MP3 PLAYER

Dependencies:   DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed

Fork of B18_MP3_PLAYER by Pakorn Vongseela

Committer:
PKnevermind
Date:
Tue Dec 08 19:52:20 2015 +0000
Revision:
2:c4b198e96ded
Parent:
1:28ecafb2b832
Child:
3:c58fe0902900
....

Who changed what in which revision?

UserRevisionLine numberNew contents of line
PKnevermind 2:c4b198e96ded 1 /*****
PKnevermind 2:c4b198e96ded 2 Library based on MPU-9250_Snowda library. It has been modified by Josué Olmeda Castelló for imasD Tecnología. It uses the
PKnevermind 2:c4b198e96ded 3 mbed I2C class for comunications between the sensor and the master controller.
PKnevermind 2:c4b198e96ded 4 Methods related with data filtering have not been tested.
PKnevermind 2:c4b198e96ded 5 AD0 should be connected to GND.
PKnevermind 2:c4b198e96ded 6 04/05/2015
PKnevermind 2:c4b198e96ded 7 *****/
PKnevermind 2:c4b198e96ded 8
PKnevermind 1:28ecafb2b832 9 #ifndef MPU9250_H
PKnevermind 1:28ecafb2b832 10 #define MPU9250_H
PKnevermind 1:28ecafb2b832 11
PKnevermind 1:28ecafb2b832 12 #include "mbed.h"
PKnevermind 1:28ecafb2b832 13 #include "math.h"
PKnevermind 2:c4b198e96ded 14
PKnevermind 2:c4b198e96ded 15 #define M_PI 3.14159265358979323846
PKnevermind 1:28ecafb2b832 16
PKnevermind 1:28ecafb2b832 17 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
PKnevermind 1:28ecafb2b832 18 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
PKnevermind 1:28ecafb2b832 19 //
PKnevermind 1:28ecafb2b832 20 //Magnetometer Registers
PKnevermind 1:28ecafb2b832 21 #define AK8963_ADDRESS 0x0C<<1
PKnevermind 1:28ecafb2b832 22 #define WHO_AM_I_AK8963 0x00 // should return 0x48
PKnevermind 1:28ecafb2b832 23 #define INFO 0x01
PKnevermind 1:28ecafb2b832 24 #define AK8963_ST1 0x02 // data ready status bit 0
PKnevermind 1:28ecafb2b832 25 #define AK8963_XOUT_L 0x03 // data
PKnevermind 1:28ecafb2b832 26 #define AK8963_XOUT_H 0x04
PKnevermind 1:28ecafb2b832 27 #define AK8963_YOUT_L 0x05
PKnevermind 1:28ecafb2b832 28 #define AK8963_YOUT_H 0x06
PKnevermind 1:28ecafb2b832 29 #define AK8963_ZOUT_L 0x07
PKnevermind 1:28ecafb2b832 30 #define AK8963_ZOUT_H 0x08
PKnevermind 1:28ecafb2b832 31 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
PKnevermind 1:28ecafb2b832 32 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
PKnevermind 1:28ecafb2b832 33 #define AK8963_ASTC 0x0C // Self test control
PKnevermind 1:28ecafb2b832 34 #define AK8963_I2CDIS 0x0F // I2C disable
PKnevermind 1:28ecafb2b832 35 #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
PKnevermind 1:28ecafb2b832 36 #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
PKnevermind 1:28ecafb2b832 37 #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
PKnevermind 1:28ecafb2b832 38
PKnevermind 1:28ecafb2b832 39 #define SELF_TEST_X_GYRO 0x00
PKnevermind 1:28ecafb2b832 40 #define SELF_TEST_Y_GYRO 0x01
PKnevermind 1:28ecafb2b832 41 #define SELF_TEST_Z_GYRO 0x02
PKnevermind 1:28ecafb2b832 42
PKnevermind 1:28ecafb2b832 43 /*#define X_FINE_GAIN 0x03 // [7:0] fine gain
PKnevermind 1:28ecafb2b832 44 #define Y_FINE_GAIN 0x04
PKnevermind 1:28ecafb2b832 45 #define Z_FINE_GAIN 0x05
PKnevermind 1:28ecafb2b832 46 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
PKnevermind 1:28ecafb2b832 47 #define XA_OFFSET_L_TC 0x07
PKnevermind 1:28ecafb2b832 48 #define YA_OFFSET_H 0x08
PKnevermind 1:28ecafb2b832 49 #define YA_OFFSET_L_TC 0x09
PKnevermind 1:28ecafb2b832 50 #define ZA_OFFSET_H 0x0A
PKnevermind 1:28ecafb2b832 51 #define ZA_OFFSET_L_TC 0x0B */
PKnevermind 1:28ecafb2b832 52
PKnevermind 1:28ecafb2b832 53 #define SELF_TEST_X_ACCEL 0x0D
PKnevermind 1:28ecafb2b832 54 #define SELF_TEST_Y_ACCEL 0x0E
PKnevermind 1:28ecafb2b832 55 #define SELF_TEST_Z_ACCEL 0x0F
PKnevermind 1:28ecafb2b832 56
PKnevermind 1:28ecafb2b832 57 #define SELF_TEST_A 0x10
PKnevermind 1:28ecafb2b832 58
PKnevermind 1:28ecafb2b832 59 #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
PKnevermind 1:28ecafb2b832 60 #define XG_OFFSET_L 0x14
PKnevermind 1:28ecafb2b832 61 #define YG_OFFSET_H 0x15
PKnevermind 1:28ecafb2b832 62 #define YG_OFFSET_L 0x16
PKnevermind 1:28ecafb2b832 63 #define ZG_OFFSET_H 0x17
PKnevermind 1:28ecafb2b832 64 #define ZG_OFFSET_L 0x18
PKnevermind 1:28ecafb2b832 65 #define SMPLRT_DIV 0x19
PKnevermind 1:28ecafb2b832 66 #define CONFIG 0x1A
PKnevermind 1:28ecafb2b832 67 #define GYRO_CONFIG 0x1B
PKnevermind 1:28ecafb2b832 68 #define ACCEL_CONFIG 0x1C
PKnevermind 1:28ecafb2b832 69 #define ACCEL_CONFIG2 0x1D
PKnevermind 1:28ecafb2b832 70 #define LP_ACCEL_ODR 0x1E
PKnevermind 1:28ecafb2b832 71 #define WOM_THR 0x1F
PKnevermind 1:28ecafb2b832 72
PKnevermind 1:28ecafb2b832 73 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
PKnevermind 1:28ecafb2b832 74 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
PKnevermind 1:28ecafb2b832 75 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
PKnevermind 1:28ecafb2b832 76
PKnevermind 1:28ecafb2b832 77 #define FIFO_EN 0x23
PKnevermind 1:28ecafb2b832 78 #define I2C_MST_CTRL 0x24
PKnevermind 1:28ecafb2b832 79 #define I2C_SLV0_ADDR 0x25
PKnevermind 1:28ecafb2b832 80 #define I2C_SLV0_REG 0x26
PKnevermind 1:28ecafb2b832 81 #define I2C_SLV0_CTRL 0x27
PKnevermind 1:28ecafb2b832 82 #define I2C_SLV1_ADDR 0x28
PKnevermind 1:28ecafb2b832 83 #define I2C_SLV1_REG 0x29
PKnevermind 1:28ecafb2b832 84 #define I2C_SLV1_CTRL 0x2A
PKnevermind 1:28ecafb2b832 85 #define I2C_SLV2_ADDR 0x2B
PKnevermind 1:28ecafb2b832 86 #define I2C_SLV2_REG 0x2C
PKnevermind 1:28ecafb2b832 87 #define I2C_SLV2_CTRL 0x2D
PKnevermind 1:28ecafb2b832 88 #define I2C_SLV3_ADDR 0x2E
PKnevermind 1:28ecafb2b832 89 #define I2C_SLV3_REG 0x2F
PKnevermind 1:28ecafb2b832 90 #define I2C_SLV3_CTRL 0x30
PKnevermind 1:28ecafb2b832 91 #define I2C_SLV4_ADDR 0x31
PKnevermind 1:28ecafb2b832 92 #define I2C_SLV4_REG 0x32
PKnevermind 1:28ecafb2b832 93 #define I2C_SLV4_DO 0x33
PKnevermind 1:28ecafb2b832 94 #define I2C_SLV4_CTRL 0x34
PKnevermind 1:28ecafb2b832 95 #define I2C_SLV4_DI 0x35
PKnevermind 1:28ecafb2b832 96 #define I2C_MST_STATUS 0x36
PKnevermind 1:28ecafb2b832 97 #define INT_PIN_CFG 0x37
PKnevermind 1:28ecafb2b832 98 #define INT_ENABLE 0x38
PKnevermind 1:28ecafb2b832 99 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
PKnevermind 1:28ecafb2b832 100 #define INT_STATUS 0x3A
PKnevermind 1:28ecafb2b832 101 #define ACCEL_XOUT_H 0x3B
PKnevermind 1:28ecafb2b832 102 #define ACCEL_XOUT_L 0x3C
PKnevermind 1:28ecafb2b832 103 #define ACCEL_YOUT_H 0x3D
PKnevermind 1:28ecafb2b832 104 #define ACCEL_YOUT_L 0x3E
PKnevermind 1:28ecafb2b832 105 #define ACCEL_ZOUT_H 0x3F
PKnevermind 1:28ecafb2b832 106 #define ACCEL_ZOUT_L 0x40
PKnevermind 1:28ecafb2b832 107 #define TEMP_OUT_H 0x41
PKnevermind 1:28ecafb2b832 108 #define TEMP_OUT_L 0x42
PKnevermind 1:28ecafb2b832 109 #define GYRO_XOUT_H 0x43
PKnevermind 1:28ecafb2b832 110 #define GYRO_XOUT_L 0x44
PKnevermind 1:28ecafb2b832 111 #define GYRO_YOUT_H 0x45
PKnevermind 1:28ecafb2b832 112 #define GYRO_YOUT_L 0x46
PKnevermind 1:28ecafb2b832 113 #define GYRO_ZOUT_H 0x47
PKnevermind 1:28ecafb2b832 114 #define GYRO_ZOUT_L 0x48
PKnevermind 1:28ecafb2b832 115 #define EXT_SENS_DATA_00 0x49
PKnevermind 1:28ecafb2b832 116 #define EXT_SENS_DATA_01 0x4A
PKnevermind 1:28ecafb2b832 117 #define EXT_SENS_DATA_02 0x4B
PKnevermind 1:28ecafb2b832 118 #define EXT_SENS_DATA_03 0x4C
PKnevermind 1:28ecafb2b832 119 #define EXT_SENS_DATA_04 0x4D
PKnevermind 1:28ecafb2b832 120 #define EXT_SENS_DATA_05 0x4E
PKnevermind 1:28ecafb2b832 121 #define EXT_SENS_DATA_06 0x4F
PKnevermind 1:28ecafb2b832 122 #define EXT_SENS_DATA_07 0x50
PKnevermind 1:28ecafb2b832 123 #define EXT_SENS_DATA_08 0x51
PKnevermind 1:28ecafb2b832 124 #define EXT_SENS_DATA_09 0x52
PKnevermind 1:28ecafb2b832 125 #define EXT_SENS_DATA_10 0x53
PKnevermind 1:28ecafb2b832 126 #define EXT_SENS_DATA_11 0x54
PKnevermind 1:28ecafb2b832 127 #define EXT_SENS_DATA_12 0x55
PKnevermind 1:28ecafb2b832 128 #define EXT_SENS_DATA_13 0x56
PKnevermind 1:28ecafb2b832 129 #define EXT_SENS_DATA_14 0x57
PKnevermind 1:28ecafb2b832 130 #define EXT_SENS_DATA_15 0x58
PKnevermind 1:28ecafb2b832 131 #define EXT_SENS_DATA_16 0x59
PKnevermind 1:28ecafb2b832 132 #define EXT_SENS_DATA_17 0x5A
PKnevermind 1:28ecafb2b832 133 #define EXT_SENS_DATA_18 0x5B
PKnevermind 1:28ecafb2b832 134 #define EXT_SENS_DATA_19 0x5C
PKnevermind 1:28ecafb2b832 135 #define EXT_SENS_DATA_20 0x5D
PKnevermind 1:28ecafb2b832 136 #define EXT_SENS_DATA_21 0x5E
PKnevermind 1:28ecafb2b832 137 #define EXT_SENS_DATA_22 0x5F
PKnevermind 1:28ecafb2b832 138 #define EXT_SENS_DATA_23 0x60
PKnevermind 1:28ecafb2b832 139 #define MOT_DETECT_STATUS 0x61
PKnevermind 1:28ecafb2b832 140 #define I2C_SLV0_DO 0x63
PKnevermind 1:28ecafb2b832 141 #define I2C_SLV1_DO 0x64
PKnevermind 1:28ecafb2b832 142 #define I2C_SLV2_DO 0x65
PKnevermind 1:28ecafb2b832 143 #define I2C_SLV3_DO 0x66
PKnevermind 1:28ecafb2b832 144 #define I2C_MST_DELAY_CTRL 0x67
PKnevermind 1:28ecafb2b832 145 #define SIGNAL_PATH_RESET 0x68
PKnevermind 1:28ecafb2b832 146 #define MOT_DETECT_CTRL 0x69
PKnevermind 1:28ecafb2b832 147 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
PKnevermind 1:28ecafb2b832 148 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
PKnevermind 1:28ecafb2b832 149 #define PWR_MGMT_2 0x6C
PKnevermind 1:28ecafb2b832 150 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
PKnevermind 1:28ecafb2b832 151 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
PKnevermind 1:28ecafb2b832 152 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
PKnevermind 1:28ecafb2b832 153 #define DMP_REG_1 0x70
PKnevermind 1:28ecafb2b832 154 #define DMP_REG_2 0x71
PKnevermind 1:28ecafb2b832 155 #define FIFO_COUNTH 0x72
PKnevermind 1:28ecafb2b832 156 #define FIFO_COUNTL 0x73
PKnevermind 1:28ecafb2b832 157 #define FIFO_R_W 0x74
PKnevermind 1:28ecafb2b832 158 #define WHO_AM_I_MPU9250 0x75 // Should return 0x71
PKnevermind 1:28ecafb2b832 159 #define XA_OFFSET_H 0x77
PKnevermind 1:28ecafb2b832 160 #define XA_OFFSET_L 0x78
PKnevermind 1:28ecafb2b832 161 #define YA_OFFSET_H 0x7A
PKnevermind 1:28ecafb2b832 162 #define YA_OFFSET_L 0x7B
PKnevermind 1:28ecafb2b832 163 #define ZA_OFFSET_H 0x7D
PKnevermind 1:28ecafb2b832 164 #define ZA_OFFSET_L 0x7E
PKnevermind 1:28ecafb2b832 165
PKnevermind 1:28ecafb2b832 166 // Using the MSENSR-9250 breakout board, ADO is set to 0
PKnevermind 1:28ecafb2b832 167 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
PKnevermind 1:28ecafb2b832 168 //mbed uses the eight-bit device address, so shift seven-bit addresses left by one!
PKnevermind 1:28ecafb2b832 169 #define ADO 0
PKnevermind 1:28ecafb2b832 170 #if ADO
PKnevermind 1:28ecafb2b832 171 #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1
PKnevermind 1:28ecafb2b832 172 #else
PKnevermind 1:28ecafb2b832 173 #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0
PKnevermind 1:28ecafb2b832 174 #endif
PKnevermind 1:28ecafb2b832 175
PKnevermind 1:28ecafb2b832 176 // Set initial input parameters
PKnevermind 1:28ecafb2b832 177 enum Ascale {
PKnevermind 1:28ecafb2b832 178 AFS_2G = 0,
PKnevermind 1:28ecafb2b832 179 AFS_4G,
PKnevermind 1:28ecafb2b832 180 AFS_8G,
PKnevermind 1:28ecafb2b832 181 AFS_16G
PKnevermind 1:28ecafb2b832 182 };
PKnevermind 1:28ecafb2b832 183
PKnevermind 1:28ecafb2b832 184 enum Gscale {
PKnevermind 1:28ecafb2b832 185 GFS_250DPS = 0,
PKnevermind 1:28ecafb2b832 186 GFS_500DPS,
PKnevermind 1:28ecafb2b832 187 GFS_1000DPS,
PKnevermind 1:28ecafb2b832 188 GFS_2000DPS
PKnevermind 1:28ecafb2b832 189 };
PKnevermind 1:28ecafb2b832 190
PKnevermind 1:28ecafb2b832 191 enum Mscale {
PKnevermind 1:28ecafb2b832 192 MFS_14BITS = 0, // 0.6 mG per LSB
PKnevermind 1:28ecafb2b832 193 MFS_16BITS // 0.15 mG per LSB
PKnevermind 1:28ecafb2b832 194 };
PKnevermind 1:28ecafb2b832 195
PKnevermind 1:28ecafb2b832 196 uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
PKnevermind 1:28ecafb2b832 197 uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
PKnevermind 1:28ecafb2b832 198 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
PKnevermind 1:28ecafb2b832 199 uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
PKnevermind 1:28ecafb2b832 200 float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
PKnevermind 2:c4b198e96ded 201 int I2Cstate=1; // If I2Cstate!=0, I2C read or write operation has failed
PKnevermind 1:28ecafb2b832 202
PKnevermind 1:28ecafb2b832 203 //Set up I2C, (SDA,SCL)
PKnevermind 1:28ecafb2b832 204 I2C i2c(D14, D15);
PKnevermind 1:28ecafb2b832 205
PKnevermind 2:c4b198e96ded 206 DigitalOut myled(LED1);
PKnevermind 1:28ecafb2b832 207
PKnevermind 1:28ecafb2b832 208 // Pin definitions
PKnevermind 2:c4b198e96ded 209 //int intPin = 3; // These can be changed, 2 and 3 are the Arduinos ext int pins
PKnevermind 1:28ecafb2b832 210
PKnevermind 1:28ecafb2b832 211 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
PKnevermind 1:28ecafb2b832 212 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
PKnevermind 1:28ecafb2b832 213 int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
PKnevermind 1:28ecafb2b832 214 float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias
PKnevermind 1:28ecafb2b832 215 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
PKnevermind 1:28ecafb2b832 216 float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
PKnevermind 1:28ecafb2b832 217 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
PKnevermind 1:28ecafb2b832 218 float temperature;
PKnevermind 1:28ecafb2b832 219 float SelfTest[6];
PKnevermind 2:c4b198e96ded 220 float orientation[1];
PKnevermind 2:c4b198e96ded 221 float magn_x, magn_y;
PKnevermind 1:28ecafb2b832 222
PKnevermind 1:28ecafb2b832 223 int delt_t = 0; // used to control display output rate
PKnevermind 1:28ecafb2b832 224 int count = 0; // used to control display output rate
PKnevermind 1:28ecafb2b832 225
PKnevermind 1:28ecafb2b832 226 // parameters for 6 DoF sensor fusion calculations
PKnevermind 1:28ecafb2b832 227 float PI = 3.14159265358979323846f;
PKnevermind 1:28ecafb2b832 228 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
PKnevermind 1:28ecafb2b832 229 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
PKnevermind 1:28ecafb2b832 230 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
PKnevermind 1:28ecafb2b832 231 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
PKnevermind 1:28ecafb2b832 232 #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
PKnevermind 1:28ecafb2b832 233 #define Ki 0.0f
PKnevermind 1:28ecafb2b832 234
PKnevermind 1:28ecafb2b832 235 float pitch, yaw, roll;
PKnevermind 1:28ecafb2b832 236 float deltat = 0.0f; // integration interval for both filter schemes
PKnevermind 1:28ecafb2b832 237 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
PKnevermind 1:28ecafb2b832 238 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
PKnevermind 1:28ecafb2b832 239 float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
PKnevermind 1:28ecafb2b832 240
PKnevermind 1:28ecafb2b832 241 class MPU9250 {
PKnevermind 1:28ecafb2b832 242
PKnevermind 1:28ecafb2b832 243 protected:
PKnevermind 1:28ecafb2b832 244
PKnevermind 1:28ecafb2b832 245 public:
PKnevermind 2:c4b198e96ded 246 //===================================================================================================================
PKnevermind 2:c4b198e96ded 247 //====== Set of useful function to access acceleration, gyroscope, and temperature data
PKnevermind 2:c4b198e96ded 248 //===================================================================================================================
PKnevermind 1:28ecafb2b832 249
PKnevermind 1:28ecafb2b832 250 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
PKnevermind 2:c4b198e96ded 251 {
PKnevermind 2:c4b198e96ded 252 char data_write[2];
PKnevermind 2:c4b198e96ded 253 data_write[0] = subAddress;
PKnevermind 2:c4b198e96ded 254 data_write[1] = data;
PKnevermind 2:c4b198e96ded 255 I2Cstate = i2c.write(address, data_write, 2, 0);
PKnevermind 2:c4b198e96ded 256 }
PKnevermind 1:28ecafb2b832 257
PKnevermind 1:28ecafb2b832 258 char readByte(uint8_t address, uint8_t subAddress)
PKnevermind 2:c4b198e96ded 259 {
PKnevermind 2:c4b198e96ded 260 char data[1]; // `data` will store the register data
PKnevermind 2:c4b198e96ded 261 char data_write[1];
PKnevermind 2:c4b198e96ded 262 data_write[0] = subAddress;
PKnevermind 2:c4b198e96ded 263 I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
PKnevermind 2:c4b198e96ded 264 I2Cstate = i2c.read(address, data, 1, 0);
PKnevermind 2:c4b198e96ded 265 return data[0];
PKnevermind 2:c4b198e96ded 266 }
PKnevermind 2:c4b198e96ded 267
PKnevermind 2:c4b198e96ded 268 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) // count=nº of bytes to read / dest=destiny where data is stored
PKnevermind 2:c4b198e96ded 269 {
PKnevermind 2:c4b198e96ded 270 char data[14];
PKnevermind 2:c4b198e96ded 271 char data_write[1];
PKnevermind 2:c4b198e96ded 272 data_write[0] = subAddress;
PKnevermind 2:c4b198e96ded 273 I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
PKnevermind 2:c4b198e96ded 274 I2Cstate = i2c.read(address, data, count, 0);
PKnevermind 2:c4b198e96ded 275 for(int ii = 0; ii < count; ii++) {
PKnevermind 2:c4b198e96ded 276 dest[ii] = data[ii];
PKnevermind 2:c4b198e96ded 277 }
PKnevermind 2:c4b198e96ded 278 }
PKnevermind 1:28ecafb2b832 279
PKnevermind 2:c4b198e96ded 280 void getMres() {
PKnevermind 2:c4b198e96ded 281 switch (Mscale)
PKnevermind 2:c4b198e96ded 282 {
PKnevermind 2:c4b198e96ded 283 // Possible magnetometer scales (and their register bit settings) are:
PKnevermind 2:c4b198e96ded 284 // 14 bit resolution (0) and 16 bit resolution (1)
PKnevermind 2:c4b198e96ded 285 case MFS_14BITS:
PKnevermind 2:c4b198e96ded 286 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
PKnevermind 2:c4b198e96ded 287 break;
PKnevermind 2:c4b198e96ded 288 case MFS_16BITS:
PKnevermind 2:c4b198e96ded 289 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
PKnevermind 2:c4b198e96ded 290 break;
PKnevermind 2:c4b198e96ded 291 }
PKnevermind 1:28ecafb2b832 292 }
PKnevermind 2:c4b198e96ded 293
PKnevermind 2:c4b198e96ded 294 void getGres() {
PKnevermind 2:c4b198e96ded 295 switch (Gscale)
PKnevermind 2:c4b198e96ded 296 {
PKnevermind 2:c4b198e96ded 297 // Possible gyro scales (and their register bit settings) are:
PKnevermind 2:c4b198e96ded 298 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
PKnevermind 2:c4b198e96ded 299 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
PKnevermind 2:c4b198e96ded 300 case GFS_250DPS:
PKnevermind 2:c4b198e96ded 301 gRes = 250.0/32768.0;
PKnevermind 2:c4b198e96ded 302 break;
PKnevermind 2:c4b198e96ded 303 case GFS_500DPS:
PKnevermind 2:c4b198e96ded 304 gRes = 500.0/32768.0;
PKnevermind 2:c4b198e96ded 305 break;
PKnevermind 2:c4b198e96ded 306 case GFS_1000DPS:
PKnevermind 2:c4b198e96ded 307 gRes = 1000.0/32768.0;
PKnevermind 2:c4b198e96ded 308 break;
PKnevermind 2:c4b198e96ded 309 case GFS_2000DPS:
PKnevermind 2:c4b198e96ded 310 gRes = 2000.0/32768.0;
PKnevermind 2:c4b198e96ded 311 break;
PKnevermind 2:c4b198e96ded 312 }
PKnevermind 2:c4b198e96ded 313 }
PKnevermind 1:28ecafb2b832 314
PKnevermind 2:c4b198e96ded 315 void getAres() {
PKnevermind 2:c4b198e96ded 316 switch (Ascale)
PKnevermind 2:c4b198e96ded 317 {
PKnevermind 2:c4b198e96ded 318 // Possible accelerometer scales (and their register bit settings) are:
PKnevermind 2:c4b198e96ded 319 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
PKnevermind 2:c4b198e96ded 320 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
PKnevermind 2:c4b198e96ded 321 case AFS_2G:
PKnevermind 2:c4b198e96ded 322 aRes = 2.0/32768.0;
PKnevermind 2:c4b198e96ded 323 break;
PKnevermind 2:c4b198e96ded 324 case AFS_4G:
PKnevermind 2:c4b198e96ded 325 aRes = 4.0/32768.0;
PKnevermind 2:c4b198e96ded 326 break;
PKnevermind 2:c4b198e96ded 327 case AFS_8G:
PKnevermind 2:c4b198e96ded 328 aRes = 8.0/32768.0;
PKnevermind 2:c4b198e96ded 329 break;
PKnevermind 2:c4b198e96ded 330 case AFS_16G:
PKnevermind 2:c4b198e96ded 331 aRes = 16.0/32768.0;
PKnevermind 2:c4b198e96ded 332 break;
PKnevermind 2:c4b198e96ded 333 }
PKnevermind 2:c4b198e96ded 334 }
PKnevermind 1:28ecafb2b832 335
PKnevermind 2:c4b198e96ded 336 void readAccelData(int16_t * destination){
PKnevermind 2:c4b198e96ded 337
PKnevermind 2:c4b198e96ded 338 uint8_t rawData[6]; // x/y/z accel register data stored here
PKnevermind 2:c4b198e96ded 339 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
PKnevermind 2:c4b198e96ded 340 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 341 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
PKnevermind 2:c4b198e96ded 342 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
PKnevermind 2:c4b198e96ded 343 }
PKnevermind 2:c4b198e96ded 344
PKnevermind 2:c4b198e96ded 345 void readGyroData(int16_t * destination){
PKnevermind 2:c4b198e96ded 346 uint8_t rawData[6]; // x/y/z gyro register data stored here
PKnevermind 2:c4b198e96ded 347 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
PKnevermind 2:c4b198e96ded 348 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 349 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
PKnevermind 2:c4b198e96ded 350 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
PKnevermind 2:c4b198e96ded 351 }
PKnevermind 1:28ecafb2b832 352
PKnevermind 2:c4b198e96ded 353 void readMagData(int16_t * destination){
PKnevermind 2:c4b198e96ded 354 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
PKnevermind 2:c4b198e96ded 355 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
PKnevermind 2:c4b198e96ded 356 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
PKnevermind 2:c4b198e96ded 357 uint8_t c = rawData[6]; // End data read by reading ST2 register
PKnevermind 2:c4b198e96ded 358 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
PKnevermind 2:c4b198e96ded 359 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 360 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
PKnevermind 2:c4b198e96ded 361 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
PKnevermind 2:c4b198e96ded 362 }
PKnevermind 2:c4b198e96ded 363 }
PKnevermind 2:c4b198e96ded 364 }
PKnevermind 2:c4b198e96ded 365
PKnevermind 2:c4b198e96ded 366 int16_t readTempData(){
PKnevermind 2:c4b198e96ded 367 uint8_t rawData[2]; // x/y/z gyro register data stored here
PKnevermind 2:c4b198e96ded 368 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
PKnevermind 2:c4b198e96ded 369 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
PKnevermind 2:c4b198e96ded 370 }
PKnevermind 1:28ecafb2b832 371
PKnevermind 2:c4b198e96ded 372 void resetMPU9250(){
PKnevermind 2:c4b198e96ded 373 // reset device
PKnevermind 2:c4b198e96ded 374 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
PKnevermind 2:c4b198e96ded 375 wait(0.1);
PKnevermind 2:c4b198e96ded 376 }
PKnevermind 2:c4b198e96ded 377
PKnevermind 2:c4b198e96ded 378 void initAK8963(float * destination){
PKnevermind 2:c4b198e96ded 379 // First extract the factory calibration for each magnetometer axis
PKnevermind 2:c4b198e96ded 380 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
PKnevermind 2:c4b198e96ded 381 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
PKnevermind 2:c4b198e96ded 382 wait(0.01);
PKnevermind 2:c4b198e96ded 383 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
PKnevermind 2:c4b198e96ded 384 wait(0.01);
PKnevermind 2:c4b198e96ded 385 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
PKnevermind 2:c4b198e96ded 386 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
PKnevermind 2:c4b198e96ded 387 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
PKnevermind 2:c4b198e96ded 388 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
PKnevermind 2:c4b198e96ded 389 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
PKnevermind 2:c4b198e96ded 390 wait(0.01);
PKnevermind 2:c4b198e96ded 391 // Configure the magnetometer for continuous read and highest resolution
PKnevermind 2:c4b198e96ded 392 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
PKnevermind 2:c4b198e96ded 393 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
PKnevermind 2:c4b198e96ded 394 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
PKnevermind 2:c4b198e96ded 395 wait(0.01);
PKnevermind 2:c4b198e96ded 396 }
PKnevermind 2:c4b198e96ded 397
PKnevermind 2:c4b198e96ded 398 void initMPU9250(){
PKnevermind 2:c4b198e96ded 399 // Initialize MPU9250 device
PKnevermind 2:c4b198e96ded 400 // wake up device
PKnevermind 2:c4b198e96ded 401 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
PKnevermind 2:c4b198e96ded 402 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
PKnevermind 2:c4b198e96ded 403
PKnevermind 2:c4b198e96ded 404 // get stable time source
PKnevermind 2:c4b198e96ded 405 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
PKnevermind 1:28ecafb2b832 406
PKnevermind 2:c4b198e96ded 407 // Configure Gyro and Accelerometer
PKnevermind 2:c4b198e96ded 408 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
PKnevermind 2:c4b198e96ded 409 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
PKnevermind 2:c4b198e96ded 410 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
PKnevermind 2:c4b198e96ded 411 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
PKnevermind 2:c4b198e96ded 412
PKnevermind 2:c4b198e96ded 413 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
PKnevermind 2:c4b198e96ded 414 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
PKnevermind 2:c4b198e96ded 415
PKnevermind 2:c4b198e96ded 416 // Set gyroscope full scale range
PKnevermind 2:c4b198e96ded 417 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
PKnevermind 2:c4b198e96ded 418 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
PKnevermind 2:c4b198e96ded 419 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
PKnevermind 2:c4b198e96ded 420 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
PKnevermind 2:c4b198e96ded 421 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
PKnevermind 2:c4b198e96ded 422
PKnevermind 2:c4b198e96ded 423 // Set accelerometer configuration
PKnevermind 2:c4b198e96ded 424 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
PKnevermind 2:c4b198e96ded 425 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
PKnevermind 2:c4b198e96ded 426 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
PKnevermind 2:c4b198e96ded 427 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
PKnevermind 2:c4b198e96ded 428
PKnevermind 2:c4b198e96ded 429 // Set accelerometer sample rate configuration
PKnevermind 2:c4b198e96ded 430 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
PKnevermind 2:c4b198e96ded 431 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
PKnevermind 2:c4b198e96ded 432 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
PKnevermind 2:c4b198e96ded 433 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
PKnevermind 2:c4b198e96ded 434 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
PKnevermind 2:c4b198e96ded 435
PKnevermind 2:c4b198e96ded 436 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
PKnevermind 2:c4b198e96ded 437 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
PKnevermind 2:c4b198e96ded 438
PKnevermind 2:c4b198e96ded 439 // Configure Interrupts and Bypass Enable
PKnevermind 2:c4b198e96ded 440 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
PKnevermind 2:c4b198e96ded 441 // can join the I2C bus and all can be controlled by the Arduino as master
PKnevermind 2:c4b198e96ded 442 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
PKnevermind 2:c4b198e96ded 443 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
PKnevermind 2:c4b198e96ded 444 }
PKnevermind 1:28ecafb2b832 445
PKnevermind 2:c4b198e96ded 446 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
PKnevermind 2:c4b198e96ded 447 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
PKnevermind 2:c4b198e96ded 448 void calibrateMPU9250(float * dest1, float * dest2)
PKnevermind 2:c4b198e96ded 449 {
PKnevermind 2:c4b198e96ded 450 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
PKnevermind 2:c4b198e96ded 451 uint16_t ii, packet_count, fifo_count;
PKnevermind 2:c4b198e96ded 452 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
PKnevermind 2:c4b198e96ded 453
PKnevermind 2:c4b198e96ded 454 // reset device, reset all registers, clear gyro and accelerometer bias registers
PKnevermind 2:c4b198e96ded 455 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
PKnevermind 2:c4b198e96ded 456 wait(0.1);
PKnevermind 2:c4b198e96ded 457
PKnevermind 2:c4b198e96ded 458 // get stable time source
PKnevermind 2:c4b198e96ded 459 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
PKnevermind 2:c4b198e96ded 460 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
PKnevermind 2:c4b198e96ded 461 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
PKnevermind 2:c4b198e96ded 462 wait(0.2);
PKnevermind 2:c4b198e96ded 463
PKnevermind 2:c4b198e96ded 464 // Configure device for bias calculation
PKnevermind 2:c4b198e96ded 465 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
PKnevermind 2:c4b198e96ded 466 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
PKnevermind 2:c4b198e96ded 467 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
PKnevermind 2:c4b198e96ded 468 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
PKnevermind 2:c4b198e96ded 469 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
PKnevermind 2:c4b198e96ded 470 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
PKnevermind 2:c4b198e96ded 471 wait(0.015);
PKnevermind 2:c4b198e96ded 472
PKnevermind 2:c4b198e96ded 473 // Configure MPU9250 gyro and accelerometer for bias calculation
PKnevermind 2:c4b198e96ded 474 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
PKnevermind 2:c4b198e96ded 475 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
PKnevermind 2:c4b198e96ded 476 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
PKnevermind 2:c4b198e96ded 477 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
PKnevermind 2:c4b198e96ded 478
PKnevermind 2:c4b198e96ded 479 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
PKnevermind 2:c4b198e96ded 480 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
PKnevermind 1:28ecafb2b832 481
PKnevermind 2:c4b198e96ded 482 // Configure FIFO to capture accelerometer and gyro data. This data will be used for bias calculation
PKnevermind 2:c4b198e96ded 483 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
PKnevermind 2:c4b198e96ded 484 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
PKnevermind 2:c4b198e96ded 485 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
PKnevermind 1:28ecafb2b832 486
PKnevermind 2:c4b198e96ded 487 // At end of sample accumulation, turn off FIFO sensor read
PKnevermind 2:c4b198e96ded 488 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
PKnevermind 2:c4b198e96ded 489 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
PKnevermind 2:c4b198e96ded 490 fifo_count = ((uint16_t)data[0] << 8) | data[1];
PKnevermind 2:c4b198e96ded 491 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
PKnevermind 1:28ecafb2b832 492
PKnevermind 2:c4b198e96ded 493 for (ii = 0; ii < packet_count; ii++) {
PKnevermind 2:c4b198e96ded 494 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
PKnevermind 2:c4b198e96ded 495 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
PKnevermind 2:c4b198e96ded 496 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
PKnevermind 2:c4b198e96ded 497 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
PKnevermind 2:c4b198e96ded 498 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
PKnevermind 2:c4b198e96ded 499 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
PKnevermind 2:c4b198e96ded 500 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
PKnevermind 2:c4b198e96ded 501 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
PKnevermind 2:c4b198e96ded 502
PKnevermind 2:c4b198e96ded 503 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
PKnevermind 2:c4b198e96ded 504 accel_bias[1] += (int32_t) accel_temp[1];
PKnevermind 2:c4b198e96ded 505 accel_bias[2] += (int32_t) accel_temp[2];
PKnevermind 2:c4b198e96ded 506 gyro_bias[0] += (int32_t) gyro_temp[0];
PKnevermind 2:c4b198e96ded 507 gyro_bias[1] += (int32_t) gyro_temp[1];
PKnevermind 2:c4b198e96ded 508 gyro_bias[2] += (int32_t) gyro_temp[2];
PKnevermind 2:c4b198e96ded 509
PKnevermind 2:c4b198e96ded 510 }
PKnevermind 2:c4b198e96ded 511 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
PKnevermind 2:c4b198e96ded 512 accel_bias[1] /= (int32_t) packet_count;
PKnevermind 2:c4b198e96ded 513 accel_bias[2] /= (int32_t) packet_count;
PKnevermind 2:c4b198e96ded 514 gyro_bias[0] /= (int32_t) packet_count;
PKnevermind 2:c4b198e96ded 515 gyro_bias[1] /= (int32_t) packet_count;
PKnevermind 2:c4b198e96ded 516 gyro_bias[2] /= (int32_t) packet_count;
PKnevermind 2:c4b198e96ded 517
PKnevermind 2:c4b198e96ded 518 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
PKnevermind 2:c4b198e96ded 519 else {accel_bias[2] += (int32_t) accelsensitivity;}
PKnevermind 2:c4b198e96ded 520
PKnevermind 2:c4b198e96ded 521 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
PKnevermind 2:c4b198e96ded 522 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
PKnevermind 2:c4b198e96ded 523 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
PKnevermind 2:c4b198e96ded 524 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
PKnevermind 2:c4b198e96ded 525 data[3] = (-gyro_bias[1]/4) & 0xFF;
PKnevermind 2:c4b198e96ded 526 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
PKnevermind 2:c4b198e96ded 527 data[5] = (-gyro_bias[2]/4) & 0xFF;
PKnevermind 1:28ecafb2b832 528
PKnevermind 2:c4b198e96ded 529 /// Push gyro biases to hardware registers
PKnevermind 2:c4b198e96ded 530 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
PKnevermind 2:c4b198e96ded 531 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
PKnevermind 2:c4b198e96ded 532 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
PKnevermind 2:c4b198e96ded 533 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
PKnevermind 2:c4b198e96ded 534 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
PKnevermind 2:c4b198e96ded 535 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
PKnevermind 2:c4b198e96ded 536 */
PKnevermind 2:c4b198e96ded 537 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
PKnevermind 2:c4b198e96ded 538 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
PKnevermind 2:c4b198e96ded 539 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
PKnevermind 1:28ecafb2b832 540
PKnevermind 2:c4b198e96ded 541 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
PKnevermind 2:c4b198e96ded 542 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
PKnevermind 2:c4b198e96ded 543 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
PKnevermind 2:c4b198e96ded 544 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
PKnevermind 2:c4b198e96ded 545 // the accelerometer biases calculated above must be divided by 8.
PKnevermind 2:c4b198e96ded 546
PKnevermind 2:c4b198e96ded 547 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
PKnevermind 2:c4b198e96ded 548 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
PKnevermind 2:c4b198e96ded 549 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
PKnevermind 2:c4b198e96ded 550 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
PKnevermind 2:c4b198e96ded 551 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
PKnevermind 2:c4b198e96ded 552 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
PKnevermind 2:c4b198e96ded 553 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
PKnevermind 2:c4b198e96ded 554
PKnevermind 2:c4b198e96ded 555 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
PKnevermind 2:c4b198e96ded 556 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
PKnevermind 1:28ecafb2b832 557
PKnevermind 2:c4b198e96ded 558 for(ii = 0; ii < 3; ii++) {
PKnevermind 2:c4b198e96ded 559 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
PKnevermind 2:c4b198e96ded 560 }
PKnevermind 2:c4b198e96ded 561
PKnevermind 2:c4b198e96ded 562 // Construct total accelerometer bias, including calculated average accelerometer bias from above
PKnevermind 2:c4b198e96ded 563 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
PKnevermind 2:c4b198e96ded 564 accel_bias_reg[1] -= (accel_bias[1]/8);
PKnevermind 2:c4b198e96ded 565 accel_bias_reg[2] -= (accel_bias[2]/8);
PKnevermind 2:c4b198e96ded 566
PKnevermind 2:c4b198e96ded 567 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
PKnevermind 2:c4b198e96ded 568 data[1] = (accel_bias_reg[0]) & 0xFF;
PKnevermind 2:c4b198e96ded 569 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
PKnevermind 2:c4b198e96ded 570 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
PKnevermind 2:c4b198e96ded 571 data[3] = (accel_bias_reg[1]) & 0xFF;
PKnevermind 2:c4b198e96ded 572 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
PKnevermind 2:c4b198e96ded 573 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
PKnevermind 2:c4b198e96ded 574 data[5] = (accel_bias_reg[2]) & 0xFF;
PKnevermind 2:c4b198e96ded 575 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
PKnevermind 2:c4b198e96ded 576
PKnevermind 2:c4b198e96ded 577 // Apparently this is not working for the acceleration biases in the MPU-9250
PKnevermind 2:c4b198e96ded 578 // Are we handling the temperature correction bit properly?
PKnevermind 2:c4b198e96ded 579 // Push accelerometer biases to hardware registers
PKnevermind 2:c4b198e96ded 580 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
PKnevermind 2:c4b198e96ded 581 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
PKnevermind 2:c4b198e96ded 582 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
PKnevermind 2:c4b198e96ded 583 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
PKnevermind 2:c4b198e96ded 584 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
PKnevermind 2:c4b198e96ded 585 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
PKnevermind 2:c4b198e96ded 586 */
PKnevermind 2:c4b198e96ded 587 // Output scaled accelerometer biases for manual subtraction in the main program
PKnevermind 2:c4b198e96ded 588 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
PKnevermind 2:c4b198e96ded 589 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
PKnevermind 2:c4b198e96ded 590 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
PKnevermind 2:c4b198e96ded 591 }
PKnevermind 1:28ecafb2b832 592
PKnevermind 1:28ecafb2b832 593
PKnevermind 2:c4b198e96ded 594 // Accelerometer and gyroscope self test; check calibration wrt factory settings
PKnevermind 2:c4b198e96ded 595 void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
PKnevermind 2:c4b198e96ded 596 {
PKnevermind 2:c4b198e96ded 597 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
PKnevermind 2:c4b198e96ded 598 uint8_t selfTest[6];
PKnevermind 2:c4b198e96ded 599 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
PKnevermind 2:c4b198e96ded 600 float factoryTrim[6];
PKnevermind 2:c4b198e96ded 601 uint8_t FS = 0;
PKnevermind 1:28ecafb2b832 602
PKnevermind 2:c4b198e96ded 603 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
PKnevermind 2:c4b198e96ded 604 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
PKnevermind 2:c4b198e96ded 605 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
PKnevermind 2:c4b198e96ded 606 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
PKnevermind 2:c4b198e96ded 607 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
PKnevermind 1:28ecafb2b832 608
PKnevermind 2:c4b198e96ded 609 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
PKnevermind 1:28ecafb2b832 610
PKnevermind 2:c4b198e96ded 611 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
PKnevermind 2:c4b198e96ded 612 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 613 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
PKnevermind 2:c4b198e96ded 614 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
PKnevermind 1:28ecafb2b832 615
PKnevermind 2:c4b198e96ded 616 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
PKnevermind 2:c4b198e96ded 617 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 618 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
PKnevermind 2:c4b198e96ded 619 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
PKnevermind 2:c4b198e96ded 620 }
PKnevermind 1:28ecafb2b832 621
PKnevermind 2:c4b198e96ded 622 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
PKnevermind 2:c4b198e96ded 623 aAvg[ii] /= 200;
PKnevermind 2:c4b198e96ded 624 gAvg[ii] /= 200;
PKnevermind 2:c4b198e96ded 625 }
PKnevermind 2:c4b198e96ded 626
PKnevermind 2:c4b198e96ded 627 // Configure the accelerometer for self-test
PKnevermind 2:c4b198e96ded 628 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
PKnevermind 2:c4b198e96ded 629 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
PKnevermind 2:c4b198e96ded 630 wait_ms(25); // Delay a while to let the device stabilize
PKnevermind 1:28ecafb2b832 631
PKnevermind 2:c4b198e96ded 632 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
PKnevermind 2:c4b198e96ded 633
PKnevermind 2:c4b198e96ded 634 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
PKnevermind 2:c4b198e96ded 635 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 636 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
PKnevermind 2:c4b198e96ded 637 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
PKnevermind 2:c4b198e96ded 638
PKnevermind 2:c4b198e96ded 639 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
PKnevermind 2:c4b198e96ded 640 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
PKnevermind 2:c4b198e96ded 641 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
PKnevermind 2:c4b198e96ded 642 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
PKnevermind 2:c4b198e96ded 643 }
PKnevermind 2:c4b198e96ded 644
PKnevermind 2:c4b198e96ded 645 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
PKnevermind 2:c4b198e96ded 646 aSTAvg[ii] /= 200;
PKnevermind 2:c4b198e96ded 647 gSTAvg[ii] /= 200;
PKnevermind 2:c4b198e96ded 648 }
PKnevermind 2:c4b198e96ded 649
PKnevermind 2:c4b198e96ded 650 // Configure the gyro and accelerometer for normal operation
PKnevermind 2:c4b198e96ded 651 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
PKnevermind 2:c4b198e96ded 652 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
PKnevermind 2:c4b198e96ded 653 //delay(25); // Delay a while to let the device stabilize
PKnevermind 2:c4b198e96ded 654 wait_ms(25); // Delay a while to let the device stabilize
PKnevermind 2:c4b198e96ded 655
PKnevermind 2:c4b198e96ded 656 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
PKnevermind 2:c4b198e96ded 657 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
PKnevermind 2:c4b198e96ded 658 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
PKnevermind 2:c4b198e96ded 659 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
PKnevermind 2:c4b198e96ded 660 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
PKnevermind 2:c4b198e96ded 661 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
PKnevermind 2:c4b198e96ded 662 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
PKnevermind 1:28ecafb2b832 663
PKnevermind 2:c4b198e96ded 664 // Retrieve factory self-test value from self-test code reads
PKnevermind 2:c4b198e96ded 665 factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
PKnevermind 2:c4b198e96ded 666 factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
PKnevermind 2:c4b198e96ded 667 factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
PKnevermind 2:c4b198e96ded 668 factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
PKnevermind 2:c4b198e96ded 669 factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
PKnevermind 2:c4b198e96ded 670 factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
PKnevermind 1:28ecafb2b832 671
PKnevermind 2:c4b198e96ded 672 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
PKnevermind 2:c4b198e96ded 673 // To get percent, must multiply by 100
PKnevermind 2:c4b198e96ded 674 for (int i = 0; i < 3; i++) {
PKnevermind 2:c4b198e96ded 675 destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
PKnevermind 2:c4b198e96ded 676 destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
PKnevermind 2:c4b198e96ded 677 }
PKnevermind 2:c4b198e96ded 678 }
PKnevermind 1:28ecafb2b832 679
PKnevermind 1:28ecafb2b832 680
PKnevermind 2:c4b198e96ded 681
PKnevermind 2:c4b198e96ded 682 void getCompassOrientation(float * orient){ // Obtains the orientation of the device in degrees. 0 degrees North. 180 degrees South.
PKnevermind 2:c4b198e96ded 683 /*
PKnevermind 2:c4b198e96ded 684 Remember that it is the earth's rotational axis that defines the geographic north and south poles that we use for map references.
PKnevermind 2:c4b198e96ded 685 It turns out that there is a discrepancy of about 11.5 degrees between the geographic poles and the magnetic poles. The last is
PKnevermind 2:c4b198e96ded 686 what the magnetometer will read. A value, called the declination angle, can be applied to the magnetic direction to correct for this.
PKnevermind 2:c4b198e96ded 687 On Valencia (Spain) this value is about 0 degrees.
PKnevermind 2:c4b198e96ded 688 */
PKnevermind 2:c4b198e96ded 689
PKnevermind 2:c4b198e96ded 690 // First of all measure 3 axis magnetometer values (only X and Y axis is used):
PKnevermind 2:c4b198e96ded 691 readMagData(magCount); // Read the x/y/z adc values
PKnevermind 2:c4b198e96ded 692 // Calculate the magnetometer values in milliGauss
PKnevermind 2:c4b198e96ded 693 // Include factory calibration per data sheet and user environmental corrections
PKnevermind 2:c4b198e96ded 694 if (I2Cstate == 0){ // no error on I2C
PKnevermind 2:c4b198e96ded 695 I2Cstate = 1;
PKnevermind 2:c4b198e96ded 696 magn_x = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
PKnevermind 2:c4b198e96ded 697 magn_y = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
PKnevermind 2:c4b198e96ded 698 }
PKnevermind 2:c4b198e96ded 699
PKnevermind 2:c4b198e96ded 700 // Now obtains the orientation value:
PKnevermind 2:c4b198e96ded 701 if (magn_y>0)
PKnevermind 2:c4b198e96ded 702 orient[0] = 90.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
PKnevermind 2:c4b198e96ded 703 else if (magn_y<0)
PKnevermind 2:c4b198e96ded 704 orient[0] = 270.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
PKnevermind 2:c4b198e96ded 705 else if (magn_y == 0){
PKnevermind 2:c4b198e96ded 706 if (magn_x<0)
PKnevermind 2:c4b198e96ded 707 orient[0] = 180.0;
PKnevermind 2:c4b198e96ded 708 else
PKnevermind 2:c4b198e96ded 709 orient[0] = 0.0;
PKnevermind 2:c4b198e96ded 710 }
PKnevermind 2:c4b198e96ded 711 }
PKnevermind 1:28ecafb2b832 712
PKnevermind 2:c4b198e96ded 713
PKnevermind 2:c4b198e96ded 714
PKnevermind 2:c4b198e96ded 715
PKnevermind 2:c4b198e96ded 716
PKnevermind 1:28ecafb2b832 717
PKnevermind 1:28ecafb2b832 718 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
PKnevermind 1:28ecafb2b832 719 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
PKnevermind 1:28ecafb2b832 720 // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute
PKnevermind 1:28ecafb2b832 721 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
PKnevermind 1:28ecafb2b832 722 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
PKnevermind 1:28ecafb2b832 723 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
PKnevermind 1:28ecafb2b832 724 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
PKnevermind 1:28ecafb2b832 725 {
PKnevermind 1:28ecafb2b832 726 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
PKnevermind 1:28ecafb2b832 727 float norm;
PKnevermind 1:28ecafb2b832 728 float hx, hy, _2bx, _2bz;
PKnevermind 1:28ecafb2b832 729 float s1, s2, s3, s4;
PKnevermind 1:28ecafb2b832 730 float qDot1, qDot2, qDot3, qDot4;
PKnevermind 1:28ecafb2b832 731
PKnevermind 1:28ecafb2b832 732 // Auxiliary variables to avoid repeated arithmetic
PKnevermind 1:28ecafb2b832 733 float _2q1mx;
PKnevermind 1:28ecafb2b832 734 float _2q1my;
PKnevermind 1:28ecafb2b832 735 float _2q1mz;
PKnevermind 1:28ecafb2b832 736 float _2q2mx;
PKnevermind 1:28ecafb2b832 737 float _4bx;
PKnevermind 1:28ecafb2b832 738 float _4bz;
PKnevermind 1:28ecafb2b832 739 float _2q1 = 2.0f * q1;
PKnevermind 1:28ecafb2b832 740 float _2q2 = 2.0f * q2;
PKnevermind 1:28ecafb2b832 741 float _2q3 = 2.0f * q3;
PKnevermind 1:28ecafb2b832 742 float _2q4 = 2.0f * q4;
PKnevermind 1:28ecafb2b832 743 float _2q1q3 = 2.0f * q1 * q3;
PKnevermind 1:28ecafb2b832 744 float _2q3q4 = 2.0f * q3 * q4;
PKnevermind 1:28ecafb2b832 745 float q1q1 = q1 * q1;
PKnevermind 1:28ecafb2b832 746 float q1q2 = q1 * q2;
PKnevermind 1:28ecafb2b832 747 float q1q3 = q1 * q3;
PKnevermind 1:28ecafb2b832 748 float q1q4 = q1 * q4;
PKnevermind 1:28ecafb2b832 749 float q2q2 = q2 * q2;
PKnevermind 1:28ecafb2b832 750 float q2q3 = q2 * q3;
PKnevermind 1:28ecafb2b832 751 float q2q4 = q2 * q4;
PKnevermind 1:28ecafb2b832 752 float q3q3 = q3 * q3;
PKnevermind 1:28ecafb2b832 753 float q3q4 = q3 * q4;
PKnevermind 1:28ecafb2b832 754 float q4q4 = q4 * q4;
PKnevermind 1:28ecafb2b832 755
PKnevermind 1:28ecafb2b832 756 // Normalise accelerometer measurement
PKnevermind 1:28ecafb2b832 757 norm = sqrt(ax * ax + ay * ay + az * az);
PKnevermind 1:28ecafb2b832 758 if (norm == 0.0f) return; // handle NaN
PKnevermind 1:28ecafb2b832 759 norm = 1.0f/norm;
PKnevermind 1:28ecafb2b832 760 ax *= norm;
PKnevermind 1:28ecafb2b832 761 ay *= norm;
PKnevermind 1:28ecafb2b832 762 az *= norm;
PKnevermind 1:28ecafb2b832 763
PKnevermind 1:28ecafb2b832 764 // Normalise magnetometer measurement
PKnevermind 1:28ecafb2b832 765 norm = sqrt(mx * mx + my * my + mz * mz);
PKnevermind 1:28ecafb2b832 766 if (norm == 0.0f) return; // handle NaN
PKnevermind 1:28ecafb2b832 767 norm = 1.0f/norm;
PKnevermind 1:28ecafb2b832 768 mx *= norm;
PKnevermind 1:28ecafb2b832 769 my *= norm;
PKnevermind 1:28ecafb2b832 770 mz *= norm;
PKnevermind 1:28ecafb2b832 771
PKnevermind 1:28ecafb2b832 772 // Reference direction of Earth's magnetic field
PKnevermind 1:28ecafb2b832 773 _2q1mx = 2.0f * q1 * mx;
PKnevermind 1:28ecafb2b832 774 _2q1my = 2.0f * q1 * my;
PKnevermind 1:28ecafb2b832 775 _2q1mz = 2.0f * q1 * mz;
PKnevermind 1:28ecafb2b832 776 _2q2mx = 2.0f * q2 * mx;
PKnevermind 1:28ecafb2b832 777 hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
PKnevermind 1:28ecafb2b832 778 hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
PKnevermind 1:28ecafb2b832 779 _2bx = sqrt(hx * hx + hy * hy);
PKnevermind 1:28ecafb2b832 780 _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
PKnevermind 1:28ecafb2b832 781 _4bx = 2.0f * _2bx;
PKnevermind 1:28ecafb2b832 782 _4bz = 2.0f * _2bz;
PKnevermind 1:28ecafb2b832 783
PKnevermind 1:28ecafb2b832 784 // Gradient decent algorithm corrective step
PKnevermind 1:28ecafb2b832 785 s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
PKnevermind 1:28ecafb2b832 786 s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
PKnevermind 1:28ecafb2b832 787 s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
PKnevermind 1:28ecafb2b832 788 s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
PKnevermind 1:28ecafb2b832 789 norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
PKnevermind 1:28ecafb2b832 790 norm = 1.0f/norm;
PKnevermind 1:28ecafb2b832 791 s1 *= norm;
PKnevermind 1:28ecafb2b832 792 s2 *= norm;
PKnevermind 1:28ecafb2b832 793 s3 *= norm;
PKnevermind 1:28ecafb2b832 794 s4 *= norm;
PKnevermind 1:28ecafb2b832 795
PKnevermind 1:28ecafb2b832 796 // Compute rate of change of quaternion
PKnevermind 1:28ecafb2b832 797 qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
PKnevermind 1:28ecafb2b832 798 qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
PKnevermind 1:28ecafb2b832 799 qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
PKnevermind 1:28ecafb2b832 800 qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
PKnevermind 1:28ecafb2b832 801
PKnevermind 1:28ecafb2b832 802 // Integrate to yield quaternion
PKnevermind 1:28ecafb2b832 803 q1 += qDot1 * deltat;
PKnevermind 1:28ecafb2b832 804 q2 += qDot2 * deltat;
PKnevermind 1:28ecafb2b832 805 q3 += qDot3 * deltat;
PKnevermind 1:28ecafb2b832 806 q4 += qDot4 * deltat;
PKnevermind 1:28ecafb2b832 807 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
PKnevermind 1:28ecafb2b832 808 norm = 1.0f/norm;
PKnevermind 1:28ecafb2b832 809 q[0] = q1 * norm;
PKnevermind 1:28ecafb2b832 810 q[1] = q2 * norm;
PKnevermind 1:28ecafb2b832 811 q[2] = q3 * norm;
PKnevermind 1:28ecafb2b832 812 q[3] = q4 * norm;
PKnevermind 1:28ecafb2b832 813
PKnevermind 1:28ecafb2b832 814 }
PKnevermind 1:28ecafb2b832 815
PKnevermind 1:28ecafb2b832 816
PKnevermind 1:28ecafb2b832 817
PKnevermind 1:28ecafb2b832 818 // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and
PKnevermind 1:28ecafb2b832 819 // measured ones.
PKnevermind 1:28ecafb2b832 820 void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
PKnevermind 1:28ecafb2b832 821 {
PKnevermind 1:28ecafb2b832 822 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
PKnevermind 1:28ecafb2b832 823 float norm;
PKnevermind 1:28ecafb2b832 824 float hx, hy, bx, bz;
PKnevermind 1:28ecafb2b832 825 float vx, vy, vz, wx, wy, wz;
PKnevermind 1:28ecafb2b832 826 float ex, ey, ez;
PKnevermind 1:28ecafb2b832 827 float pa, pb, pc;
PKnevermind 1:28ecafb2b832 828
PKnevermind 1:28ecafb2b832 829 // Auxiliary variables to avoid repeated arithmetic
PKnevermind 1:28ecafb2b832 830 float q1q1 = q1 * q1;
PKnevermind 1:28ecafb2b832 831 float q1q2 = q1 * q2;
PKnevermind 1:28ecafb2b832 832 float q1q3 = q1 * q3;
PKnevermind 1:28ecafb2b832 833 float q1q4 = q1 * q4;
PKnevermind 1:28ecafb2b832 834 float q2q2 = q2 * q2;
PKnevermind 1:28ecafb2b832 835 float q2q3 = q2 * q3;
PKnevermind 1:28ecafb2b832 836 float q2q4 = q2 * q4;
PKnevermind 1:28ecafb2b832 837 float q3q3 = q3 * q3;
PKnevermind 1:28ecafb2b832 838 float q3q4 = q3 * q4;
PKnevermind 1:28ecafb2b832 839 float q4q4 = q4 * q4;
PKnevermind 1:28ecafb2b832 840
PKnevermind 1:28ecafb2b832 841 // Normalise accelerometer measurement
PKnevermind 1:28ecafb2b832 842 norm = sqrt(ax * ax + ay * ay + az * az);
PKnevermind 1:28ecafb2b832 843 if (norm == 0.0f) return; // handle NaN
PKnevermind 1:28ecafb2b832 844 norm = 1.0f / norm; // use reciprocal for division
PKnevermind 1:28ecafb2b832 845 ax *= norm;
PKnevermind 1:28ecafb2b832 846 ay *= norm;
PKnevermind 1:28ecafb2b832 847 az *= norm;
PKnevermind 1:28ecafb2b832 848
PKnevermind 1:28ecafb2b832 849 // Normalise magnetometer measurement
PKnevermind 1:28ecafb2b832 850 norm = sqrt(mx * mx + my * my + mz * mz);
PKnevermind 1:28ecafb2b832 851 if (norm == 0.0f) return; // handle NaN
PKnevermind 1:28ecafb2b832 852 norm = 1.0f / norm; // use reciprocal for division
PKnevermind 1:28ecafb2b832 853 mx *= norm;
PKnevermind 1:28ecafb2b832 854 my *= norm;
PKnevermind 1:28ecafb2b832 855 mz *= norm;
PKnevermind 1:28ecafb2b832 856
PKnevermind 1:28ecafb2b832 857 // Reference direction of Earth's magnetic field
PKnevermind 1:28ecafb2b832 858 hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3);
PKnevermind 1:28ecafb2b832 859 hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2);
PKnevermind 1:28ecafb2b832 860 bx = sqrt((hx * hx) + (hy * hy));
PKnevermind 1:28ecafb2b832 861 bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3);
PKnevermind 1:28ecafb2b832 862
PKnevermind 1:28ecafb2b832 863 // Estimated direction of gravity and magnetic field
PKnevermind 1:28ecafb2b832 864 vx = 2.0f * (q2q4 - q1q3);
PKnevermind 1:28ecafb2b832 865 vy = 2.0f * (q1q2 + q3q4);
PKnevermind 1:28ecafb2b832 866 vz = q1q1 - q2q2 - q3q3 + q4q4;
PKnevermind 1:28ecafb2b832 867 wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3);
PKnevermind 1:28ecafb2b832 868 wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4);
PKnevermind 1:28ecafb2b832 869 wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);
PKnevermind 1:28ecafb2b832 870
PKnevermind 1:28ecafb2b832 871 // Error is cross product between estimated direction and measured direction of gravity
PKnevermind 1:28ecafb2b832 872 ex = (ay * vz - az * vy) + (my * wz - mz * wy);
PKnevermind 1:28ecafb2b832 873 ey = (az * vx - ax * vz) + (mz * wx - mx * wz);
PKnevermind 1:28ecafb2b832 874 ez = (ax * vy - ay * vx) + (mx * wy - my * wx);
PKnevermind 1:28ecafb2b832 875 if (Ki > 0.0f)
PKnevermind 1:28ecafb2b832 876 {
PKnevermind 1:28ecafb2b832 877 eInt[0] += ex; // accumulate integral error
PKnevermind 1:28ecafb2b832 878 eInt[1] += ey;
PKnevermind 1:28ecafb2b832 879 eInt[2] += ez;
PKnevermind 1:28ecafb2b832 880 }
PKnevermind 1:28ecafb2b832 881 else
PKnevermind 1:28ecafb2b832 882 {
PKnevermind 1:28ecafb2b832 883 eInt[0] = 0.0f; // prevent integral wind up
PKnevermind 1:28ecafb2b832 884 eInt[1] = 0.0f;
PKnevermind 1:28ecafb2b832 885 eInt[2] = 0.0f;
PKnevermind 1:28ecafb2b832 886 }
PKnevermind 1:28ecafb2b832 887
PKnevermind 1:28ecafb2b832 888 // Apply feedback terms
PKnevermind 1:28ecafb2b832 889 gx = gx + Kp * ex + Ki * eInt[0];
PKnevermind 1:28ecafb2b832 890 gy = gy + Kp * ey + Ki * eInt[1];
PKnevermind 1:28ecafb2b832 891 gz = gz + Kp * ez + Ki * eInt[2];
PKnevermind 1:28ecafb2b832 892
PKnevermind 1:28ecafb2b832 893 // Integrate rate of change of quaternion
PKnevermind 1:28ecafb2b832 894 pa = q2;
PKnevermind 1:28ecafb2b832 895 pb = q3;
PKnevermind 1:28ecafb2b832 896 pc = q4;
PKnevermind 1:28ecafb2b832 897 q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat);
PKnevermind 1:28ecafb2b832 898 q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat);
PKnevermind 1:28ecafb2b832 899 q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat);
PKnevermind 1:28ecafb2b832 900 q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat);
PKnevermind 1:28ecafb2b832 901
PKnevermind 1:28ecafb2b832 902 // Normalise quaternion
PKnevermind 1:28ecafb2b832 903 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);
PKnevermind 1:28ecafb2b832 904 norm = 1.0f / norm;
PKnevermind 1:28ecafb2b832 905 q[0] = q1 * norm;
PKnevermind 1:28ecafb2b832 906 q[1] = q2 * norm;
PKnevermind 1:28ecafb2b832 907 q[2] = q3 * norm;
PKnevermind 1:28ecafb2b832 908 q[3] = q4 * norm;
PKnevermind 1:28ecafb2b832 909
PKnevermind 1:28ecafb2b832 910 }
PKnevermind 1:28ecafb2b832 911 };
PKnevermind 1:28ecafb2b832 912 #endif