![](/media/cache/group/nUCLEO.png.50x50_q85.jpg)
MP3 PLAYER
Dependencies: DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed
Fork of B18_MP3_PLAYER by
main.cpp
- Committer:
- PKnevermind
- Date:
- 2015-12-08
- Revision:
- 2:c4b198e96ded
- Parent:
- 1:28ecafb2b832
- Child:
- 3:c58fe0902900
File content as of revision 2:c4b198e96ded:
#include "mbed.h" #include "player.h" #include "DebouncedInterrupt.h" //#include "MPU9250.h" #include "SPI_TFT_ILI9341.h" #include "stdio.h" #include "string" #include "Arial12x12.h" #include "Arial24x23.h" #include "Arial28x28.h" #include "font_big.h" DigitalIn Mode(A5); extern char list[20][50]; //song list extern unsigned char vlume; //vlume extern unsigned char vlumeflag; //set vlume flag extern char index; //song play index extern char index_MAX; //how many song in all extern playerStatetype playerState; Serial pc(SERIAL_TX, SERIAL_RX); Player player; DebouncedInterrupt KEY_PS(D3); InterruptIn KEY_Next(D4); extern unsigned char p1[]; extern unsigned char p2[]; extern unsigned char p3[]; int mark=10,list_nowplay=0; SPI_TFT_ILI9341 TFT(PA_7,PA_6,PA_5,PA_13,PA_14,PA_15,"TFT"); // mosi, miso, sclk, cs, reset, dc float sum = 0; uint32_t sumCount = 0; char buffer[14]; uint8_t dato_leido[2]; uint8_t whoami; void riseFlip() { if(playerState == PS_PAUSE)playerState = PS_PLAY; else playerState = PS_PAUSE; //a=!a; } void letplay() { TFT.cls(); TFT.foreground(White); TFT.background(Black); TFT.cls(); TFT.set_orientation(1); TFT.Bitmap(60,1,200,173,p1); } void angry() { TFT.cls(); TFT.foreground(White); TFT.background(Black); TFT.cls(); TFT.set_orientation(1); TFT.Bitmap(60,1,200,173,p2); } void cry() { TFT.cls(); TFT.foreground(White); TFT.background(Black); TFT.cls(); TFT.set_orientation(1); TFT.Bitmap(60,1,200,173,p3); } void print_list() { int i=0,j=0; TFT.claim(stdout); TFT.cls(); TFT.foreground(White); TFT.background(Black); TFT.cls(); TFT.set_orientation(3); TFT.set_font((unsigned char*) Arial28x28); TFT.locate(150,120); TFT.printf("Manual Mode:"); TFT.cls(); TFT.set_orientation(3); TFT.set_font((unsigned char*) Arial12x12); //list[5]='\0'; do { TFT.locate(5,j); TFT.printf("%2d . %s\r\n", i,list[i]); i++; j=j+23; } while(i<5); } void Next() { playerState = PS_STOP; } int main() { KEY_PS.attach(&riseFlip ,IRQ_RISE ,100); KEY_Next.fall(&Next); if(Mode.read() == 0) { player.begin(); print_list(); while(1) { player.playFile(list[index]); } } } /*//___ Set up I2C: use fast (400 kHz) I2C ___ i2c.frequency(400000); pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); t.start(); // Timer ON // Read the WHO_AM_I register, this is a good test of communication whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); if (I2Cstate != 0) // error on I2C pc.printf("I2C failure while reading WHO_AM_I register"); if (whoami == 0x71) // WHO_AM_I should always be 0x71 { pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); pc.printf("MPU9250 is online...\n\r"); sprintf(buffer, "0x%x", whoami); wait(1); mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers pc.printf("x gyro bias = %f\n\r", gyroBias[0]); pc.printf("y gyro bias = %f\n\r", gyroBias[1]); pc.printf("z gyro bias = %f\n\r", gyroBias[2]); pc.printf("x accel bias = %f\n\r", accelBias[0]); pc.printf("y accel bias = %f\n\r", accelBias[1]); pc.printf("z accel bias = %f\n\r", accelBias[2]); wait(2); // Initialize device for active mode read of acclerometer, gyroscope, and temperature mpu9250.initMPU9250(); pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. mpu9250.initAK8963(magCalibration); pc.printf("AK8963 initialized for active data mode....\n\r"); pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); wait(1); } else // Connection failure { pc.printf("Could not connect to MPU9250: \n\r"); pc.printf("%#x \n", whoami); sprintf(buffer, "WHO_AM_I 0x%x", whoami); while(1) ; // Loop forever if communication doesn't happen } mpu9250.getAres(); // Get accelerometer sensitivity mpu9250.getGres(); // Get gyro sensitivity mpu9250.getMres(); // Get magnetometer sensitivity pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated magbias[1] = +120.; // User environmental x-axis correction in milliGauss magbias[2] = +125.; // User environmental x-axis correction in milliGauss while(1) { // If intPin goes high, all data registers have new data if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt mpu9250.readAccelData(accelCount); // Read the x/y/z adc values // Now we'll calculate the accleration value into actual g's if (I2Cstate != 0) //error on I2C pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); else{ // I2C read or write ok I2Cstate = 1; ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set ay = (float)accelCount[1]*aRes - accelBias[1]; az = (float)accelCount[2]*aRes - accelBias[2]; } mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values // Calculate the gyro value into actual degrees per second if (I2Cstate != 0) //error on I2C pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); else{ // I2C read or write ok I2Cstate = 1; gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set gy = (float)gyroCount[1]*gRes - gyroBias[1]; gz = (float)gyroCount[2]*gRes - gyroBias[2]; } mpu9250.readMagData(magCount); // Read the x/y/z adc values // Calculate the magnetometer values in milliGauss // Include factory calibration per data sheet and user environmental corrections if (I2Cstate != 0) //error on I2C pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); else{ // I2C read or write ok I2Cstate = 1; mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; } mpu9250.getCompassOrientation(orientation); } Now = t.read_us(); deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update lastUpdate = Now; sum += deltat; sumCount++; // Pass gyro rate as rad/s // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); // Serial print and/or display at 1.5 s rate independent of data rates delt_t = t.read_ms() - count; if (delt_t > 1500) { // update LCD once per half-second independent of read rate pc.printf("ax = %f", 1000*ax); pc.printf(" ay = %f", 1000*ay); pc.printf(" az = %f mg\n\r", 1000*az); pc.printf("gx = %f", gx); pc.printf(" gy = %f", gy); pc.printf(" gz = %f deg/s\n\r", gz); pc.printf("mx = %f", mx); pc.printf(" my = %f", my); pc.printf(" mz = %f mG\n\r", mz); tempCount = mpu9250.readTempData(); // Read the adc values if (I2Cstate != 0) //error on I2C pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); else{ // I2C read or write ok I2Cstate = 1; temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade pc.printf(" temperature = %f C\n\r", temperature); } pc.printf("q0 = %f\n\r", q[0]); pc.printf("q1 = %f\n\r", q[1]); pc.printf("q2 = %f\n\r", q[2]); pc.printf("q3 = %f\n\r", q[3]); pc.printf("Compass orientation: %f\n", orientation[0]); // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); pitch *= 180.0f / PI; yaw *= 180.0f / PI; yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 roll *= 180.0f / PI; /* pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); pc.printf("average rate = %f\n\r", (float) sumCount/sum); */ /*myled= !myled; count = t.read_ms(); if(count > 1<<21) { t.start(); // start the timer over again if ~30 minutes has passed count = 0; deltat= 0; lastUpdate = t.read_us(); } sum = 0; sumCount = 0; } }*/