春ロボ1班(元F3RC4班+) / Mbed 2 deprecated harurobo_main_ver4

Dependencies:   mbed EC PathFollowing-ver10 CruizCore_R1370P

Revision:
0:f5992b0c6e00
Child:
1:86eae1cf26d2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp	Fri Nov 16 23:21:38 2018 +0000
@@ -0,0 +1,381 @@
+#include "mbed.h"
+#include "EC.h"
+#include "R1370P.h"
+#include "move4wheel.h"
+#include "PathFollowing.h"
+#include <stdarg.h>
+
+#define PI 3.141592
+
+#define DEBUG_MODE                              // compile as debug mode (comment out if you don't use)
+#ifdef DEBUG_MODE
+#define DEBUG_PRINT                             // enable debug_printf
+#endif
+
+Serial pc(USBTX,USBRX);
+void debug_printf(const char* format,...);      // work as printf in debug
+void Debug_Control();                           // control by PC keybord
+
+#define SPI_FREQ    1000000         // 1MHz
+#define SPI_BITS    16
+#define SPI_MODE    0
+#define SPI_WAIT_US 1               // 1us
+SPI spi(PB_5,PB_4,PB_3);
+
+DigitalOut ss_md1(PB_15);           //エスコンの設定
+DigitalOut ss_md2(PB_14);
+DigitalOut ss_md3(PB_13);
+DigitalOut ss_md4(PC_4);
+
+DigitalOut md_enable(PA_13);        // do all motor driver enable
+//DigitalIn md_ch_enable(p10);        // check enable switch is open or close
+//Timer md_disable;
+DigitalOut md_stop(PA_14);          // stop all motor
+DigitalIn  md_check(PB_7);           // check error of all motor driver  //とりあえず使わない
+
+/*モーターの配置
+*     md1//---F---\\md4
+*        |         |
+*        L    +    R
+*        |         |
+*     md2\\---B---//md3
+*/
+
+
+Ec EC1(PC_6,PC_8,NC,500,0.05);
+Ec EC2(PB_1,PB_12,NC,500,0.05);  //エンコーダ
+Ticker motor_tick;  //角速度計算用ticker
+Ticker ticker;  //for enc
+
+R1370P gyro(PC_6,PC_7);  //ジャイロ
+
+//DigitalOut can_led(LED1);           //if can enable -> toggle
+DigitalOut debug_led(LED2);         //if debugmode -> on
+DigitalOut md_stop_led(LED3);       //if motor stop -> on
+DigitalOut md_err_led(LED4);        //if driver error -> on  //とりあえず使わない
+
+double new_dist1=0,new_dist2=0;
+double old_dist1=0,old_dist2=0;
+double d_dist1=0,d_dist2=0;  //座標計算用関数
+double d_x,d_y;
+//現在地X,y座標、現在角度については、PathFollowingでnow_x,now_y,now_angleを定義済
+double start_x=0,start_y=0;  //スタート位置
+
+static int16_t m1=0, m2=0, m3=0, m4=0;  //int16bit = int2byte
+
+void UserLoopSetting();             // initialize setting
+void DAC_Write(int16_t data, DigitalOut* DAC_cs);
+void MotorControl(int16_t val_md1, int16_t val_md2, int16_t val_md3, int16_t val_md4);
+
+void calOmega()  //角速度計算関数
+{
+    EC1.CalOmega();
+    EC2.CalOmega();
+}
+
+void output(double FL,double BL,double BR,double FR)
+{
+    m1=FL;
+    m2=BL;
+    m3=BR;
+    m4=FR;
+}
+
+void base(double FL,double BL,double BR,double FR,double Max)
+//いろんな加算をしても最大OR最小が1になるような補正(?)//絶対値が一番でかいやつで除算//double Max(0~1)
+//マクソンは-4095~4095だからMax=4095にする//最速スピードを出すための関数になってる
+{
+    if     (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max            ,Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL));
+    else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max            ,Max*BR/fabs(BL),Max*FR/fabs(BL));
+    else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max            ,Max*FR/fabs(BR));
+    else                                                               output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max            );
+}
+
+//ここからそれぞれのプログラム//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+//now_x(現在のx座標),now_y(現在のy座標),now_angle(機体角度(ラジアンではない)(0~360や-180~180とは限らない))(反時計回りが正)
+//ジャイロの出力は角度だが三角関数はラジアンとして計算する
+//通常の移動+座標のずれ補正+機体の角度補正(+必要に応じさらに別補正)
+//ジャイロの仕様上、角度補正をするときに計算式内で角度はそのままよりsinをとったほうがいいかもね
+
+void purecurve(int type,double X,double Y,double r,int theta,double speed/*,double v*/)
+{
+//正面を変えずに円弧を描いて90°曲がる
+//X=円弧の中心座標、Y=円弧の中心座標、r=円弧の半径、theta=plotの間隔(0~90°)、v=目標速度
+
+    int s;
+    int t = 0;
+    double plotx[(90/theta)+1];  //円弧にとるplotのx座標
+    double ploty[(90/theta)+1];
+    //double plotvx[(90/theta)+1];  //各plotにおける速度
+    //double plotvy[(90/theta)+1];
+
+    double x_out,y_out,r_out;
+
+    switch(type) {
+        case 1://↑から→
+
+            for(s=0; s<((90/theta)+1); s++) {
+                plotx[s] = X + r * cos(PI - s * (PI*theta/180)) + r;
+                ploty[s] = Y + r * sin(PI - s * (PI*theta/180));
+                //plotvx[s] = -v * cos(PI - s * (PI*theta/180));
+                //plotvy[s] = v * sin(PI - s * (PI*theta/180));
+                //printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]);
+            }
+
+            while(1) {
+                now_angle=gyro.getAngle();  //ジャイロの値読み込み
+
+                new_dist1=EC1.getDistance_mm();
+                new_dist2=EC2.getDistance_mm();
+                d_dist1=new_dist1-old_dist1;
+                d_dist2=new_dist2-old_dist2;
+                old_dist1=new_dist1;
+                old_dist2=new_dist2;  //微小時間当たりのエンコーダ読み込み
+
+                d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180);
+                d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180);  //微小時間毎の座標変化
+                now_x=now_x+d_x;
+                now_y=now_y+d_y;  //微小時間毎に座標に加算
+
+                XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out);
+                CalMotorOut(x_out,y_out,r_out);  //move4wheel内のモーター番号定義または成分分解が違うかも?
+                //CalMotorOut(plotvx[t], plotvy[t],0);
+
+                //printf("t=%d x_out=%f y_out=%f\n\r",t,x_out,y_out);
+                //printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));
+
+                output(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));  //m1~m4に代入
+
+                if(((X - now_x)*(plotx[t+1] - plotx[t]) + (Y - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
+                if(t == (90/theta))break;
+                
+                MotorControl(m1,m2,m3,m4);  //出力
+                
+                //printf("m1=%d m2=%d m3=%d m4=%d x=%f y=%f\n\r",m1,m2,m3,m4,now_x,now_y);
+
+            }
+
+        case 2://↑から←  //まだ編集してない
+
+            for(s=0; s<((90/theta)+1); s++) {
+                plotx[s] = X + r * cos(s * (PI*theta/180));
+                ploty[s] = Y + r * sin(s * (PI*theta/180));
+            }
+
+            while(1) {
+
+                now_angle=gyro.getAngle();  //ジャイロの値読み込み
+
+                new_dist1=EC1.getDistance_mm();
+                new_dist2=EC2.getDistance_mm();
+                d_dist1=new_dist1-old_dist1;
+                d_dist2=new_dist2-old_dist2;
+                old_dist1=new_dist1;
+                old_dist2=new_dist2;  //微小時間当たりのエンコーダ読み込み
+
+                d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180);
+                d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180);  //微小時間毎の座標変化
+                now_x=now_x+d_x;
+                now_y=now_y+d_y;  //微小時間毎に座標に加算
+
+                XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out);
+                CalMotorOut(x_out,y_out,r_out);
+                base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),4095);
+                if(((X - now_x)*(plotx[t+1] - plotx[t]) + (Y - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
+                if(t == (90/theta))break;
+
+            }
+    }
+}
+//ここまで///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+int main()
+{
+    UserLoopSetting();
+
+    /*void reset();
+    EC1.reset();
+    EC2.reset();*/
+
+    now_x=start_x;
+    now_y=start_y;
+
+    //m1, m2, m3, m4 に出力を代入すればとりあえず動く
+
+    while(1) {
+
+        //Debug_Control();
+        purecurve(1,0,0,1000,9,1000);
+        //MotorControl(m1,m2,m3,m4);
+
+    }
+}
+
+void UserLoopSetting()
+{
+//-----エスコンの初期設定-----//
+    spi.format(SPI_BITS, SPI_MODE);
+    spi.frequency(SPI_FREQ);
+    ss_md1 = 1;
+    ss_md2 = 1;
+    ss_md3 = 1;
+    ss_md4 = 1;
+    md_enable = 1;  //enable on
+    md_err_led = 0;
+    md_stop = 1;
+    md_stop_led = 1;
+//-----センサーの初期設定-----//
+    gyro.initialize();
+    motor_tick.attach(&calOmega,0.05);  //0.05秒間隔で角速度を計算
+    EC1.setDiameter_mm(48);
+    EC2.setDiameter_mm(48);  //測定輪半径
+//-----PathFollowingのパラメーター設定-----//
+    set_p_out(1000);  //ベクトルABに平行方向の出力値設定関数(カーブを曲がる速度)
+    q_setPDparam(30,30);  //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数
+    r_setPDparam(30,30);  //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数
+    set_r_out(1000);  //旋回時の最大出力値設定関数
+    set_target_angle(0);  //機体目標角度設定関数
+
+#ifdef DEBUG_MODE
+    debug_led = 1;
+    pc.attach(Debug_Control, Serial::RxIrq);
+#else
+    debug_led = 0;
+#endif
+}
+
+#define MCP4922_AB      (1<<15)
+#define MCP4922_BUF     (1<<14)
+#define MCP4922_GA      (1<<13)
+#define MCP4922_SHDN    (1<<12)
+
+#define MCP4922_SET_OUTA    (0x3000)    //( MCP4922_GA || MCP4922_SHDN )  //12288
+#define MCP4922_SET_OUTB    (0xB000)    //( MCP4922_AB || MCP4922_GA || MCP4922_SHDN )  //45056
+#define MCP4922_MASKSET     (0x0FFF)    //4095
+
+void DAC_Write(int16_t data, DigitalOut* DAC_cs)  //(出力,出力場所)
+{
+    static uint16_t dataA;  //送るデータ
+    static uint16_t dataB;
+
+    dataA = MCP4922_SET_OUTA;
+    dataB = MCP4922_SET_OUTB;
+
+    if(data >= 0) {
+        if(data > 4095) {
+            data = 4095;
+        }
+        dataA += (MCP4922_MASKSET & (uint16_t)(data));
+    } else {
+        if(data < -4095) {
+            data = -4095;
+        }
+        dataB += (MCP4922_MASKSET & (uint16_t)(-data));
+    }
+
+    //Aの出力設定
+    (DigitalOut)(*DAC_cs)=0;
+    wait_us(SPI_WAIT_US);
+    spi.write(dataA);
+    wait_us(SPI_WAIT_US);
+    (DigitalOut)(*DAC_cs)=1;
+    wait_us(SPI_WAIT_US);
+
+    //Bの出力設定
+    (DigitalOut)(*DAC_cs)=0;
+    wait_us(SPI_WAIT_US);
+    spi.write(dataB);
+    wait_us(SPI_WAIT_US);
+    (DigitalOut)(*DAC_cs)=1;
+
+}
+
+void MotorControl(int16_t val_md1, int16_t val_md2, int16_t val_md3, int16_t val_md4)  //出力
+{
+    static int16_t zero_check;
+
+    DAC_Write(val_md1, &ss_md1);
+    DAC_Write(val_md2, &ss_md2);
+    DAC_Write(val_md3, &ss_md3);
+    DAC_Write(val_md4, &ss_md4);
+
+    zero_check = (val_md1 | val_md2 | val_md3 | val_md4);  //すべての出力が0なら強制停止
+    if(zero_check == 0) {
+        md_stop = 1;
+        md_stop_led = 1;
+    } else {
+        md_stop = 0;
+        md_stop_led = 0;
+    }
+}
+
+#ifdef DEBUG_MODE
+void Debug_Control()
+{
+    static char pc_command = '\0';
+
+    pc_command = pc.getc();
+
+    if(pc_command == 'f') {  //前進
+        m1+=500;
+        m2+=500;
+        m3-=500;
+        m4-=500;
+    } else if(pc_command == 'b') {  //後進
+        m1-=500;
+        m2-=500;
+        m3+=500;
+        m4+=500;
+    } else if(pc_command == 'r') {  //右回り
+        m1+=500;
+        m2+=500;
+        m3+=500;
+        m4+=500;
+    } else if(pc_command == 'l') {  //左回り
+        m1-=500;
+        m2-=500;
+        m3-=500;
+        m4-=500;
+    } else {
+        m1=0;
+        m2=0;
+        m3=0;
+        m4=0;
+    }
+
+    if(m1>4095) {  //最大値を超えないように
+        m1=4095;
+    } else if(m1<-4095) {
+        m1=-4095;
+    }
+    if(m2>4095) {
+        m2=4095;
+    } else if(m2<-4095) {
+        m2=-4095;
+    }
+    if(m3>4095) {
+        m3=4095;
+    } else if(m3<-4095) {
+        m3=-4095;
+    }
+    if(m4>4095) {
+        m4=4095;
+    } else if(m4<-4095) {
+        m4=-4095;
+    }
+
+    debug_printf("%d %d %d %d\r\n",m1,m2,m3,m4);
+    MotorControl(m1,m2,m3,m4);
+    pc_command = '\0';
+}
+#endif
+
+#ifdef DEBUG_PRINT
+void debug_printf(const char* format,...)
+{
+    va_list arg;
+    va_start(arg, format);
+    vprintf(format, arg);
+    va_end(arg);
+}
+#endif
\ No newline at end of file