Erick / Mbed 2 deprecated ICE_BLE_TEST

Dependencies:   NaturalTinyShell_ice libmDot-12Sept mbed-rtos mbed

Fork of ICE by Erick

src/ModbusMaster/ModbusMaster.cpp

Committer:
davidjhoward
Date:
2016-10-07
Revision:
199:d65ed41d4dd4
Parent:
197:594afd088f32
Child:
203:9d735375f218

File content as of revision 199:d65ed41d4dd4:

/******************************************************************************
 *
 * File:                ModbusMaster.cpp
 * Desciption:          source for the ICE Modbus Master
 *
 *****************************************************************************/
#include "global.h"
#include <stdio.h>
#include "MTSLog.h"
#include "BLEDataHandler.h"
#include "ModbusMaster.h"
#include "ModbusMasterApi.h"
#include "mod.h"
#include "MbedJSONValue.h"

DigitalOut dout1(PC_1);
DigitalOut dout2(PA_1);
DigitalIn flow_switch(PA_0);
DigitalIn dinp2(PC_13);

/*****************************************************************************
 * Function:             ModbusMaster
 * Description:          entry point for the Modbus Master
 *
 * @param                (IN) args (user-defined arguments)
 * @return               none
 *****************************************************************************/
std::map<std::string,VirtualCommand> VirtualCommandMap;

char ModbusMasterScratchBuf[MAX_FILE_SIZE];
void ModbusMaster(void const *args)
{
    logInfo("%s ModbusMaster has started...", __func__);
    bool status;
    RegisterType_t regType;

    mod_init();
    DigitalOut mod_power(PA_11);
    mod_power = 0; // provide power to the modbus

    while( true ) {

        MbedJSONValue json_value;

        // configure modbus registers based in all files that start with "input"
        std::vector<mDot::mdot_file> file_list = GLOBAL_mdot->listUserFiles();
        for (std::vector<mDot::mdot_file>::iterator i = file_list.begin(); i != file_list.end(); ++i) {
            if( (strncmp( i->name, "vcmd", (strlen("input")-1)) == 0) ) {
                status = GLOBAL_mdot->readUserFile(i->name, ModbusMasterScratchBuf, MAX_FILE_SIZE);
                if( status != true ) {
                    logInfo("(%d)read file failed, status=%d", __LINE__, status);
                } else {
                    logInfo("(%s:%d)loading File: %s", __func__, __LINE__, i->name );
                }

                parse( json_value, ModbusMasterScratchBuf );

                std::string id = json_value["id"].get<std::string>().c_str();
                VirtualCommandMap[id].constant = atof(json_value["constant"].get<std::string>().c_str());
                VirtualCommandMap[id].opl = json_value["opl"].get<std::string>().c_str();
                VirtualCommandMap[id].opr = json_value["opr"].get<std::string>().c_str();
                VirtualCommandMap[id].op = json_value["op"].get<std::string>().c_str();
                logInfo("Processd virtual command file: id=%s", id.c_str());
                continue;
            }

            regType = REG_TYPE_NONE;

            if( (strncmp( i->name, "input", (strlen("input")-1)) == 0) ) {
                regType = REG_TYPE_INPUT;
            } else if( (strncmp( i->name, "output", (strlen("output")-1)) == 0) ) {
                regType = REG_TYPE_OUTPUT;
            } else if( (strncmp( i->name, "vinput", (strlen("vinput")-1)) == 0) ) {
                regType = REG_TYPE_VINPUT;
            } else if( (strncmp( i->name, "voutput", (strlen("voutput")-1)) == 0) ) {
                regType = REG_TYPE_VOUTPUT;
            }

            if( regType != REG_TYPE_NONE ) {

                status = GLOBAL_mdot->readUserFile(i->name, ModbusMasterScratchBuf, MAX_FILE_SIZE);
                if( status != true ) {
                    logInfo("(%d)read file failed, status=%d", __LINE__, status);
                } else {
                    logInfo("(%s:%d)loading File: %s", __func__, __LINE__, i->name );
                }

                parse( json_value, ModbusMasterScratchBuf );

                std::string id = json_value["id"].get<std::string>().c_str();
                ModbusRegisterMap[id].name = json_value["name"].get<std::string>().c_str();
                ModbusRegisterMap[id].units = json_value["units"].get<std::string>().c_str();
                ModbusRegisterMap[id].min = atof(json_value["min"].get<std::string>().c_str());
                ModbusRegisterMap[id].max = atof(json_value["max"].get<std::string>().c_str());
                ModbusRegisterMap[id].node = atoi(json_value["node"].get<std::string>().c_str());
                ModbusRegisterMap[id].reg = atoi(json_value["reg"].get<std::string>().c_str());
                ModbusRegisterMap[id].rtype = atoi(json_value["rtype"].get<std::string>().c_str());
                ModbusRegisterMap[id].type = atoi(json_value["type"].get<std::string>().c_str());
                ModbusRegisterMap[id].size = atoi(json_value["size"].get<std::string>().c_str());
                ModbusRegisterMap[id].order = atoi(json_value["order"].get<std::string>().c_str());
                ModbusRegisterMap[id].fmt = json_value["fmt"].get<std::string>().c_str();
                ModbusRegisterMap[id].rfreq = atoi(json_value["rfreq"].get<std::string>().c_str());
                ModbusRegisterMap[id].regType = regType;
                ModbusRegisterMap[id].simulated = false;
                ModbusRegisterMap[id].errflag = 0;
                if( (regType == REG_TYPE_VINPUT) || (regType == REG_TYPE_VOUTPUT) ) {
                    ModbusRegisterMap[id].vcmd = json_value["vcmd"].get<std::string>().c_str();
                }
            }
        }

        osSignalSet(mainThreadId, sig_output_continue);

        // read modbus registers that have been configured.
        while ( true ) {

            std::map<std::string, ModbusRegister>::iterator iter;
            for (iter = ModbusRegisterMap.begin(); iter != ModbusRegisterMap.end(); ++iter) {
                if( iter->second.simulated == true ) {
                    ModbusRegisterMap[iter->first].errflag = 0;
//                  printf("\r\nsimulating input=%s, min=%2.2f, max=%2.2f, start_value=%2.2f, up_step=%2.2f, down_step=%2.2f moving_up=%d\r\n",iter->first.c_str(), SimulateInputMap[iter->first].min, SimulateInputMap[iter->first].max, SimulateInputMap[iter->first].start_value, SimulateInputMap[iter->first].up_step, SimulateInputMap[iter->first].down_step, SimulateInputMap[iter->first].moving_up);
                    if( (SimulateInputMap[iter->first].min == 0) && (SimulateInputMap[iter->first].max == 0) ) {
                        ModbusRegisterMap[iter->first].float_value = SimulateInputMap[iter->first].start_value;
//                        printf("simulating input=%s, value=%2.2f\r\n",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value);
                    } else {
                        if( ModbusRegisterMap[iter->first].float_value >= SimulateInputMap[iter->first].max ) {
                            SimulateInputMap[iter->first].moving_up = false;
//                            printf("simulating down input=%s, value=%2.2f - %2.2f\r\n",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value, SimulateInputMap[iter->first].down_step);
                            ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value - SimulateInputMap[iter->first].down_step;
                        } else if( ModbusRegisterMap[iter->first].float_value <= SimulateInputMap[iter->first].min ) {
                            SimulateInputMap[iter->first].moving_up = true;
//                            printf("simulating up input=%s, value=%2.2f + %2.2f\r\n",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value, SimulateInputMap[iter->first].up_step);
                            ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value + SimulateInputMap[iter->first].up_step;
                        } else {
                            if( SimulateInputMap[iter->first].moving_up == true ) {
//                                printf("continue simulate up input=%s, value=%2.2f + %2.2f\r\n",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value, SimulateInputMap[iter->first].up_step);
                                ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value + SimulateInputMap[iter->first].up_step;
                            } else {
//                                printf("continue simulate down input=%s, value=%2.2f - %2.2f\r\n",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value, SimulateInputMap[iter->first].down_step);
                                ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value - SimulateInputMap[iter->first].down_step;
                            }
                        }
//                        printf("simulating input=%s, value=%2.2f\r\n\r\n",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value);
                    }
                    continue;
                }

                if( iter->second.node != 0 ) {
                    unsigned char rd_buf[16];
                    memset( rd_buf, 0, 16 );
                    logInfo("Processing Input: tag=%s, node=%d, reg=%d, size=%d, order=%d", iter->first.c_str(), iter->second.node, iter->second.reg, iter->second.size, iter->second.order );
                    int ret = mod_read(iter->second.node, iter->second.rtype, iter->second.reg, iter->second.size, rd_buf);
                    switch( iter->second.type ) {
                        case TYPE_32BIT_FLOAT:
                            float float_value;
                            if( ret != MOD_ERROR_NONE ) {
                                ModbusRegisterMap[iter->first].errflag = ret;
                                break;
                            }
                            status = ReadModbus_32bit_float( &float_value, iter->second.order, rd_buf );
                            if( status == true ) {
                                ModbusRegisterMap[iter->first].float_value = float_value;
                                ModbusRegisterMap[iter->first].errflag = 0;
//                                logInfo("Modbus Tag:%s value=%2.2f", iter->first.c_str(), float_value );
                            } else {
                                ModbusRegisterMap[iter->first].errflag = 1000;
//                                logInfo("Modbus Read Failed, tag=%s", iter->first.c_str() );
                            }
                            break;
                        case TYPE_32BIT_INT:
                            int32_t int32_value;
                            if( ret != MOD_ERROR_NONE ) {
                                ModbusRegisterMap[iter->first].errflag = ret;
                                break;
                            }
                            status = ReadModbus_32bit_int( &int32_value, iter->second.order, rd_buf );
                            if( status == true ) {
                                ModbusRegisterMap[iter->first].float_value = int32_value;
                                ModbusRegisterMap[iter->first].errflag = 0;
                                logInfo("Modbus Tag:%s value=%2.2f", iter->first.c_str(), ModbusRegisterMap[iter->first].float_value );
                            } else {
                                ModbusRegisterMap[iter->first].errflag = 1000;
                                logInfo("Modbus Read Failed, tag=%s", iter->first.c_str() );
                            }
                            break;
                        case TYPE_32BIT_UINT:
                            break;
                        case TYPE_16BIT_INT:
                            break;
                        case TYPE_16BIT_UINT:
                            break;
                        default:
                            break;
                    }
                }

                if( (iter->second.node == 0) && (iter->second.regType == REG_TYPE_OUTPUT) ) {
//                    logInfo("processing PIN output=%s, reg=%d, value=%d",iter->first.c_str(), ModbusRegisterMap[iter->first].reg, (bool)ModbusRegisterMap[iter->first].float_value);
                    if( ModbusRegisterMap[iter->first].reg == 1 ) {
                        dout1 = (bool)((int)ModbusRegisterMap[iter->first].float_value&0x1);
                    } else {
                        dout2 = (bool)((int)ModbusRegisterMap[iter->first].float_value&0x1);
                    }
                }
                if( (iter->second.node == 0) && (iter->second.regType == REG_TYPE_INPUT) ) {
//                    logInfo("processing PIN input=%s, reg=%d, value=%d",iter->first.c_str(), ModbusRegisterMap[iter->first].reg, (bool)ModbusRegisterMap[iter->first].float_value);
                    if( ModbusRegisterMap[iter->first].reg == 1 ) {
                        // digital input
                        ModbusRegisterMap[iter->first].float_value = (float)flow_switch.read();
                    } else {
                        ModbusRegisterMap[iter->first].float_value = (float)dinp2.read();
                    }
                }
            }

            // now update all of the virtual registers
            for (iter = ModbusRegisterMap.begin(); iter != ModbusRegisterMap.end(); ++iter) {
                if( (ModbusRegisterMap[iter->first].regType != REG_TYPE_VINPUT) && (ModbusRegisterMap[iter->first].regType != REG_TYPE_VOUTPUT) ) {
                    continue;
                }
                logInfo("Processing Virtual Input: vcmd:%s, tag:%s, opl:%s, opr:%s, op:%s, constant:%.4f", iter->second.vcmd.c_str(), iter->first.c_str(),
                        VirtualCommandMap[iter->second.vcmd].opl.c_str(),
                        VirtualCommandMap[iter->second.vcmd].opr.c_str(),
                        VirtualCommandMap[iter->second.vcmd].op.c_str(),
                        VirtualCommandMap[iter->second.vcmd].constant
                       );
                switch( VirtualCommandMap[iter->second.vcmd].op.c_str()[0] ) {
                    case '=':
                        ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value;
                        logInfo("Setting tag=%s, equal to (value=%2.2f)", iter->first.c_str(),
                                //VirtualCommandMap[iter->second.vcmd].opl.c_str(),
                                ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value
                               );
                        break;
                    case '*':
                        ModbusRegisterMap[iter->first].float_value =
                            ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value *
                            ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value;
                        logInfo("Setting tag=%s, equal to (%2.2f*%2.2f) = %2.2f", iter->first.c_str(),
                                //VirtualCommandMap[iter->second.vcmd].opl.c_str(),
                                ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value,
                                ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value,
                                ModbusRegisterMap[iter->first].float_value
                               );
                    case '/':
                        if( ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value != 0 ) {
                            ModbusRegisterMap[iter->first].float_value =
                                ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value /
                                ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value;
                            logInfo("Setting tag=%s, equal to (%2.2f/%2.2f) = %2.2f", iter->first.c_str(),
                                    //VirtualCommandMap[iter->second.vcmd].opl.c_str(),
                                    ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value,
                                    ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value,
                                    ModbusRegisterMap[iter->first].float_value
                                   );
                        } else {
                            logInfo("NOT DOING DIVIDE BY ZERO");
                        }
                        break;
                    case '+':
                    case '-':
                    default:
                        break;
                }
            }

            osEvent evt = ModbusMasterMailBox.get(50);
            if (evt.status == osEventMail) {
                Message_t *mail = (Message_t*)evt.value.p;
                printf("Mail Received: Action: %d, New Input File: %s\r\n", mail->action, mail->controlFile);
                if( mail->action == ACTION_EXEC_CMD ) {
                    ModbusMasterExecCmd( mail->controlFile );
                } else {
                    ModbusRegisterMap.clear();
                }
                ModbusMasterMailBox.free(mail);
                break;
            }
            Thread::wait(5000);
        }
    }
}

bool ReadModbus_32bit_float( float *float_value, int order, unsigned char *rd_buf )
{
    MR_REGISTER_32_BIT_FLOAT value;

    switch( order ) {
        case BigEndian:
            value.b.lo_lo = rd_buf[3];
            value.b.lo_hi = rd_buf[2];
            value.b.hi_lo = rd_buf[1];
            value.b.hi_hi = rd_buf[0];
            break;
        case BigEndianReverseWord:
            value.b.lo_lo = rd_buf[1];
            value.b.lo_hi = rd_buf[0];
            value.b.hi_lo = rd_buf[3];
            value.b.hi_hi = rd_buf[2];
            break;
        default:
            printf("%s:%d: order not supported\r\n",__func__,__LINE__);
            return false;
    }
//    printf("0x%x 0x%x 0x%x 0x%x (%2.2f)\r\n", value.b.hi_hi, value.b.hi_lo, value.b.lo_hi, value.b.lo_lo, value.f);
    *float_value = value.f;
    return true;
}

bool WriteModbus_32bit_float( float float_value, int order, unsigned char *xmt_buf )
{
    MR_REGISTER_32_BIT_FLOAT value;

    value.f = float_value;

    switch( order ) {
        case BigEndian:
            xmt_buf[3] = value.b.lo_lo;
            xmt_buf[2] = value.b.lo_hi;
            xmt_buf[1] = value.b.hi_lo;
            xmt_buf[0] = value.b.hi_hi;
            break;
        case BigEndianReverseWord:
            xmt_buf[1] = value.b.lo_lo;
            xmt_buf[0] = value.b.lo_hi;
            xmt_buf[3] = value.b.hi_lo;
            xmt_buf[2] = value.b.hi_hi;
            break;
        default:
            printf("%s:%d: order not supported\r\n",__func__,__LINE__);
            return false;
    }
    printf("%s:%d: 0x%x 0x%x 0x%x 0x%x (%2.2f)\r\n",__func__,__LINE__, value.b.hi_hi, value.b.hi_lo, value.b.lo_hi, value.b.lo_lo, value.f);
    return true;
}

bool ReadModbus_32bit_int( int32_t *int32_value, int order, unsigned char *rd_buf )
{
    MR_REGISTER_32BIT_INT value;

    switch( order ) {
        case BigEndian:
            value.b.lo_lo = rd_buf[3];
            value.b.lo_hi = rd_buf[2];
            value.b.hi_lo = rd_buf[1];
            value.b.hi_hi = rd_buf[0];
            break;
        case BigEndianReverseWord:
            value.b.lo_lo = rd_buf[1];
            value.b.lo_hi = rd_buf[0];
            value.b.hi_lo = rd_buf[3];
            value.b.hi_hi = rd_buf[2];
            break;
        default:
            printf("%s:%d: order not supported\r\n",__func__,__LINE__);
            return false;
    }
//    printf("0x%x 0x%x 0x%x 0x%x (%d)\r\n", value.b.hi_hi, value.b.hi_lo, value.b.lo_hi, value.b.lo_lo, value.i);
    *int32_value = value.i;
    return true;
}

bool WriteModbus_32bit_int( int32_t int32_value, int order, unsigned char *xmt_buf )
{
    MR_REGISTER_32BIT_INT value;

    value.i = int32_value;

    switch( order ) {
        case BigEndian:
            xmt_buf[3] = value.b.lo_lo;
            xmt_buf[2] = value.b.lo_hi;
            xmt_buf[1] = value.b.hi_lo;
            xmt_buf[0] = value.b.hi_hi;
            break;
        case BigEndianReverseWord:
            xmt_buf[1] = value.b.lo_lo;
            xmt_buf[0] = value.b.lo_hi;
            xmt_buf[3] = value.b.hi_lo;
            xmt_buf[2] = value.b.hi_hi;
            break;
        default:
            printf("%s:%d: order not supported\r\n",__func__,__LINE__);
            return false;
    }
    printf("%s:%d: 0x%x 0x%x 0x%x 0x%x (%d)\r\n", __func__, __LINE__, value.b.hi_hi, value.b.hi_lo, value.b.lo_hi, value.b.lo_lo, value.i);
    return true;
}

bool WriteModbus_16bit_int( int16_t int16_value, int order, unsigned char *xmt_buf )
{
    MR_REGISTER_16BIT_INT value;

    value.w = int16_value;

    switch( order ) {
        case BigEndian:
        case BigEndianReverseWord:
            xmt_buf[1] = value.b.lo;
            xmt_buf[0] = value.b.hi;
            break;
        default:
            printf("%s:%d: order not supported\r\n",__func__,__LINE__);
            return false;
    }
    printf("%s:%d: 0x%x 0x%x (%d)\r\n", __func__,__LINE__, value.b.hi, value.b.lo, value.w);
    return true;
}

void ModbusMasterExecCmd( char *cmd )
{
    MbedJSONValue json_cmd;
    bool status;
    int ret;
    unsigned char rd_buf[16];

//    printf("%s:%d: command=%s\r\n", __func__, __LINE__, cmd );

    parse( json_cmd, cmd );

    std::string id = json_cmd["id"].get<std::string>().c_str();
    int node = atoi(json_cmd["node"].get<std::string>().c_str());
    int func = atoi(json_cmd["func"].get<std::string>().c_str());
    int sreg = atoi(json_cmd["sreg"].get<std::string>().c_str());
    int nreg = atoi(json_cmd["nreg"].get<std::string>().c_str());
    int dtype = atoi(json_cmd["dtype"].get<std::string>().c_str());
    int order = atoi(json_cmd["order"].get<std::string>().c_str());
    float value = atof(json_cmd["value"].get<std::string>().c_str());

    switch( func ) {
        case MOD_FUNC_GET_HREG: // read holding register
        case MOD_FUNC_GET_IREG: // read input register
            ret = mod_read(node, func, sreg, nreg, rd_buf);
            switch( dtype ) {
                case TYPE_32BIT_FLOAT: {
                    float float_value;
                    if( ret != MOD_ERROR_NONE ) {
                        printf("CMD: %s:%d: %s failed, errflag=%d\r\n", __func__, __LINE__,  id.c_str(), ret );
                        break;
                    }
                    status = ReadModbus_32bit_float( &float_value, order, rd_buf );
                    if( status == true ) {
                        printf("CMD: %s:%d: %s value=%2.2f\r\n", __func__, __LINE__,  id.c_str(), float_value );
                    } else {
                        printf("CMD: %s:%d: %s failed\r\n", __func__, __LINE__, id.c_str() );
                    }
                    break;
                }
                case TYPE_32BIT_INT:
                case TYPE_32BIT_UINT: {
                    int32_t int32_value;
                    if( ret != MOD_ERROR_NONE ) {
                        printf("CMD: %s:%d: %s failed, errflag=%d\r\n", __func__, __LINE__,  id.c_str(), ret );
                        break;
                    }
                    status = ReadModbus_32bit_int( &int32_value, order, rd_buf );
                    if( status == true ) {
                        printf("CMD: %s:%d: %s value=%d\r\n", __func__, __LINE__,  id.c_str(), int32_value );
                    } else {
                        printf("CMD: %s:%d: %s failed\r\n", __func__, __LINE__, id.c_str() );
                    }
                    break;
                }
                case TYPE_16BIT_INT:
                case TYPE_16BIT_UINT:
                    break;
                default:
                    break;
            }
            break;
        case MOD_FUNC_SET_HREG:  // write holding register
        case MOD_FUNC_SET_HREGS: // write multiple registers (only supports 2 right now)
        case MOD_FUNC_SET_COIL:  { // write coil
            unsigned char xmt_buf[10];
            switch( dtype ) {
                case TYPE_32BIT_FLOAT: {
                    status = WriteModbus_32bit_float( value, order, xmt_buf );
                    if( status != true ) {
                        printf("CMD: %s:%d: %s failed\r\n", __func__, __LINE__, id.c_str() );
                        return;
                    }
                    printf("%s:%d: 0x%x 0x%x 0x%x 0x%x\r\n", __func__,__LINE__, xmt_buf[0], xmt_buf[1], xmt_buf[2], xmt_buf[3]);
                    break;
                }
                case TYPE_32BIT_INT:
                case TYPE_32BIT_UINT: {
                    status = WriteModbus_32bit_int( (int32_t)value, order, xmt_buf );
                    if( status != true ) {
                        printf("CMD: %s:%d:  %s failed\r\n", __func__, __LINE__, id.c_str() );
                        return;
                    }
                    break;
                }
                case TYPE_16BIT_INT:
                case TYPE_16BIT_UINT:
                    status = WriteModbus_16bit_int( (int16_t)value, order, xmt_buf );
                    if( status != true ) {
                        printf("CMD: %s:%d: %s failed\r\n", __func__, __LINE__, id.c_str() );
                        return;
                    }
                    printf("%s:%d: 0x%x 0x%x\r\n", __func__,__LINE__, xmt_buf[0], xmt_buf[1]);
                    break;
                default:
                    printf("CMD: %s:%d: %s NOT IMPLEMENTED\r\n", __func__, __LINE__, id.c_str() );
                    return;
            }
            printf("%s:%d: 0x%x 0x%x 0x%x 0x%x\r\n", __func__,__LINE__, xmt_buf[0], xmt_buf[1], xmt_buf[2], xmt_buf[3]);
            ret = mod_write(node, func, sreg, nreg, xmt_buf);
            if( ret != MOD_ERROR_NONE ) {
                printf("CMD: %s:%d: %s failed, errflag=%d\r\n", __func__, __LINE__, id.c_str(), ret );
            } else {
                printf("CMD: %s:%d: %s wrote to modbus func=%d reg=%d value=%2.2f, errflag=%d\r\n", __func__, __LINE__, id.c_str(), func, sreg, value, ret );
            }
            break;
        }
        default:
            printf("CMD: %s:%d: %s failed, errflag=%d\r\n", __func__, __LINE__, id.c_str(), ret );
            break;
    }

}