Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed EC PathFollowing-ver10 CruizCore_R1370P
Diff: main.cpp
- Revision:
- 3:e696a6dd4254
- Parent:
- 2:e04e6b5d6584
- Child:
- 5:7493649d098b
--- a/main.cpp Sat Nov 17 05:35:23 2018 +0000 +++ b/main.cpp Sat Nov 24 14:45:01 2018 +0000 @@ -20,9 +20,10 @@ #define SPI_BITS 16 #define SPI_MODE 0 #define SPI_WAIT_US 1 // 1us -SPI spi(PB_5,PB_4,PB_3); +//SPI spi(PB_5,PB_4,PB_3); //Nucleo +SPI spi(p5,p6,p7); //mbed -DigitalOut ss_md1(PB_15); //エスコンの設定 +/*DigitalOut ss_md1(PB_15); //エスコンの設定 DigitalOut ss_md2(PB_14); DigitalOut ss_md3(PB_13); DigitalOut ss_md4(PC_4); @@ -31,7 +32,18 @@ //DigitalIn md_ch_enable(p10); // check enable switch is open or close //Timer md_disable; DigitalOut md_stop(PA_14); // stop all motor -DigitalIn md_check(PB_7); // check error of all motor driver //とりあえず使わない +DigitalIn md_check(PB_7); // check error of all motor driver //とりあえず使わない*/ + +DigitalOut ss_md1(p15); //エスコンの設定 +DigitalOut ss_md2(p16); +DigitalOut ss_md3(p17); +DigitalOut ss_md4(p18); + +DigitalOut md_enable(p25); +//Timer md_disable; +DigitalOut md_stop(p24); // stop all motor +DigitalIn md_check(p23); // check error of all motor driver //とりあえず使わない + /*モーターの配置 * md1//---F---\\md4 @@ -42,12 +54,16 @@ */ -Ec EC1(PC_6,PC_8,NC,500,0.05); -Ec EC2(PB_1,PB_12,NC,500,0.05); //エンコーダ +//Ec EC1(PC_6,PC_8,NC,500,0.05); +//Ec EC2(PB_1,PB_12,NC,500,0.05); //Nucleo + +Ec EC1(p21,p22,NC,500,0.05); +Ec EC2(p8,p26,NC,500,0.05); //←mbad Ticker motor_tick; //角速度計算用ticker Ticker ticker; //for enc -R1370P gyro(PC_6,PC_7); //ジャイロ +//R1370P gyro(PC_6,PC_7); //ジャイロ +R1370P gyro(p28,p27); //DigitalOut can_led(LED1); //if can enable -> toggle DigitalOut debug_led(LED2); //if debugmode -> on @@ -61,8 +77,11 @@ //現在地X,y座標、現在角度については、PathFollowingでnow_x,now_y,now_angleを定義済 double start_x=0,start_y=0; //スタート位置 +double x_out,y_out,r_out;//出力値 + static int16_t m1=0, m2=0, m3=0, m4=0; //int16bit = int2byte +///////////////////////////////////////////////////関数のプロトタイプ宣言//////////////////////////////////////////////////// void UserLoopSetting(); // initialize setting void DAC_Write(int16_t data, DigitalOut* DAC_cs); void MotorControl(int16_t val_md1, int16_t val_md2, int16_t val_md3, int16_t val_md4); @@ -85,10 +104,28 @@ //いろんな加算をしても最大OR最小が1になるような補正(?)//絶対値が一番でかいやつで除算//double Max(0~1) //マクソンは-4095~4095だからMax=4095にする//最速スピードを出すための関数になってる { - if (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max ,Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL)); - else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max ,Max*BR/fabs(BL),Max*FR/fabs(BL)); - else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max ,Max*FR/fabs(BR)); - else output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max ); + if (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max*FL/fabs(FL),Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL)); + else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max*BL/fabs(BL),Max*BR/fabs(BL),Max*FR/fabs(BL)); + else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max*BR/fabs(BR),Max*FR/fabs(BR)); + else output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max*FR/fabs(FR)); +} + +void calc_xy() +{ + now_angle=gyro.getAngle(); //ジャイロの値読み込み + + new_dist1=EC1.getDistance_mm(); + new_dist2=EC2.getDistance_mm(); + d_dist1=new_dist1-old_dist1; + d_dist2=new_dist2-old_dist2; + old_dist1=new_dist1; + old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み + + d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180); + d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化 + now_x=now_x+d_x; + now_y=now_y-d_y; //微小時間毎に座標に加算 + } //ここからそれぞれのプログラム////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// @@ -103,7 +140,7 @@ //X=円弧の中心座標、Y=円弧の中心座標、r=円弧の半径、theta=plotの間隔(0~90°)、v=目標速度 int s; - int t = 4; + int t = 0; double plotx[(90/theta)+1]; //円弧にとるplotのx座標 double ploty[(90/theta)+1]; //double plotvx[(90/theta)+1]; //各plotにおける速度 @@ -115,43 +152,33 @@ case 1://↑から→ for(s=0; s<((90/theta)+1); s++) { - plotx[s] = X + r * cos(PI - s * (PI*theta/180)) + r; + plotx[s] = X + r * cos(PI - s * (PI*theta/180)); ploty[s] = Y + r * sin(PI - s * (PI*theta/180)); //plotvx[s] = -v * cos(PI - s * (PI*theta/180)); //plotvy[s] = v * sin(PI - s * (PI*theta/180)); - //printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); + //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]); } while(1) { now_angle=gyro.getAngle(); //ジャイロの値読み込み - new_dist1=EC1.getDistance_mm(); - new_dist2=EC2.getDistance_mm(); - d_dist1=new_dist1-old_dist1; - d_dist2=new_dist2-old_dist2; - old_dist1=new_dist1; - old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み - - d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180); - d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化 - now_x=now_x+d_x; - now_y=now_y+d_y; //微小時間毎に座標に加算 + calc_xy(); XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out); CalMotorOut(x_out,y_out,r_out); //move4wheel内のモーター番号定義または成分分解が違うかも? //CalMotorOut(plotvx[t], plotvy[t],0); - //printf("t=%d x_out=%f y_out=%f\n\r",t,x_out,y_out); - printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); + //debug_printf("t=%d now_x=%f now_y=%f x_out=%f y_out=%f\n\r",t,now_x,now_y,x_out,y_out); + //debug_printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); - output(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); //m1~m4に代入 + base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000); //m1~m4に代入 - if(((X - now_x)*(plotx[t+1] - plotx[t]) + (Y - now_y)*(ploty[t+1] - ploty[t])) < 0)t++; + if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++; if(t == (90/theta))break; MotorControl(m1,m2,m3,m4); //出力 - //printf("m1=%d m2=%d m3=%d m4=%d x=%f y=%f\n\r",m1,m2,m3,m4,now_x,now_y); + debug_printf("t=%d m1=%d m2=%d m3=%d m4=%d x=%f y=%f, angle = %f\n\r",t,m1,m2,m3,m4,now_x,now_y,now_angle); } @@ -165,53 +192,105 @@ while(1) { now_angle=gyro.getAngle(); //ジャイロの値読み込み - - new_dist1=EC1.getDistance_mm(); - new_dist2=EC2.getDistance_mm(); - d_dist1=new_dist1-old_dist1; - d_dist2=new_dist2-old_dist2; - old_dist1=new_dist1; - old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み - - d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180); - d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化 - now_x=now_x+d_x; - now_y=now_y+d_y; //微小時間毎に座標に加算 + + calc_xy(); XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out); CalMotorOut(x_out,y_out,r_out); - base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),4095); - if(((X - now_x)*(plotx[t+1] - plotx[t]) + (Y - now_y)*(ploty[t+1] - ploty[t])) < 0)t++; + base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000); + if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++; if(t == (90/theta))break; + MotorControl(m1,m2,m3,m4); } } } -//ここまで/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +void gogo_straight(double x1_point,double y1_point,double x2_point,double y2_point)//直線運動プログラム(引数:出発地点の座標(x,y)、目標地点の座標(x,y)) +{ + while (1) { + + //now_angle=gyro.getAngle(); + + calc_xy(); + printf("x = %f, y = %f, angle = %f\r\n",now_x,now_y,now_angle); + + + //Debug_Control(); + XYRmotorout(x1_point,y1_point,x2_point,y2_point,&x_out,&y_out,&r_out); + //printf("x=%lf, y=%lf, r=%lf",x_out, y_out,r_out); + + CalMotorOut(x_out,y_out,r_out); + //printf("out1=%lf, out2=%lf, out3=%lf, out4=%lf\n",GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); + + base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000); + //printf("m1=%d, m2=%d, m3=%d, m4=%d\r\n",m1,m2,m3,m4); + MotorControl(m1,m2,m3,m4); + + + + if(((x2_point - now_x)*(x2_point - x1_point) + (y2_point - now_y)*(y2_point - y1_point)) < 0) break; + + } + + MotorControl(0,0,0,0); +} + +void go_straight(int type,double goal_x,double goal_y,double speed,double front)//移動パターン(1,2,3,4)、目標X、目標Y、最高速度(0~1)、正面角度 +{ + double y_hosei=(now_y-goal_y)*0.001;//Y座標(mm単位)にP処理 + double x_hosei=(now_x-goal_x)*0.001;//X座標(mm単位)にP処理 + double incl_hosei=sin(now_angle-front)*(PI/180)*0.1;//機体角度(sin(数度→ラジアンに変換))にP処理 + + switch(type) { + case 1://Y座標一定の正方向横移動 + while(now_x<goal_x){ + base(-1-y_hosei-incl_hosei,-1+y_hosei-incl_hosei,1+y_hosei-incl_hosei,1-y_hosei-incl_hosei,speed); + } + break; + + case 2://Y座標一定の負方向横移動 + while(now_x>goal_x){ + base(1-y_hosei-incl_hosei,1+y_hosei-incl_hosei,-1+y_hosei-incl_hosei,-1-y_hosei-incl_hosei,speed); + } + break; + + case 3://Y座標一定の正方向横移動 + while(now_y<goal_y){ + base(1+x_hosei-incl_hosei,-1+x_hosei-incl_hosei,-1-x_hosei-incl_hosei,1-x_hosei-incl_hosei,speed); + } + break; + + case 4://X座標一定の負方向横移動 + while(now_y>goal_y){ + base(-1+x_hosei-incl_hosei,1+x_hosei-incl_hosei,1-x_hosei-incl_hosei,-1-x_hosei-incl_hosei,speed); + } + break; + } +} + +//////////////////////////////////////////////////////////////以下main文//////////////////////////////////////////////////////////////////////// int main() { UserLoopSetting(); - /*void reset(); + void reset(); EC1.reset(); - EC2.reset();*/ + EC2.reset(); now_x=start_x; now_y=start_y; - - //m1, m2, m3, m4 に出力を代入すればとりあえず動く - - purecurve(1,0,0,1000,9,1000); - - /*while(1) { + + + // purecurve(1,1000,0,1000,9,1000); + // MotorControl(0,0,0,0); + + + //gogo_straight(0,0,1500,0); - //Debug_Control(); - - //MotorControl(m1,m2,m3,m4); - - }*/ } +///////////////////////////////////////////////////////////////////////以下マクソン関連/////////////////////////////////////////////////////////////////////////// void UserLoopSetting() { @@ -232,11 +311,11 @@ EC1.setDiameter_mm(48); EC2.setDiameter_mm(48); //測定輪半径 //-----PathFollowingのパラメーター設定-----// - set_p_out(1000); //ベクトルABに平行方向の出力値設定関数(カーブを曲がる速度) - q_setPDparam(30,30); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 - r_setPDparam(30,30); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 - set_r_out(1000); //旋回時の最大出力値設定関数 - set_target_angle(0); //機体目標角度設定関数 + set_p_out(800); //ベクトルABに平行方向の出力値設定関数(カーブを曲がる速度) + q_setPDparam(0.1,0.1); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数 + r_setPDparam(10,0.1); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数 + set_r_out(500); //旋回時の最大出力値設定関数 + // set_target_angle(0); //機体目標角度設定関数 #ifdef DEBUG_MODE debug_led = 1;