3/2

Dependencies:   mbed move4wheel2 EC CruizCore_R1370P

Revision:
0:c61c6e4775ca
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/pathfollowing/PathFollowing.cpp	Wed Feb 13 03:02:19 2019 +0000
@@ -0,0 +1,151 @@
+#include "PathFollowing.h"
+#include "mbed.h"
+#include "math.h"
+
+double p_out,r_out_max;
+double Kvq_p,Kvq_d,Kvr_p,Kvr_d;
+double diff_old,diffangle,diffangle_old;
+double out_dutyQ,out_dutyR;
+double now_angle,target_angle;
+double now_timeQ,old_timeQ,now_timeR,old_timeR;
+double now_x, now_y;
+double diff_st,diff_tgt,diff_st_tgt,p_param;
+double usw_data1,usw_data2,usw_data3,usw_data4;
+
+Timer timer;
+
+//初期座標:A, 目標座標:B、機体位置:C、点Cから直線ABに下ろした垂線の足:H
+void XYRmotorout(double plot_x1, double plot_y1, double plot_x2, double plot_y2, double *ad_x_out, double *ad_y_out, double *ad_r_out, double speed1, double speed2 )  //プログラム使用時、now_x,now_yはグローバル変数として定義する必要あり
+//plot_x1,plot_y1:出発地点の座標
+//plot_x2,plot_y2:目標地点の座標
+//speed1:初期速度
+//speed2:目標速度
+{
+    double Vector_P[2] = {(plot_x2 - plot_x1), (plot_y2 - plot_y1)}; //ベクトルAB
+    double A_Vector_P = hypot(Vector_P[0], Vector_P[1]); //ベクトルABの大きさ(hypot(a,b)で√(a^2+b^2)を計算できる <math.h>))
+    double UnitVector_P[2] = {Vector_P[0]/A_Vector_P, Vector_P[1]/A_Vector_P}; //ベクトルABの単位ベクトル
+    double UnitVector_Q[2] = {UnitVector_P[1], -UnitVector_P[0]}; //ベクトルCHの単位ベクトル
+    double Vector_R[2] = {(now_x - plot_x1), (now_y - plot_y1)}; //ベクトルAC
+    double diff = UnitVector_P[0]*Vector_R[1] - UnitVector_P[1]*Vector_R[0]; //機体位置と直線ABの距離(外積を用いて計算)
+
+
+    //double VectorOut_P[2]= {0}; //ベクトルABに平行方向の出力をx軸方向、y軸方向の出力に分解*/
+
+///////////////////<XYRmotorout関数内>以下、ベクトルABに垂直な方向の誤差を埋めるPD制御(ベクトルABに垂直方向の出力を求め、x軸方向、y軸方向の出力に分解)//////////////////////
+
+    timer.start();
+    now_timeQ=timer.read();
+    out_dutyQ=Kvq_p*diff+Kvq_d*(diff-diff_old)/(now_timeQ-old_timeQ); //ベクトルABに垂直方向の出力を決定
+    diff_old=diff;
+
+    if(out_dutyQ>500)out_dutyQ=500;
+    if(out_dutyQ<-500)out_dutyQ=-500;
+
+    old_timeQ=now_timeQ;
+
+    double VectorOut_Q[2] = {out_dutyQ*UnitVector_Q[0], out_dutyQ*UnitVector_Q[1]}; //ベクトルABに垂直方向の出力をx軸方向、y軸方向の出力に分解
+
+///////////////////////////////<XYRmotorout関数内>以下、機体角度と目標角度の誤差を埋めるPD制御(旋回のための出力値を決定)//////////////////////////////////
+
+    now_timeR=timer.read();
+    diffangle=target_angle-now_angle;
+    out_dutyR=-(Kvr_p*diffangle+Kvr_d*(diffangle-diffangle_old)/(now_timeR-old_timeR));
+    diffangle_old=diffangle;
+
+    if(out_dutyR>r_out_max)out_dutyR=r_out_max;
+    if(out_dutyR<-r_out_max)out_dutyR=-r_out_max;
+
+    old_timeR=now_timeR;
+
+//////////////////////////<XYRmotorout関数内>以下、x軸方向、y軸方向、旋回の出力をそれぞれad_x_out,ad_y_out,ad_r_outの指すアドレスに書き込む/////////////////////////////
+////////////////////////////////////////////その際、x軸方向、y軸方向の出力はフィールドの座標系から機体の座標系に変換する。///////////////////////////////////////////////
+
+    diff_st = hypot(now_x-plot_x1,now_y-plot_y1); //出発座標と機体の位置の距離
+    diff_tgt = hypot(now_x - plot_x2, now_y - plot_y2); //機体の位置と目標座標の距離
+    diff_st_tgt = hypot(plot_x1-plot_x2,plot_y1-plot_y2); //出発座標と目標座標の距離
+
+    if(speed1 == speed2) { //等速移動
+
+        double VectorOut_P[2] = {speed1*UnitVector_P[0], speed1*UnitVector_P[1]};
+
+        *ad_x_out = (VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180);
+        *ad_y_out = (VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180);
+        *ad_r_out = out_dutyR;
+
+    } else if(speed2 == 0) { //減速移動(目標速度が0)→ベクトルABに垂直な方向の出力にもP制御をかける。
+
+        double VectorOut_P[2] = {speed1*UnitVector_P[0], speed1*UnitVector_P[1]};
+
+        if(diff_tgt > diff_st_tgt) {
+            diff_tgt = diff_st_tgt;
+        }
+
+        p_param=(diff_tgt/diff_st_tgt);
+
+        *ad_x_out = p_param*((VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180));
+        *ad_y_out = p_param*((VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180));
+        *ad_r_out = out_dutyR;
+
+    } else if(speed1 > speed2) { //減速移動(目標速度が0でない)
+
+        if(diff_tgt > diff_st_tgt) {
+            diff_tgt = diff_st_tgt;
+        }
+        
+        p_param=(diff_tgt/diff_st_tgt);
+
+        double speed3 = speed2 + (speed1-speed2)*p_param;
+
+        double VectorOut_P[2] = {speed3*UnitVector_P[0], speed3*UnitVector_P[1]};
+         
+        *ad_x_out = (VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180);
+        *ad_y_out = (VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180);
+        *ad_r_out = out_dutyR;
+
+    } else if(speed1 < speed2) { //加速移動(speed1)
+
+        if(diff_st > diff_st_tgt) {
+            diff_st = diff_st_tgt;
+        }
+             
+        p_param=(diff_st/diff_st_tgt);
+
+        double speed4 = speed1 + (speed2-speed1)*p_param;
+
+        double VectorOut_P[2] = {speed4*UnitVector_P[0], speed4*UnitVector_P[1]};
+         
+        *ad_x_out = (VectorOut_P[0]+VectorOut_Q[0])*cos(-now_angle*3.141592/180)-(VectorOut_P[1]+VectorOut_Q[1])*sin(-now_angle*3.141592/180);
+        *ad_y_out = (VectorOut_P[0]+VectorOut_Q[0])*sin(-now_angle*3.141592/180)+(VectorOut_P[1]+VectorOut_Q[1])*cos(-now_angle*3.141592/180);
+        *ad_r_out = out_dutyR;
+    }
+}
+
+////////////////////////////////////////////////////////////<XYRmotorout関数は以上>////////////////////////////////////////////////////////////////
+
+
+/*void set_p_out(double p)  //ベクトルABに平行方向の出力値設定関数
+{
+    p_out = p;
+}*/
+
+void q_setPDparam(double q_p,double q_d)  //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数
+{
+    Kvq_p=q_p;
+    Kvq_d=q_d;
+}
+
+void r_setPDparam(double r_p,double r_d)  //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数
+{
+    Kvr_p=r_p;
+    Kvr_d=r_d;
+}
+
+void set_r_out(double r)  //旋回時の最大出力値設定関数
+{
+    r_out_max = r;
+}
+
+void set_target_angle(double t)  //機体の目標角度設定関数
+{
+    target_angle = t;
+}