lib
Fork of mbed-dev by
Diff: targets/TARGET_STM/stm_spi_api.c
- Revision:
- 149:156823d33999
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/targets/TARGET_STM/stm_spi_api.c Fri Oct 28 11:17:30 2016 +0100 @@ -0,0 +1,590 @@ +/* mbed Microcontroller Library + ******************************************************************************* + * Copyright (c) 2015, STMicroelectronics + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + ******************************************************************************* + */ +#include "mbed_assert.h" +#include "mbed_error.h" +#include "spi_api.h" + +#if DEVICE_SPI +#include <stdbool.h> +#include <math.h> +#include <string.h> +#include "cmsis.h" +#include "pinmap.h" +#include "PeripheralPins.h" + +#if DEVICE_SPI_ASYNCH + #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi.spi)) +#else + #define SPI_INST(obj) ((SPI_TypeDef *)(obj->spi)) +#endif + +#if DEVICE_SPI_ASYNCH + #define SPI_S(obj) (( struct spi_s *)(&(obj->spi))) +#else + #define SPI_S(obj) (( struct spi_s *)(obj)) +#endif + +#ifndef DEBUG_STDIO +# define DEBUG_STDIO 0 +#endif + +#if DEBUG_STDIO +# include <stdio.h> +# define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0) +#else +# define DEBUG_PRINTF(...) {} +#endif + +void init_spi(spi_t *obj) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + __HAL_SPI_DISABLE(handle); + + DEBUG_PRINTF("init_spi: instance=0x%8X\r\n", (int)handle->Instance); + if (HAL_SPI_Init(handle) != HAL_OK) { + error("Cannot initialize SPI"); + } + + __HAL_SPI_ENABLE(handle); +} + +void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + // Determine the SPI to use + SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); + SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); + SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); + SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); + + SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); + SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); + + spiobj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl); + MBED_ASSERT(spiobj->spi != (SPIName)NC); + +#if defined SPI1_BASE + // Enable SPI clock + if (spiobj->spi == SPI_1) { + __HAL_RCC_SPI1_CLK_ENABLE(); + spiobj->spiIRQ = SPI1_IRQn; + } +#endif + +#if defined SPI2_BASE + if (spiobj->spi == SPI_2) { + __HAL_RCC_SPI2_CLK_ENABLE(); + spiobj->spiIRQ = SPI2_IRQn; + } +#endif + +#if defined SPI3_BASE + if (spiobj->spi == SPI_3) { + __HAL_RCC_SPI3_CLK_ENABLE(); + spiobj->spiIRQ = SPI3_IRQn; + } +#endif + +#if defined SPI4_BASE + if (spiobj->spi == SPI_4) { + __HAL_RCC_SPI4_CLK_ENABLE(); + spiobj->spiIRQ = SPI4_IRQn; + } +#endif + +#if defined SPI5_BASE + if (spiobj->spi == SPI_5) { + __HAL_RCC_SPI5_CLK_ENABLE(); + spiobj->spiIRQ = SPI5_IRQn; + } +#endif + +#if defined SPI6_BASE + if (spiobj->spi == SPI_6) { + __HAL_RCC_SPI6_CLK_ENABLE(); + spiobj->spiIRQ = SPI6_IRQn; + } +#endif + + // Configure the SPI pins + pinmap_pinout(mosi, PinMap_SPI_MOSI); + pinmap_pinout(miso, PinMap_SPI_MISO); + pinmap_pinout(sclk, PinMap_SPI_SCLK); + spiobj->pin_miso = miso; + spiobj->pin_mosi = mosi; + spiobj->pin_sclk = sclk; + spiobj->pin_ssel = ssel; + if (ssel != NC) { + pinmap_pinout(ssel, PinMap_SPI_SSEL); + } else { + handle->Init.NSS = SPI_NSS_SOFT; + } + + /* Fill default value */ + handle->Instance = SPI_INST(obj); + handle->Init.Mode = SPI_MODE_MASTER; + handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; + handle->Init.Direction = SPI_DIRECTION_2LINES; + handle->Init.CLKPhase = SPI_PHASE_1EDGE; + handle->Init.CLKPolarity = SPI_POLARITY_LOW; + handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; + handle->Init.CRCPolynomial = 7; + handle->Init.DataSize = SPI_DATASIZE_8BIT; + handle->Init.FirstBit = SPI_FIRSTBIT_MSB; + handle->Init.TIMode = SPI_TIMODE_DISABLED; + + init_spi(obj); +} + +void spi_free(spi_t *obj) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + DEBUG_PRINTF("spi_free\r\n"); + + __HAL_SPI_DISABLE(handle); + HAL_SPI_DeInit(handle); + +#if defined SPI1_BASE + // Reset SPI and disable clock + if (spiobj->spi == SPI_1) { + __HAL_RCC_SPI1_FORCE_RESET(); + __HAL_RCC_SPI1_RELEASE_RESET(); + __HAL_RCC_SPI1_CLK_DISABLE(); + } +#endif +#if defined SPI2_BASE + if (spiobj->spi == SPI_2) { + __HAL_RCC_SPI2_FORCE_RESET(); + __HAL_RCC_SPI2_RELEASE_RESET(); + __HAL_RCC_SPI2_CLK_DISABLE(); + } +#endif + +#if defined SPI3_BASE + if (spiobj->spi == SPI_3) { + __HAL_RCC_SPI3_FORCE_RESET(); + __HAL_RCC_SPI3_RELEASE_RESET(); + __HAL_RCC_SPI3_CLK_DISABLE(); + } +#endif + +#if defined SPI4_BASE + if (spiobj->spi == SPI_4) { + __HAL_RCC_SPI4_FORCE_RESET(); + __HAL_RCC_SPI4_RELEASE_RESET(); + __HAL_RCC_SPI4_CLK_DISABLE(); + } +#endif + +#if defined SPI5_BASE + if (spiobj->spi == SPI_5) { + __HAL_RCC_SPI5_FORCE_RESET(); + __HAL_RCC_SPI5_RELEASE_RESET(); + __HAL_RCC_SPI5_CLK_DISABLE(); + } +#endif + +#if defined SPI6_BASE + if (spiobj->spi == SPI_6) { + __HAL_RCC_SPI6_FORCE_RESET(); + __HAL_RCC_SPI6_RELEASE_RESET(); + __HAL_RCC_SPI6_CLK_DISABLE(); + } +#endif + + // Configure GPIOs + pin_function(spiobj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); + pin_function(spiobj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); + pin_function(spiobj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); + if (handle->Init.NSS != SPI_NSS_SOFT) { + pin_function(spiobj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); + } +} + +void spi_format(spi_t *obj, int bits, int mode, int slave) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + DEBUG_PRINTF("spi_format, bits:%d, mode:%d, slave?:%d\r\n", bits, mode, slave); + + // Save new values + handle->Init.DataSize = (bits == 16) ? SPI_DATASIZE_16BIT : SPI_DATASIZE_8BIT; + + switch (mode) { + case 0: + handle->Init.CLKPolarity = SPI_POLARITY_LOW; + handle->Init.CLKPhase = SPI_PHASE_1EDGE; + break; + case 1: + handle->Init.CLKPolarity = SPI_POLARITY_LOW; + handle->Init.CLKPhase = SPI_PHASE_2EDGE; + break; + case 2: + handle->Init.CLKPolarity = SPI_POLARITY_HIGH; + handle->Init.CLKPhase = SPI_PHASE_1EDGE; + break; + default: + handle->Init.CLKPolarity = SPI_POLARITY_HIGH; + handle->Init.CLKPhase = SPI_PHASE_2EDGE; + break; + } + + if (handle->Init.NSS != SPI_NSS_SOFT) { + handle->Init.NSS = (slave) ? SPI_NSS_HARD_INPUT : SPI_NSS_HARD_OUTPUT; + } + + handle->Init.Mode = (slave) ? SPI_MODE_SLAVE : SPI_MODE_MASTER; + + init_spi(obj); +} + +/* + * Only the IP clock input is family dependant so it computed + * separately in spi_get_clock_freq + */ +extern int spi_get_clock_freq(spi_t *obj); + +static const uint16_t baudrate_prescaler_table[] = {SPI_BAUDRATEPRESCALER_2, + SPI_BAUDRATEPRESCALER_4, + SPI_BAUDRATEPRESCALER_8, + SPI_BAUDRATEPRESCALER_16, + SPI_BAUDRATEPRESCALER_32, + SPI_BAUDRATEPRESCALER_64, + SPI_BAUDRATEPRESCALER_128, + SPI_BAUDRATEPRESCALER_256}; + +void spi_frequency(spi_t *obj, int hz) { + struct spi_s *spiobj = SPI_S(obj); + int spi_hz = 0; + uint8_t prescaler_rank = 0; + SPI_HandleTypeDef *handle = &(spiobj->handle); + + /* Get the clock of the peripheral */ + spi_hz = spi_get_clock_freq(obj); + + /* Define pre-scaler in order to get highest available frequency below requested frequency */ + while ((spi_hz > hz) && (prescaler_rank < sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0]))){ + spi_hz = spi_hz / 2; + prescaler_rank++; + } + + if (prescaler_rank <= sizeof(baudrate_prescaler_table)/sizeof(baudrate_prescaler_table[0])) { + handle->Init.BaudRatePrescaler = baudrate_prescaler_table[prescaler_rank-1]; + } else { + error("Couldn't setup requested SPI frequency"); + } + + init_spi(obj); +} + +static inline int ssp_readable(spi_t *obj) +{ + int status; + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + // Check if data is received + status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_RXNE) != RESET) ? 1 : 0); + return status; +} + +static inline int ssp_writeable(spi_t *obj) +{ + int status; + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + // Check if data is transmitted + status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_TXE) != RESET) ? 1 : 0); + return status; +} + +static inline int ssp_busy(spi_t *obj) +{ + int status; + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + status = ((__HAL_SPI_GET_FLAG(handle, SPI_FLAG_BSY) != RESET) ? 1 : 0); + return status; +} + +int spi_master_write(spi_t *obj, int value) +{ + uint16_t size, Rx, ret; + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + size = (handle->Init.DataSize == SPI_DATASIZE_16BIT) ? 2 : 1; + + /* Use 10ms timeout */ + ret = HAL_SPI_TransmitReceive(handle,(uint8_t*)&value,(uint8_t*)&Rx,size,10); + + if(ret == HAL_OK) { + return Rx; + } else { + DEBUG_PRINTF("SPI inst=0x%8X ERROR in write\r\n", (int)handle->Instance); + return -1; + } +} + +int spi_slave_receive(spi_t *obj) +{ + return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0); +}; + +int spi_slave_read(spi_t *obj) +{ + SPI_TypeDef *spi = SPI_INST(obj); + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + while (!ssp_readable(obj)); + if (handle->Init.DataSize == SPI_DATASIZE_8BIT) { + // Force 8-bit access to the data register + uint8_t *p_spi_dr = 0; + p_spi_dr = (uint8_t *) & (spi->DR); + return (int)(*p_spi_dr); + } else { + return (int)spi->DR; + } +} + +void spi_slave_write(spi_t *obj, int value) +{ + SPI_TypeDef *spi = SPI_INST(obj); + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + while (!ssp_writeable(obj)); + if (handle->Init.DataSize == SPI_DATASIZE_8BIT) { + // Force 8-bit access to the data register + uint8_t *p_spi_dr = 0; + p_spi_dr = (uint8_t *) & (spi->DR); + *p_spi_dr = (uint8_t)value; + } else { // SPI_DATASIZE_16BIT + spi->DR = (uint16_t)value; + } +} + +int spi_busy(spi_t *obj) +{ + return ssp_busy(obj); +} + +#ifdef DEVICE_SPI_ASYNCH +typedef enum { + SPI_TRANSFER_TYPE_NONE = 0, + SPI_TRANSFER_TYPE_TX = 1, + SPI_TRANSFER_TYPE_RX = 2, + SPI_TRANSFER_TYPE_TXRX = 3, +} transfer_type_t; + + +/// @returns the number of bytes transferred, or `0` if nothing transferred +static int spi_master_start_asynch_transfer(spi_t *obj, transfer_type_t transfer_type, const void *tx, void *rx, size_t length) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT); + // the HAL expects number of transfers instead of number of bytes + // so for 16 bit transfer width the count needs to be halved + size_t words; + + DEBUG_PRINTF("SPI inst=0x%8X Start: %u, %u\r\n", (int)handle->Instance, transfer_type, length); + + obj->spi.transfer_type = transfer_type; + + if (is16bit) { + words = length / 2; + } else { + words = length; + } + + // enable the interrupt + IRQn_Type irq_n = spiobj->spiIRQ; + NVIC_ClearPendingIRQ(irq_n); + NVIC_DisableIRQ(irq_n); + NVIC_SetPriority(irq_n, 1); + NVIC_EnableIRQ(irq_n); + + // enable the right hal transfer + int rc = 0; + switch(transfer_type) { + case SPI_TRANSFER_TYPE_TXRX: + rc = HAL_SPI_TransmitReceive_IT(handle, (uint8_t*)tx, (uint8_t*)rx, words); + break; + case SPI_TRANSFER_TYPE_TX: + rc = HAL_SPI_Transmit_IT(handle, (uint8_t*)tx, words); + break; + case SPI_TRANSFER_TYPE_RX: + // the receive function also "transmits" the receive buffer so in order + // to guarantee that 0xff is on the line, we explicitly memset it here + memset(rx, SPI_FILL_WORD, length); + rc = HAL_SPI_Receive_IT(handle, (uint8_t*)rx, words); + break; + default: + length = 0; + } + + if (rc) { + DEBUG_PRINTF("SPI: RC=%u\n", rc); + length = 0; + } + + return length; +} + +// asynchronous API +void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + // TODO: DMA usage is currently ignored + (void) hint; + + // check which use-case we have + bool use_tx = (tx != NULL && tx_length > 0); + bool use_rx = (rx != NULL && rx_length > 0); + bool is16bit = (handle->Init.DataSize == SPI_DATASIZE_16BIT); + + // don't do anything, if the buffers aren't valid + if (!use_tx && !use_rx) + return; + + // copy the buffers to the SPI object + obj->tx_buff.buffer = (void *) tx; + obj->tx_buff.length = tx_length; + obj->tx_buff.pos = 0; + obj->tx_buff.width = is16bit ? 16 : 8; + + obj->rx_buff.buffer = rx; + obj->rx_buff.length = rx_length; + obj->rx_buff.pos = 0; + obj->rx_buff.width = obj->tx_buff.width; + + obj->spi.event = event; + + DEBUG_PRINTF("SPI: Transfer: %u, %u\n", tx_length, rx_length); + + // register the thunking handler + IRQn_Type irq_n = spiobj->spiIRQ; + NVIC_SetVector(irq_n, (uint32_t)handler); + + // enable the right hal transfer + if (use_tx && use_rx) { + // we cannot manage different rx / tx sizes, let's use smaller one + size_t size = (tx_length < rx_length)? tx_length : rx_length; + if(tx_length != rx_length) { + DEBUG_PRINTF("SPI: Full duplex transfer only 1 size: %d\n", size); + obj->tx_buff.length = size; + obj->rx_buff.length = size; + } + spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TXRX, tx, rx, size); + } else if (use_tx) { + spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_TX, tx, NULL, tx_length); + } else if (use_rx) { + spi_master_start_asynch_transfer(obj, SPI_TRANSFER_TYPE_RX, NULL, rx, rx_length); + } +} + +uint32_t spi_irq_handler_asynch(spi_t *obj) +{ + // use the right instance + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &spiobj->handle; + int event = 0; + + // call the CubeF4 handler, this will update the handle + HAL_SPI_IRQHandler(handle); + + if (HAL_SPI_GetState(handle) == HAL_SPI_STATE_READY) { + // When HAL SPI is back to READY state, check if there was an error + int error = HAL_SPI_GetError(handle); + if(error != HAL_SPI_ERROR_NONE) { + // something went wrong and the transfer has definitely completed + event = SPI_EVENT_ERROR | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE; + + if (error & HAL_SPI_ERROR_OVR) { + // buffer overrun + event |= SPI_EVENT_RX_OVERFLOW; + } + } else { + // else we're done + event = SPI_EVENT_COMPLETE | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE; + } + } + + if (event) DEBUG_PRINTF("SPI: Event: 0x%x\n", event); + + return (event & (obj->spi.event | SPI_EVENT_INTERNAL_TRANSFER_COMPLETE)); +} + +uint8_t spi_active(spi_t *obj) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + HAL_SPI_StateTypeDef state = HAL_SPI_GetState(handle); + + switch(state) { + case HAL_SPI_STATE_RESET: + case HAL_SPI_STATE_READY: + case HAL_SPI_STATE_ERROR: + return 0; + default: + return 1; + } +} + +void spi_abort_asynch(spi_t *obj) +{ + struct spi_s *spiobj = SPI_S(obj); + SPI_HandleTypeDef *handle = &(spiobj->handle); + + // disable interrupt + IRQn_Type irq_n = spiobj->spiIRQ; + NVIC_ClearPendingIRQ(irq_n); + NVIC_DisableIRQ(irq_n); + + // clean-up + __HAL_SPI_DISABLE(handle); + HAL_SPI_DeInit(handle); + HAL_SPI_Init(handle); + __HAL_SPI_ENABLE(handle); +} + +#endif //DEVICE_SPI_ASYNCH + +#endif