); + myledbuzzer =1; + wait(0.5); + myledbuzzer =0; + wait(0.5); + myledbuzzer =1; + wait(0.5); + myledbuzzer =0; + wait(0.5); + myledbuzzer =1; + wait(0.5); + myledbuzzer =0; + wait(0.5); + myledbuzzer =1; + wait(20); + myledbuzzer =0; + } + + check=0; + a=0; + t2.reset(); + + + } + + // pc.printf("\tTend : %d\t",a); + + +} \ No newline at end of file
diff -r 000000000000 -r b0ed3674f5b2 DHT.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DHT.cpp Wed Dec 09 02:50:22 2015 +0000 @@ -0,0 +1,232 @@ +/* + * DHT Library for Digital-output Humidity and Temperature sensors + * + * Works with DHT11, DHT22 + * SEN11301P, Grove - Temperature&Humidity Sensor (Seeed Studio) + * SEN51035P, Grove - Temperature&Humidity Sensor Pro (Seeed Studio) + * AM2302 , temperature-humidity sensor + * HM2303 , Digital-output humidity and temperature sensor + * + * Copyright (C) Wim De Roeve + * based on DHT22 sensor library by HO WING KIT + * Arduino DHT11 library + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documnetation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include "DHT.h" + +#define DHT_DATA_BIT_COUNT 41 + +DHT::DHT(PinName pin,int DHTtype) { + _pin = pin; + _DHTtype = DHTtype; + _firsttime=true; +} + +DHT::~DHT() { +} + +int DHT::readData() { + int i, j, retryCount,b; + unsigned int bitTimes[DHT_DATA_BIT_COUNT]; + + eError err = ERROR_NONE; + time_t currentTime = time(NULL); + + DigitalInOut DHT_io(_pin); + + for (i = 0; i < DHT_DATA_BIT_COUNT; i++) { + bitTimes[i] = 0; + } + + if (!_firsttime) { + if (int(currentTime - _lastReadTime) < 2) { + err = ERROR_NO_PATIENCE; + return err; + } + } else { + _firsttime=false; + _lastReadTime=currentTime; + } + retryCount = 0; + + do { + if (retryCount > 125) { + err = BUS_BUSY; + return err; + } + retryCount ++; + wait_us(2); + } while ((DHT_io==0)); + + + DHT_io.output(); + DHT_io = 0; + wait_ms(18); + DHT_io = 1; + wait_us(40); + DHT_io.input(); + + retryCount = 0; + do { + if (retryCount > 40) { + err = ERROR_NOT_PRESENT; + return err; + } + retryCount++; + wait_us(1); + } while ((DHT_io==1)); + + if (err != ERROR_NONE) { + return err; + } + + wait_us(80); + + for (i = 0; i < 5; i++) { + for (j = 0; j < 8; j++) { + + retryCount = 0; + do { + if (retryCount > 75) { + err = ERROR_DATA_TIMEOUT; + return err; + } + retryCount++; + wait_us(1); + } while (DHT_io == 0); + wait_us(40); + bitTimes[i*8+j]=DHT_io; + + int count = 0; + while (DHT_io == 1 && count < 100) { + wait_us(1); + count++; + } + } + } + DHT_io.output(); + DHT_io = 1; + for (i = 0; i < 5; i++) { + b=0; + for (j=0; j<8; j++) { + if (bitTimes[i*8+j+1] > 0) { + b |= ( 1 << (7-j)); + } + } + DHT_data[i]=b; + } + + if (DHT_data[4] == ((DHT_data[0] + DHT_data[1] + DHT_data[2] + DHT_data[3]) & 0xFF)) { + _lastReadTime = currentTime; + _lastTemperature=CalcTemperature(); + _lastHumidity=CalcHumidity(); + + } else { + err = ERROR_CHECKSUM; + } + + return err; + +} + +float DHT::CalcTemperature() { + int v; + + switch (_DHTtype) { + case DHT11: + v = DHT_data[2]; + return float(v); + case DHT22: + v = DHT_data[2] & 0x7F; + v *= 256; + v += DHT_data[3]; + v /= 10; + if (DHT_data[2] & 0x80) + v *= -1; + return float(v); + } + return 0; +} + +float DHT::ReadHumidity() { + return _lastHumidity; +} + +float DHT::ConvertCelciustoFarenheit(float celsius) { + return celsius * 9 / 5 + 32; +} + +float DHT::ConvertCelciustoKelvin(float celsius) { + return celsius + 273.15; +} + +// dewPoint function NOAA +// reference: http://wahiduddin.net/calc/density_algorithms.htm +float DHT::CalcdewPoint(float celsius, float humidity) { + float A0= 373.15/(273.15 + celsius); + float SUM = -7.90298 * (A0-1); + SUM += 5.02808 * log10(A0); + SUM += -1.3816e-7 * (pow(10, (11.344*(1-1/A0)))-1) ; + SUM += 8.1328e-3 * (pow(10,(-3.49149*(A0-1)))-1) ; + SUM += log10(1013.246); + float VP = pow(10, SUM-3) * humidity; + float T = log(VP/0.61078); // temp var + return (241.88 * T) / (17.558-T); +} + +// delta max = 0.6544 wrt dewPoint() +// 5x faster than dewPoint() +// reference: http://en.wikipedia.org/wiki/Dew_point +float DHT::CalcdewPointFast(float celsius, float humidity) +{ + float a = 17.271; + float b = 237.7; + float temp = (a * celsius) / (b + celsius) + log(humidity/100); + float Td = (b * temp) / (a - temp); + return Td; +} + +float DHT::ReadTemperature(eScale Scale) { + if (Scale == FARENHEIT) + return ConvertCelciustoFarenheit(_lastTemperature); + else if (Scale == KELVIN) + return ConvertCelciustoKelvin(_lastTemperature); + else + return _lastTemperature; +} + +float DHT::CalcHumidity() { + int v; + + switch (_DHTtype) { + case DHT11: + v = DHT_data[0]; + return float(v); + case DHT22: + v = DHT_data[0]; + v *= 256; + v += DHT_data[1]; + v /= 10; + return float(v); + } + return 0; +} +
diff -r 000000000000 -r b0ed3674f5b2 DHT.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/DHT.h Wed Dec 09 02:50:22 2015 +0000 @@ -0,0 +1,94 @@ +/* + * DHT Library for Digital-output Humidity and Temperature sensors + * + * Works with DHT11, DHT21, DHT22 + * SEN11301P, Grove - Temperature&Humidity Sensor (Seeed Studio) + * SEN51035P, Grove - Temperature&Humidity Sensor Pro (Seeed Studio) + * AM2302 , temperature-humidity sensor + * RHT01,RHT02, RHT03 , Humidity and Temperature Sensor (Sparkfun) + * + * Copyright (C) Wim De Roeve + * based on DHT22 sensor library by HO WING KIT + * Arduino DHT11 library + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documnetation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#ifndef MBED_DHT_H +#define MBED_DHT_H + +#include "mbed.h" + +enum eType{ + DHT11 = 11, + SEN11301P = 11, + RHT01 = 11, + DHT22 = 22, + AM2302 = 22, + SEN51035P = 22, + RHT02 = 22, + RHT03 = 22 + } ; + +enum eError { + ERROR_NONE = 0, + BUS_BUSY =1, + ERROR_NOT_PRESENT =2 , + ERROR_ACK_TOO_LONG =3 , + ERROR_SYNC_TIMEOUT = 4, + ERROR_DATA_TIMEOUT =5 , + ERROR_CHECKSUM = 6, + ERROR_NO_PATIENCE =7 +} ; + +typedef enum { + CELCIUS =0 , + FARENHEIT =1, + KELVIN=2 +} eScale; + + +class DHT { + +public: + + DHT(PinName pin,int DHTtype); + ~DHT(); + int readData(void); + float ReadHumidity(void); + float ReadTemperature(eScale Scale); + float CalcdewPoint(float celsius, float humidity); + float CalcdewPointFast(float celsius, float humidity); + +private: + time_t _lastReadTime; + float _lastTemperature; + float _lastHumidity; + PinName _pin; + bool _firsttime; + int _DHTtype; + int DHT_data[6]; + float CalcTemperature(); + float CalcHumidity(); + float ConvertCelciustoFarenheit(float); + float ConvertCelciustoKelvin(float); + +}; + +#endif
diff -r 000000000000 -r b0ed3674f5b2 mbed.bld --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Wed Dec 09 02:50:22 2015 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/b9ad9a133dc7 \ No newline at end of file
diff -r 000000000000 -r b0ed3674f5b2 mpu9250.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mpu9250.h Wed Dec 09 02:50:22 2015 +0000 @@ -0,0 +1,912 @@ +/***** + Library based on MPU-9250_Snowda library. It has been modified by Josu? Olmeda Castell? for imasD Tecnolog?a. It uses the + mbed I2C class for comunications between the sensor and the master controller. + Methods related with data filtering have not been tested. + AD0 should be connected to GND. + 04/05/2015 +*****/ + +#ifndef MPU9250_H +#define MPU9250_H + +#include "mbed.h" +#include "math.h" + +#define M_PI 3.14159265358979323846 + +// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in +// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map +// +//Magnetometer Registers +#define AK8963_ADDRESS 0x0C<<1 +#define WHO_AM_I_AK8963 0x00 // should return 0x48 +#define INFO 0x01 +#define AK8963_ST1 0x02 // data ready status bit 0 +#define AK8963_XOUT_L 0x03 // data +#define AK8963_XOUT_H 0x04 +#define AK8963_YOUT_L 0x05 +#define AK8963_YOUT_H 0x06 +#define AK8963_ZOUT_L 0x07 +#define AK8963_ZOUT_H 0x08 +#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 +#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 +#define AK8963_ASTC 0x0C // Self test control +#define AK8963_I2CDIS 0x0F // I2C disable +#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value +#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value +#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value + +#define SELF_TEST_X_GYRO 0x00 +#define SELF_TEST_Y_GYRO 0x01 +#define SELF_TEST_Z_GYRO 0x02 + +/*#define X_FINE_GAIN 0x03 // [7:0] fine gain +#define Y_FINE_GAIN 0x04 +#define Z_FINE_GAIN 0x05 +#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer +#define XA_OFFSET_L_TC 0x07 +#define YA_OFFSET_H 0x08 +#define YA_OFFSET_L_TC 0x09 +#define ZA_OFFSET_H 0x0A +#define ZA_OFFSET_L_TC 0x0B */ + +#define SELF_TEST_X_ACCEL 0x0D +#define SELF_TEST_Y_ACCEL 0x0E +#define SELF_TEST_Z_ACCEL 0x0F + +#define SELF_TEST_A 0x10 + +#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope +#define XG_OFFSET_L 0x14 +#define YG_OFFSET_H 0x15 +#define YG_OFFSET_L 0x16 +#define ZG_OFFSET_H 0x17 +#define ZG_OFFSET_L 0x18 +#define SMPLRT_DIV 0x19 +#define CONFIG 0x1A +#define GYRO_CONFIG 0x1B +#define ACCEL_CONFIG 0x1C +#define ACCEL_CONFIG2 0x1D +#define LP_ACCEL_ODR 0x1E +#define WOM_THR 0x1F + +#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms +#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] +#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms + +#define FIFO_EN 0x23 +#define I2C_MST_CTRL 0x24 +#define I2C_SLV0_ADDR 0x25 +#define I2C_SLV0_REG 0x26 +#define I2C_SLV0_CTRL 0x27 +#define I2C_SLV1_ADDR 0x28 +#define I2C_SLV1_REG 0x29 +#define I2C_SLV1_CTRL 0x2A +#define I2C_SLV2_ADDR 0x2B +#define I2C_SLV2_REG 0x2C +#define I2C_SLV2_CTRL 0x2D +#define I2C_SLV3_ADDR 0x2E +#define I2C_SLV3_REG 0x2F +#define I2C_SLV3_CTRL 0x30 +#define I2C_SLV4_ADDR 0x31 +#define I2C_SLV4_REG 0x32 +#define I2C_SLV4_DO 0x33 +#define I2C_SLV4_CTRL 0x34 +#define I2C_SLV4_DI 0x35 +#define I2C_MST_STATUS 0x36 +#define INT_PIN_CFG 0x37 +#define INT_ENABLE 0x38 +#define DMP_INT_STATUS 0x39 // Check DMP interrupt +#define INT_STATUS 0x3A +#define ACCEL_XOUT_H 0x3B +#define ACCEL_XOUT_L 0x3C +#define ACCEL_YOUT_H 0x3D +#define ACCEL_YOUT_L 0x3E +#define ACCEL_ZOUT_H 0x3F +#define ACCEL_ZOUT_L 0x40 +#define TEMP_OUT_H 0x41 +#define TEMP_OUT_L 0x42 +#define GYRO_XOUT_H 0x43 +#define GYRO_XOUT_L 0x44 +#define GYRO_YOUT_H 0x45 +#define GYRO_YOUT_L 0x46 +#define GYRO_ZOUT_H 0x47 +#define GYRO_ZOUT_L 0x48 +#define EXT_SENS_DATA_00 0x49 +#define EXT_SENS_DATA_01 0x4A +#define EXT_SENS_DATA_02 0x4B +#define EXT_SENS_DATA_03 0x4C +#define EXT_SENS_DATA_04 0x4D +#define EXT_SENS_DATA_05 0x4E +#define EXT_SENS_DATA_06 0x4F +#define EXT_SENS_DATA_07 0x50 +#define EXT_SENS_DATA_08 0x51 +#define EXT_SENS_DATA_09 0x52 +#define EXT_SENS_DATA_10 0x53 +#define EXT_SENS_DATA_11 0x54 +#define EXT_SENS_DATA_12 0x55 +#define EXT_SENS_DATA_13 0x56 +#define EXT_SENS_DATA_14 0x57 +#define EXT_SENS_DATA_15 0x58 +#define EXT_SENS_DATA_16 0x59 +#define EXT_SENS_DATA_17 0x5A +#define EXT_SENS_DATA_18 0x5B +#define EXT_SENS_DATA_19 0x5C +#define EXT_SENS_DATA_20 0x5D +#define EXT_SENS_DATA_21 0x5E +#define EXT_SENS_DATA_22 0x5F +#define EXT_SENS_DATA_23 0x60 +#define MOT_DETECT_STATUS 0x61 +#define I2C_SLV0_DO 0x63 +#define I2C_SLV1_DO 0x64 +#define I2C_SLV2_DO 0x65 +#define I2C_SLV3_DO 0x66 +#define I2C_MST_DELAY_CTRL 0x67 +#define SIGNAL_PATH_RESET 0x68 +#define MOT_DETECT_CTRL 0x69 +#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP +#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode +#define PWR_MGMT_2 0x6C +#define DMP_BANK 0x6D // Activates a specific bank in the DMP +#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank +#define DMP_REG 0x6F // Register in DMP from which to read or to which to write +#define DMP_REG_1 0x70 +#define DMP_REG_2 0x71 +#define FIFO_COUNTH 0x72 +#define FIFO_COUNTL 0x73 +#define FIFO_R_W 0x74 +#define WHO_AM_I_MPU9250 0x75 // Should return 0x71 +#define XA_OFFSET_H 0x77 +#define XA_OFFSET_L 0x78 +#define YA_OFFSET_H 0x7A +#define YA_OFFSET_L 0x7B +#define ZA_OFFSET_H 0x7D +#define ZA_OFFSET_L 0x7E + +// Using the MSENSR-9250 breakout board, ADO is set to 0 +// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 +//mbed uses the eight-bit device address, so shift seven-bit addresses left by one! +#define ADO 0 +#if ADO +#define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 +#else +#define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 +#endif + +// Set initial input parameters +enum Ascale { + AFS_2G = 0, + AFS_4G, + AFS_8G, + AFS_16G +}; + +enum Gscale { + GFS_250DPS = 0, + GFS_500DPS, + GFS_1000DPS, + GFS_2000DPS +}; + +enum Mscale { + MFS_14BITS = 0, // 0.6 mG per LSB + MFS_16BITS // 0.15 mG per LSB +}; + +uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G +uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS +uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution +uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR +float aRes, gRes, mRes; // scale resolutions per LSB for the sensors +int I2Cstate=1; // If I2Cstate!=0, I2C read or write operation has failed + +//Set up I2C, (SDA,SCL) +I2C i2c(D14, D15); + +DigitalOut myled(LED1); + +// Pin definitions +int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins + +int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output +int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output +int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output +float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias +float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer +float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values +int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius +float temperature; +float SelfTest[6]; +float orientation[1]; +float magn_x, magn_y; + +int delt_t = 0; // used to control display output rate +int count = 0; // used to control display output rate + +// parameters for 6 DoF sensor fusion calculations +float PI = 3.14159265358979323846f; +float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 +float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta +float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) +float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value +#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral +#define Ki 0.0f + +float pitch, yaw, roll; +float deltat = 0.0f; // integration interval for both filter schemes +int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval +float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion +float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method + +class MPU9250 { + + protected: + + public: + //=================================================================================================================== + //====== Set of useful function to access acceleration, gyroscope, and temperature data + //=================================================================================================================== + + void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) + { + char data_write[2]; + data_write[0] = subAddress; + data_write[1] = data; + I2Cstate = i2c.write(address, data_write, 2, 0); + } + + char readByte(uint8_t address, uint8_t subAddress) + { + char data[1]; // `data` will store the register data + char data_write[1]; + data_write[0] = subAddress; + I2Cstate = i2c.write(address, data_write, 1, 1); // no stop + I2Cstate = i2c.read(address, data, 1, 0); + return data[0]; + } + + void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) // count=n? of bytes to read / dest=destiny where data is stored + { + char data[14]; + char data_write[1]; + data_write[0] = subAddress; + I2Cstate = i2c.write(address, data_write, 1, 1); // no stop + I2Cstate = i2c.read(address, data, count, 0); + for(int ii = 0; ii < count; ii++) { + dest[ii] = data[ii]; + } + } + + void getMres() { + switch (Mscale) + { + // Possible magnetometer scales (and their register bit settings) are: + // 14 bit resolution (0) and 16 bit resolution (1) + case MFS_14BITS: + mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss + break; + case MFS_16BITS: + mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss + break; + } + } + + void getGres() { + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case GFS_250DPS: + gRes = 250.0/32768.0; + break; + case GFS_500DPS: + gRes = 500.0/32768.0; + break; + case GFS_1000DPS: + gRes = 1000.0/32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0/32768.0; + break; + } + } + + void getAres() { + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + aRes = 2.0/32768.0; + break; + case AFS_4G: + aRes = 4.0/32768.0; + break; + case AFS_8G: + aRes = 8.0/32768.0; + break; + case AFS_16G: + aRes = 16.0/32768.0; + break; + } + } + + void readAccelData(int16_t * destination){ + + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + void readGyroData(int16_t * destination){ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + void readMagData(int16_t * destination){ + uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition + if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set + readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array + uint8_t c = rawData[6]; // End data read by reading ST2 register + if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data + destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian + destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; + } + } + } + + int16_t readTempData(){ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value + } + + void resetMPU9250(){ + // reset device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + } + + void initAK8963(float * destination){ + // First extract the factory calibration for each magnetometer axis + uint8_t rawData[3]; // x/y/z gyro calibration data stored here + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer + wait(0.01); + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode + wait(0.01); + readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values + destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. + destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; + destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer + wait(0.01); + // Configure the magnetometer for continuous read and highest resolution + // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, + // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates + writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR + wait(0.01); + } + + void initMPU9250(){ + // Initialize MPU9250 device + // wake up device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + wait(0.3); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt + + // get stable time source + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + + // Configure Gyro and Accelerometer + // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; + // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both + // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate + writeByte(MPU9250_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above + + // Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 + uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro + + // Set accelerometer configuration + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer + + // Set accelerometer sample rate configuration + // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for + // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz + + // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, + // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt + } + + // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average + // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. + void calibrateMPU9250(float * dest1, float * dest2) + { + uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + + // reset device, reset all registers, clear gyro and accelerometer bias registers + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + wait(0.1); + + // get stable time source + // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); + writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); + wait(0.2); + + // Configure device for bias calculation + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source + writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP + wait(0.015); + + // Configure MPU9250 gyro and accelerometer for bias calculation + writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity + + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g + + // Configure FIFO to capture accelerometer and gyro data. This data will be used for bias calculation + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) + wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes + + // At end of sample accumulation, turn off FIFO sensor read + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO + readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count + fifo_count = ((uint16_t)data[0] << 8) | data[1]; + packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging + + for (ii = 0; ii < packet_count; ii++) { + int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; + readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging + accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; + + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + gyro_bias[0] += (int32_t) gyro_temp[0]; + gyro_bias[1] += (int32_t) gyro_temp[1]; + gyro_bias[2] += (int32_t) gyro_temp[2]; + + } + accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t) packet_count; + accel_bias[2] /= (int32_t) packet_count; + gyro_bias[0] /= (int32_t) packet_count; + gyro_bias[1] /= (int32_t) packet_count; + gyro_bias[2] /= (int32_t) packet_count; + + if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation + else {accel_bias[2] += (int32_t) accelsensitivity;} + + // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; + + /// Push gyro biases to hardware registers + /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); + writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); + writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); + writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); + */ + dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction + dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + + // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain + // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold + // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature + // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that + // the accelerometer biases calculated above must be divided by 8. + + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis + + for(ii = 0; ii < 3; ii++) { + if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + } + + // Construct total accelerometer bias, including calculated average accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFF; + data[1] = (accel_bias_reg[0]) & 0xFF; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFF; + data[3] = (accel_bias_reg[1]) & 0xFF; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFF; + data[5] = (accel_bias_reg[2]) & 0xFF; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + + // Apparently this is not working for the acceleration biases in the MPU-9250 + // Are we handling the temperature correction bit properly? + // Push accelerometer biases to hardware registers + /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); + writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); + writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); + writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); + writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); + writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); + */ + // Output scaled accelerometer biases for manual subtraction in the main program + dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; + dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; + dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; + } + + + // Accelerometer and gyroscope self test; check calibration wrt factory settings + void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass + { + uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; + uint8_t selfTest[6]; + int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; + float factoryTrim[6]; + uint8_t FS = 0; + + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g + + for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer + + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings + aAvg[ii] /= 200; + gAvg[ii] /= 200; + } + + // Configure the accelerometer for self-test + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s + wait_ms(25); // Delay a while to let the device stabilize + + for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer + + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value + gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; + gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; + } + + for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings + aSTAvg[ii] /= 200; + gSTAvg[ii] /= 200; + } + + // Configure the gyro and accelerometer for normal operation + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); + //delay(25); // Delay a while to let the device stabilize + wait_ms(25); // Delay a while to let the device stabilize + + // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg + selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results + selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results + selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results + selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results + selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results + selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results + + // Retrieve factory self-test value from self-test code reads + factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation + factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation + factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation + factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation + factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation + factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation + + // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response + // To get percent, must multiply by 100 + for (int i = 0; i < 3; i++) { + destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences + destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences + } + } + + + + void getCompassOrientation(float * orient){ // Obtains the orientation of the device in degrees. 0 degrees North. 180 degrees South. + /* + Remember that it is the earth's rotational axis that defines the geographic north and south poles that we use for map references. + It turns out that there is a discrepancy of about 11.5 degrees between the geographic poles and the magnetic poles. The last is + what the magnetometer will read. A value, called the declination angle, can be applied to the magnetic direction to correct for this. + On Valencia (Spain) this value is about 0 degrees. + */ + + // First of all measure 3 axis magnetometer values (only X and Y axis is used): + readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + if (I2Cstate == 0){ // no error on I2C + I2Cstate = 1; + magn_x = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + magn_y = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + } + + // Now obtains the orientation value: + if (magn_y>0) + orient[0] = 90.0 - (float) ( atan(magn_x/magn_y)*180/M_PI ); + else if (magn_y<0) + orient[0] = 270.0 - (float) ( atan(magn_x/magn_y)*180/M_PI ); + else if (magn_y == 0){ + if (magn_x<0) + orient[0] = 180.0; + else + orient[0] = 0.0; + } + } + + + + + + +// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" +// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) +// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute +// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. +// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms +// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! + void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) + { + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability + float norm; + float hx, hy, _2bx, _2bz; + float s1, s2, s3, s4; + float qDot1, qDot2, qDot3, qDot4; + + // Auxiliary variables to avoid repeated arithmetic + float _2q1mx; + float _2q1my; + float _2q1mz; + float _2q2mx; + float _4bx; + float _4bz; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; + float _2q1q3 = 2.0f * q1 * q3; + float _2q3q4 = 2.0f * q3 * q4; + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f/norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Normalise magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f/norm; + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + _2q1mx = 2.0f * q1 * mx; + _2q1my = 2.0f * q1 * my; + _2q1mz = 2.0f * q1 * mz; + _2q2mx = 2.0f * q2 * mx; + hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; + hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; + _2bx = sqrt(hx * hx + hy * hy); + _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; + _4bx = 2.0f * _2bx; + _4bz = 2.0f * _2bz; + + // Gradient decent algorithm corrective step + s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude + norm = 1.0f/norm; + s1 *= norm; + s2 *= norm; + s3 *= norm; + s4 *= norm; + + // Compute rate of change of quaternion + qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; + qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; + qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; + qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; + + // Integrate to yield quaternion + q1 += qDot1 * deltat; + q2 += qDot2 * deltat; + q3 += qDot3 * deltat; + q4 += qDot4 * deltat; + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion + norm = 1.0f/norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; + + } + + + + // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and + // measured ones. + void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) + { + float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability + float norm; + float hx, hy, bx, bz; + float vx, vy, vz, wx, wy, wz; + float ex, ey, ez; + float pa, pb, pc; + + // Auxiliary variables to avoid repeated arithmetic + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalise accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f / norm; // use reciprocal for division + ax *= norm; + ay *= norm; + az *= norm; + + // Normalise magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + if (norm == 0.0f) return; // handle NaN + norm = 1.0f / norm; // use reciprocal for division + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); + hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); + bx = sqrt((hx * hx) + (hy * hy)); + bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); + + // Estimated direction of gravity and magnetic field + vx = 2.0f * (q2q4 - q1q3); + vy = 2.0f * (q1q2 + q3q4); + vz = q1q1 - q2q2 - q3q3 + q4q4; + wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); + wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); + wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); + + // Error is cross product between estimated direction and measured direction of gravity + ex = (ay * vz - az * vy) + (my * wz - mz * wy); + ey = (az * vx - ax * vz) + (mz * wx - mx * wz); + ez = (ax * vy - ay * vx) + (mx * wy - my * wx); + if (Ki > 0.0f) + { + eInt[0] += ex; // accumulate integral error + eInt[1] += ey; + eInt[2] += ez; + } + else + { + eInt[0] = 0.0f; // prevent integral wind up + eInt[1] = 0.0f; + eInt[2] = 0.0f; + } + + // Apply feedback terms + gx = gx + Kp * ex + Ki * eInt[0]; + gy = gy + Kp * ey + Ki * eInt[1]; + gz = gz + Kp * ez + Ki * eInt[2]; + + // Integrate rate of change of quaternion + pa = q2; + pb = q3; + pc = q4; + q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); + q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); + q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); + q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); + + // Normalise quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); + norm = 1.0f / norm; + q[0] = q1 * norm; + q[1] = q2 * norm; + q[2] = q3 * norm; + q[3] = q4 * norm; + + } + }; +#endif \ No newline at end of file