Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: NaturalTinyShell_ice libmDot-12Sept mbed-rtos mbed
Fork of ICE by
src/ModbusMaster/ModbusMaster.cpp
- Committer:
- davidjhoward
- Date:
- 2016-10-04
- Revision:
- 173:acfb464a4aec
- Parent:
- 162:5e8948b8044d
- Child:
- 174:515a8b684803
File content as of revision 173:acfb464a4aec:
/******************************************************************************
*
* File: ModbusMaster.cpp
* Desciption: source for the ICE Modbus Master
*
*****************************************************************************/
#include "global.h"
#include <stdio.h>
#include "MTSLog.h"
#include "BLEDataHandler.h"
#include "ModbusMaster.h"
#include "MbedJSONValue.h"
DigitalOut dout1(PC_1);
DigitalOut dout2(PA_1);
DigitalIn flow_switch(PA_0);
DigitalIn dinp2(PC_13);
/*****************************************************************************
* Function: ModbusMaster
* Description: entry point for the Modbus Master
*
* @param (IN) args (user-defined arguments)
* @return none
*****************************************************************************/
std::map<std::string,VirtualCommand> VirtualCommandMap;
char ModbusMasterScratchBuf[1024];
void ModbusMaster(void const *args)
{
logInfo("%s ModbusMaster has started...", __func__);
bool status;
RegisterType_t regType;
bool move_up = true;
modbus_init(MB_BAUD_RATE);
DigitalOut flu_power(PA_11);
flu_power = 0; // provide power to the modbus
while( true ) {
MbedJSONValue json_value;
// configure modbus registers based in all files that start with "input"
std::vector<mDot::mdot_file> file_list = GLOBAL_mdot->listUserFiles();
for (std::vector<mDot::mdot_file>::iterator i = file_list.begin(); i != file_list.end(); ++i) {
if( (strncmp( i->name, "vcmd", (strlen("input")-1)) == 0) ) {
status = GLOBAL_mdot->readUserFile(i->name, ModbusMasterScratchBuf, 1024);
if( status != true ) {
logInfo("(%d)read file failed, status=%d", __LINE__, status);
} else {
logInfo("(%s:%d)loading File: %s", __func__, __LINE__, i->name );
}
parse( json_value, ModbusMasterScratchBuf );
std::string id = json_value["id"].get<std::string>().c_str();
VirtualCommandMap[id].constant = atof(json_value["constant"].get<std::string>().c_str());
VirtualCommandMap[id].opl = json_value["opl"].get<std::string>().c_str();
VirtualCommandMap[id].opr = json_value["opr"].get<std::string>().c_str();
VirtualCommandMap[id].op = json_value["op"].get<std::string>().c_str();
logInfo("Processd virtual command file: id=%s", id.c_str());
continue;
}
regType = REG_TYPE_NONE;
if( (strncmp( i->name, "input", (strlen("input")-1)) == 0) ) {
regType = REG_TYPE_INPUT;
} else if( (strncmp( i->name, "output", (strlen("output")-1)) == 0) ) {
regType = REG_TYPE_OUTPUT;
} else if( (strncmp( i->name, "vinput", (strlen("vinput")-1)) == 0) ) {
regType = REG_TYPE_VINPUT;
} else if( (strncmp( i->name, "voutput", (strlen("voutput")-1)) == 0) ) {
regType = REG_TYPE_VOUTPUT;
}
if( regType != REG_TYPE_NONE ) {
status = GLOBAL_mdot->readUserFile(i->name, ModbusMasterScratchBuf, 1024);
if( status != true ) {
logInfo("(%d)read file failed, status=%d", __LINE__, status);
} else {
logInfo("(%s:%d)loading File: %s", __func__, __LINE__, i->name );
}
parse( json_value, ModbusMasterScratchBuf );
std::string id = json_value["id"].get<std::string>().c_str();
ModbusRegisterMap[id].name = json_value["name"].get<std::string>().c_str();
ModbusRegisterMap[id].units = json_value["units"].get<std::string>().c_str();
ModbusRegisterMap[id].min = atof(json_value["min"].get<std::string>().c_str());
ModbusRegisterMap[id].max = atof(json_value["max"].get<std::string>().c_str());
ModbusRegisterMap[id].node = atoi(json_value["node"].get<std::string>().c_str());
ModbusRegisterMap[id].reg = atoi(json_value["reg"].get<std::string>().c_str());
ModbusRegisterMap[id].rtype = atoi(json_value["rtype"].get<std::string>().c_str());
ModbusRegisterMap[id].type = atoi(json_value["type"].get<std::string>().c_str());
ModbusRegisterMap[id].size = atoi(json_value["size"].get<std::string>().c_str());
ModbusRegisterMap[id].order = atoi(json_value["order"].get<std::string>().c_str());
ModbusRegisterMap[id].fmt = json_value["fmt"].get<std::string>().c_str();
ModbusRegisterMap[id].rfreq = atoi(json_value["rfreq"].get<std::string>().c_str());
ModbusRegisterMap[id].regType = regType;
ModbusRegisterMap[id].simulated = false;
ModbusRegisterMap[id].valid = true;
if( (regType == REG_TYPE_VINPUT) || (regType == REG_TYPE_VOUTPUT) ) {
ModbusRegisterMap[id].vcmd = json_value["vcmd"].get<std::string>().c_str();
}
}
}
osSignalSet(mainThreadId, sig_output_continue);
// read modbus registers that have been configured.
while ( true ) {
std::map<std::string, ModbusRegister>::iterator iter;
for (iter = ModbusRegisterMap.begin(); iter != ModbusRegisterMap.end(); ++iter) {
if( iter->second.simulated == true ) {
std::map<std::string, SimulateInput>::iterator simiter;
for (simiter = SimulateInputMap.begin(); simiter != SimulateInputMap.end(); ++simiter) {
// logInfo("simulating input=%s, min=%2.2f, max=%2.2f, start_value=%2.2f, up_step=%2.2f, down_step=%2.2f",iter->first.c_str(), SimulateInputMap[iter->first].min, SimulateInputMap[iter->first].max, SimulateInputMap[iter->first].start_value, SimulateInputMap[iter->first].up_step, SimulateInputMap[iter->first].down_step);
if( (SimulateInputMap[iter->first].min == 0) && (SimulateInputMap[iter->first].max == 0) ) {
ModbusRegisterMap[iter->first].float_value = SimulateInputMap[iter->first].start_value;
} else {
if( ModbusRegisterMap[iter->first].float_value >= SimulateInputMap[iter->first].max ) {
move_up = false;
ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value - SimulateInputMap[iter->first].down_step;
} else if( ModbusRegisterMap[iter->first].float_value <= SimulateInputMap[iter->first].min ) {
move_up = true;
ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value + SimulateInputMap[iter->first].up_step;
} else {
if( move_up == true ) {
ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value + SimulateInputMap[iter->first].up_step;
} else {
ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[iter->first].float_value - SimulateInputMap[iter->first].down_step;
}
}
logInfo("simulating input=%s, value=%2.2f",iter->first.c_str(), ModbusRegisterMap[iter->first].float_value);
}
}
continue;
}
if( iter->second.node != 0 ) {
logInfo("Processing Input: tag=%s, node=%d, reg=%d, size=%d, order=%d", iter->first.c_str(), iter->second.node, iter->second.reg, iter->second.size, iter->second.order );
SendModbusCommand(iter->second.node, iter->second.reg, iter->second.size);
Thread::wait(30);
switch( iter->second.type ) {
case TYPE_32BIT_FLOAT:
float float_value;
status = ReadModbus_32bit_float( &float_value, iter->second.order );
if( status == true ) {
ModbusRegisterMap[iter->first].float_value = float_value;
ModbusRegisterMap[iter->first].valid = true;
// logInfo("Modbus Tag:%s value=%2.2f", iter->first.c_str(), float_value );
} else {
ModbusRegisterMap[iter->first].valid = false;
// logInfo("Modbus Read Failed, tag=%s", iter->first.c_str() );
}
break;
case TYPE_32BIT_INT:
break;
case TYPE_32BIT_UINT:
break;
case TYPE_16BIT_INT:
break;
case TYPE_16BIT_UINT:
break;
default:
break;
}
}
if( (iter->second.node == 0) && (iter->second.regType == REG_TYPE_OUTPUT) ) {
// logInfo("processing PIN output=%s, reg=%d, value=%d",iter->first.c_str(), ModbusRegisterMap[iter->first].reg, (bool)ModbusRegisterMap[iter->first].float_value);
if( ModbusRegisterMap[iter->first].reg == 1 ) {
dout1 = (bool)ModbusRegisterMap[iter->first].float_value;
} else {
dout2 = (bool)ModbusRegisterMap[iter->first].float_value;
}
}
if( (iter->second.node == 0) && (iter->second.regType == REG_TYPE_INPUT) ) {
// logInfo("processing PIN input=%s, reg=%d, value=%d",iter->first.c_str(), ModbusRegisterMap[iter->first].reg, (bool)ModbusRegisterMap[iter->first].float_value);
if( ModbusRegisterMap[iter->first].reg == 1 ) {
// digital input
ModbusRegisterMap[iter->first].float_value = (float)flow_switch.read();
} else {
ModbusRegisterMap[iter->first].float_value = (float)dinp2.read();
}
}
}
// now update all of the virtual registers
for (iter = ModbusRegisterMap.begin(); iter != ModbusRegisterMap.end(); ++iter) {
if( (ModbusRegisterMap[iter->first].regType != REG_TYPE_VINPUT) && (ModbusRegisterMap[iter->first].regType != REG_TYPE_VOUTPUT) ) {
continue;
}
logInfo("Processing Virtual Input: vcmd:%s, tag:%s, opl:%s, opr:%s, op:%s, constant:%.4f", iter->second.vcmd.c_str(), iter->first.c_str(),
VirtualCommandMap[iter->second.vcmd].opl.c_str(),
VirtualCommandMap[iter->second.vcmd].opr.c_str(),
VirtualCommandMap[iter->second.vcmd].op.c_str(),
VirtualCommandMap[iter->second.vcmd].constant
);
switch( VirtualCommandMap[iter->second.vcmd].op.c_str()[0] ) {
case '=':
ModbusRegisterMap[iter->first].float_value = ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value;
logInfo("Setting tag=%s, equal to (value=%2.2f)", iter->first.c_str(),
VirtualCommandMap[iter->second.vcmd].opl.c_str(),
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value
);
break;
case '*':
ModbusRegisterMap[iter->first].float_value =
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value *
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value;
logInfo("Setting tag=%s, equal to (%2.2f*%2.2f) = %2.2f", iter->first.c_str(),
VirtualCommandMap[iter->second.vcmd].opl.c_str(),
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value,
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value,
ModbusRegisterMap[iter->first].float_value
);
case '/':
if( ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value != 0 ) {
ModbusRegisterMap[iter->first].float_value =
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value /
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value;
logInfo("Setting tag=%s, equal to (%2.2f/%2.2f) = %2.2f", iter->first.c_str(),
VirtualCommandMap[iter->second.vcmd].opl.c_str(),
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opl].float_value,
ModbusRegisterMap[VirtualCommandMap[iter->second.vcmd].opr].float_value,
ModbusRegisterMap[iter->first].float_value
);
} else {
logInfo("NOT DOING DIVIDE BY ZERO");
}
break;
case '+':
case '-':
default:
break;
}
}
osEvent evt = ModbusMasterMailBox.get(50);
if (evt.status == osEventMail) {
Message_t *mail = (Message_t*)evt.value.p;
logInfo("Mail Received: Action: %d, New Input File: %s", mail->action, mail->controlFile);
ModbusMasterMailBox.free(mail);
ModbusRegisterMap.clear();
break;
}
Thread::wait(5000);
}
}
}
volatile char modbus_buffer_char;
volatile bool modbus_interrupt_complete = false;
uint8_t modbus_input_buffer[SIZE_MB_BUFFER];// 1byte address + 1 byte function +1 byte number of regs + 12 bytes of data + 2 bytes for crc response frame from slave
volatile uint8_t modbus_input_buffer_counter = 0;
//Frame crc calucation
uint16_t modbus_crc(uint8_t* buf, int len)
{
uint16_t crc = 0xFFFF;
for (int pos = 0; pos < len; pos++) {
crc ^= (uint16_t)buf[pos]; // XOR byte into least sig. byte of crc
for (int i = 8; i != 0; i--) {
// Loop over each bit
if ((crc & 0x0001) != 0) {
// If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else // Else LSB is not set
crc >>= 1; // Just shift right
}
}
// Note, this number has low and high bytes swapped, so use it accordingly (or swap bytes)
return crc;
}
RawSerial modbus(PA_2, PA_3);
DigitalOut mod_de(PB_0);
DigitalOut mod_re(PB_1);
void modbus_init( uint16_t baudRate )
{
modbus.baud(baudRate);
modbus.attach(&modbus_recv, RawSerial::RxIrq);
}
//call back when character goes into RX buffer for RS485 modbus
void modbus_recv()
{
if (modbus.readable()) {
modbus_buffer_char = modbus.getc();
if (modbus_input_buffer_counter == 0 && modbus_buffer_char == 0x00) {
modbus_input_buffer_counter = 0;
} else {
modbus_input_buffer[modbus_input_buffer_counter] = modbus_buffer_char;
modbus_input_buffer_counter++;
}
}
if (modbus_input_buffer_counter > modbus_input_buffer[2] + 4) {
modbus_interrupt_complete = true;
modbus_input_buffer_counter = 0;
}
}
// Read modbus master frame
void SendModbusCommand(uint8_t slave_address, uint16_t firstReg, uint16_t noRegs)
{
uint8_t L1V[8] = {slave_address, 0x04, 0x00, 0x02, 0x00, 0x02, 0xD1, 0x16};
L1V[2] = (firstReg >> 8) & 0xFF;
L1V[3] = firstReg & 0xFF;
L1V[4] = (noRegs >> 8) & 0xFF;
L1V[5] = noRegs & 0xFF;
L1V[6] = modbus_crc(L1V,6) & 0xFF;
L1V[7] = (modbus_crc(L1V,6)>>8) & 0xFF;
mod_de = 1;
mod_re = 1;
Thread::wait(1);
for (uint8_t i = 0; i < 8; i++)
modbus.putc(L1V[i]);
Thread::wait(2);
mod_de = 0;
mod_re = 0;
}
bool mbInterruptComplete()
{
if (modbus_interrupt_complete) {
modbus_interrupt_complete = false;
return true;
} else {
return false;
}
}
bool ReadModbus_32bit_float( float *float_value, int order )
{
MR_REGISTER_32_BIT_FLOAT value;
if (mbInterruptComplete() != true ) {
return false;
}
switch( order ) {
case BigEndian:
value.b.lo_lo = modbus_input_buffer[6];
value.b.lo_hi = modbus_input_buffer[5];
value.b.hi_lo = modbus_input_buffer[4];
value.b.hi_hi = modbus_input_buffer[3];
break;
case BigEndianReverseWord:
value.b.lo_lo = modbus_input_buffer[4];
value.b.lo_hi = modbus_input_buffer[3];
value.b.hi_lo = modbus_input_buffer[6];
value.b.hi_hi = modbus_input_buffer[5];
break;
default:
return false;
}
*float_value = value.f;
return true;
}
