MP3 PLAYER
Dependencies: DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed
Fork of B18_MP3_PLAYER by
Diff: main11.h
- Revision:
- 2:c4b198e96ded
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main11.h Tue Dec 08 19:52:20 2015 +0000 @@ -0,0 +1,229 @@ +/***** + Algorithm based on MPU-9250_Snowda program. It has been modified by Josué Olmeda Castelló for imasD Tecnología. + + This algorithm calibrates and reads data from accelerometer, gyroscope, magnetometer and the + internal temperature sensor. The lecture is made each time has a new mesured value (both gyro and accel data). + A comunication with a computer is made using serial interface. The user can see the data measured with 1 second update rate. + + This algorithm uses the STM32L152 development board and the MPU-9250 9-axis InvenSense movement sensor. The communication + between both devices is made through I2C serial interface. + + AD0 should be connected to GND. + + 04/05/2015 +*****/ + +#include "mbed.h" +#include "MPU9250.h" + + +Serial pc(SERIAL_TX, SERIAL_RX); // Huyperterminal default config: 9600 bauds, 8-bit data, 1 stop bit, no parity +MPU9250 mpu9250; +Timer t; +//DigitalOut myled(LED1); + +float sum = 0; +uint32_t sumCount = 0; +char buffer[14]; +uint8_t dato_leido[2]; +uint8_t whoami; + +int main() { + + //___ Set up I2C: use fast (400 kHz) I2C ___ + i2c.frequency(400000); + + pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + + t.start(); // Timer ON + + // Read the WHO_AM_I register, this is a good test of communication + whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); + + pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); + if (I2Cstate != 0) // error on I2C + pc.printf("I2C failure while reading WHO_AM_I register"); + + if (whoami == 0x71) // WHO_AM_I should always be 0x71 + { + pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); + pc.printf("MPU9250 is online...\n\r"); + sprintf(buffer, "0x%x", whoami); + wait(1); + + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test) + pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); + pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); + pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); + pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); + pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); + pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); + + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers + pc.printf("x gyro bias = %f\n\r", gyroBias[0]); + pc.printf("y gyro bias = %f\n\r", gyroBias[1]); + pc.printf("z gyro bias = %f\n\r", gyroBias[2]); + pc.printf("x accel bias = %f\n\r", accelBias[0]); + pc.printf("y accel bias = %f\n\r", accelBias[1]); + pc.printf("z accel bias = %f\n\r", accelBias[2]); + wait(2); + + // Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initMPU9250(); + pc.printf("MPU9250 initialized for active data mode....\n\r"); + + // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz. + mpu9250.initAK8963(magCalibration); + pc.printf("AK8963 initialized for active data mode....\n\r"); + pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); + pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); + if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); + if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); + if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); + wait(1); + } + + else // Connection failure + { + pc.printf("Could not connect to MPU9250: \n\r"); + pc.printf("%#x \n", whoami); + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + while(1) ; // Loop forever if communication doesn't happen + } + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity + pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); + pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); + pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); + magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated + magbias[1] = +120.; // User environmental x-axis correction in milliGauss + magbias[2] = +125.; // User environmental x-axis correction in milliGauss + + while(1) { + + // If intPin goes high, all data registers have new data + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + } + + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + } + + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + } + + mpu9250.getCompassOrientation(orientation); + } + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + sum += deltat; + sumCount++; + + // Pass gyro rate as rad/s + // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + + + // Serial print and/or display at 1.5 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 1500) { // update LCD once per half-second independent of read rate + pc.printf("ax = %f", 1000*ax); + pc.printf(" ay = %f", 1000*ay); + pc.printf(" az = %f mg\n\r", 1000*az); + pc.printf("gx = %f", gx); + pc.printf(" gy = %f", gy); + pc.printf(" gz = %f deg/s\n\r", gz); + pc.printf("mx = %f", mx); + pc.printf(" my = %f", my); + pc.printf(" mz = %f mG\n\r", mz); + + + tempCount = mpu9250.readTempData(); // Read the adc values + if (I2Cstate != 0) //error on I2C + pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate); + else{ // I2C read or write ok + I2Cstate = 1; + temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade + pc.printf(" temperature = %f C\n\r", temperature); + } + pc.printf("q0 = %f\n\r", q[0]); + pc.printf("q1 = %f\n\r", q[1]); + pc.printf("q2 = %f\n\r", q[2]); + pc.printf("q3 = %f\n\r", q[3]); + + pc.printf("Compass orientation: %f\n", orientation[0]); + + + + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + roll *= 180.0f / PI; + + /* + pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); + pc.printf("average rate = %f\n\r", (float) sumCount/sum); + */ + + + myled= !myled; + count = t.read_ms(); + + if(count > 1<<21) { + t.start(); // start the timer over again if ~30 minutes has passed + count = 0; + deltat= 0; + lastUpdate = t.read_us(); + } + sum = 0; + sumCount = 0; + } + } +} \ No newline at end of file