Infrared remote library for Arduino: send and receive infrared signals with multiple protocols Port from Arduino-IRremote https://github.com/z3t0/Arduino-IRremote
irPronto.cpp
- Committer:
- eunmango
- Date:
- 2019-06-16
- Revision:
- 8:0650578366fd
- Parent:
- 0:70c8e56bac45
File content as of revision 8:0650578366fd:
#define TEST 0 #if TEST # define SEND_PRONTO 1 # define PRONTO_ONCE false # define PRONTO_REPEAT true # define PRONTO_FALLBACK true # define PRONTO_NOFALLBACK false #endif #if SEND_PRONTO //****************************************************************************** #if TEST # include <stdio.h> void enableIROut (int freq) { printf("\nFreq = %d KHz\n", freq); } void mark (int t) { printf("+%d," , t); } void space (int t) { printf("-%d, ", t); } #else # include "IRremote.h" #endif // TEST //+============================================================================= // Check for a valid hex digit // bool ishex (char ch) { return ( ((ch >= '0') && (ch <= '9')) || ((ch >= 'A') && (ch <= 'F')) || ((ch >= 'a') && (ch <= 'f')) ) ? true : false ; } //+============================================================================= // Check for a valid "blank" ... '\0' is a valid "blank" // bool isblank (char ch) { return ((ch == ' ') || (ch == '\t') || (ch == '\0')) ? true : false ; } //+============================================================================= // Bypass spaces // bool byp (char** pcp) { while (isblank(**pcp)) (*pcp)++ ; } //+============================================================================= // Hex-to-Byte : Decode a hex digit // We assume the character has already been validated // uint8_t htob (char ch) { if ((ch >= '0') && (ch <= '9')) return ch - '0' ; if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ; if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ; } //+============================================================================= // Hex-to-Word : Decode a block of 4 hex digits // We assume the string has already been validated // and the pointer being passed points at the start of a block of 4 hex digits // uint16_t htow (char* cp) { return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) | (htob(cp[2]) << 4) | (htob(cp[3]) ) ) ; } //+============================================================================= // bool sendPronto (char* s, bool repeat, bool fallback) { int i; int len; int skip; char* cp; uint16_t freq; // Frequency in KHz uint8_t usec; // pronto uSec/tick uint8_t once; uint8_t rpt; // Validate the string for (cp = s; *cp; cp += 4) { byp(&cp); if ( !ishex(cp[0]) || !ishex(cp[1]) || !ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ; } // We will use cp to traverse the string cp = s; // Check mode = Oscillated/Learned byp(&cp); if (htow(cp) != 0000) return false; cp += 4; // Extract & set frequency byp(&cp); freq = (int)(1000000 / (htow(cp) * 0.241246)); // Rounding errors will occur, tolerance is +/- 10% usec = (int)(((1.0 / freq) * 1000000) + 0.5); // Another rounding error, thank Cod for analogue electronics freq /= 1000; // This will introduce a(nother) rounding error which we do not want in the usec calcualtion cp += 4; // Get length of "once" code byp(&cp); once = htow(cp); cp += 4; // Get length of "repeat" code byp(&cp); rpt = htow(cp); cp += 4; // Which code are we sending? if (fallback) { // fallback on the "other" code if "this" code is not present if (!repeat) { // requested 'once' if (once) len = once * 2, skip = 0 ; // if once exists send it else len = rpt * 2, skip = 0 ; // else send repeat code } else { // requested 'repeat' if (rpt) len = rpt * 2, skip = 0 ; // if rpt exists send it else len = once * 2, skip = 0 ; // else send once code } } else { // Send what we asked for, do not fallback if the code is empty! if (!repeat) len = once * 2, skip = 0 ; // 'once' starts at 0 else len = rpt * 2, skip = once ; // 'repeat' starts where 'once' ends } // Skip to start of code for (i = 0; i < skip; i++, cp += 4) byp(&cp) ; // Send code enableIROut(freq); for (i = 0; i < len; i++) { byp(&cp); if (i & 1) space(htow(cp) * usec); else mark (htow(cp) * usec); cp += 4; } } //+============================================================================= #if TEST int main ( ) { char prontoTest[] = "0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70 "0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100 "0010 0030 0010 0aa6"; // 104 sendPronto(prontoTest, PRONTO_ONCE, PRONTO_FALLBACK); // once code sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_FALLBACK); // repeat code sendPronto(prontoTest, PRONTO_ONCE, PRONTO_NOFALLBACK); // once code sendPronto(prontoTest, PRONTO_REPEAT, PRONTO_NOFALLBACK); // repeat code return 0; } #endif // TEST #endif // SEND_PRONTO #if 0 //****************************************************************************** // Sources: // http://www.remotecentral.com/features/irdisp2.htm // http://www.hifi-remote.com/wiki/index.php?title=Working_With_Pronto_Hex //****************************************************************************** #include <stdint.h> #include <stdio.h> #define IRPRONTO #include "IRremoteInt.h" // The Arduino IRremote library defines USECPERTICK //------------------------------------------------------------------------------ // Source: https://www.google.co.uk/search?q=DENON+MASTER+IR+Hex+Command+Sheet // -> http://assets.denon.com/documentmaster/us/denon%20master%20ir%20hex.xls // char prontoTest[] = "0000 0070 0000 0032 0080 0040 0010 0010 0010 0030 " // 10 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 20 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 30 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 40 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 50 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0010 " // 60 "0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 " // 70 "0010 0010 0010 0030 0010 0010 0010 0030 0010 0010 " // 80 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 90 "0010 0010 0010 0030 0010 0010 0010 0010 0010 0030 " // 100 "0010 0030 0010 0aa6"; // 104 //------------------------------------------------------------------------------ // This is the longest code we can support #define CODEMAX 200 //------------------------------------------------------------------------------ // This is the data we pull out of the pronto code typedef struct { int freq; // Carrier frequency (in Hz) int usec; // uSec per tick (based on freq) int codeLen; // Length of code uint16_t code[CODEMAX]; // Code in hex int onceLen; // Length of "once" transmit uint16_t* once; // Pointer to start within 'code' int rptLen; // Length of "repeat" transmit uint16_t* rpt; // Pointer to start within 'code' } pronto_t; //------------------------------------------------------------------------------ // From what I have seen, the only time we go over 8-bits is the 'space' // on the end which creates the lead-out/inter-code gap. Assuming I'm right, // we can code this up as a special case and otherwise halve the size of our // data! // Ignoring the first four values (the config data) and the last value // (the lead-out), if you find a protocol that uses values greater than 00fe // we are going to have to revisit this code! // // // So, the 0th byte will be the carrier frequency in Khz (NOT Hz) // " 1st " " " " length of the "once" code // " 2nd " " " " length of the "repeat" code // // Thereafter, odd bytes will be Mark lengths as a multiple of USECPERTICK uS // even " " " Space " " " " " " " // // Any occurence of "FF" in either a Mark or a Space will indicate // "Use the 16-bit FF value" which will also be a multiple of USECPERTICK uS // // // As a point of comparison, the test code (prontoTest[]) is 520 bytes // (yes, more than 0.5KB of our Arduino's precious 32KB) ... after conversion // to pronto hex that goes down to ((520/5)*2) = 208 bytes ... once converted to // our format we are down to ((208/2) -1 -1 +2) = 104 bytes // // In fariness this is still very memory-hungry // ...As a rough guide: // 10 codes cost 1K of memory (this will vary depending on the protocol). // // So if you're building a complex remote control, you will probably need to // keep the codes on an external memory device (not in the Arduino sketch) and // load them as you need them. Hmmm. // // This dictates that "Oscillated Pronto Codes" are probably NOT the way forward // // For example, prontoTest[] happens to be: A 48-bit IR code in Denon format // So we know it starts with 80/40 (Denon header) // and ends with 10/aa6 (Denon leadout) // and all (48) bits in between are either 10/10 (Denon 0) // or 10/30 (Denon 1) // So we could easily store this data in 1-byte ("Denon") // + 1-byte (Length=48) // + 6-bytes (IR code) // At 8-bytes per code, we can store 128 codes in 1KB or memory - that's a lot // better than the 2 (two) we started off with! // // And serendipitously, by reducing the amount of data, our program will run // a LOT faster! // // Again, I repeat, even after you have spent time converting the "Oscillated // Pronto Codes" in to IRremote format, it will be a LOT more memory-hungry // than using sendDenon() (or whichever) ...BUT these codes are easily // available on the internet, so we'll support them! // typedef struct { uint16_t FF; uint8_t code[CODEMAX]; } irCode_t; //------------------------------------------------------------------------------ #define DEBUGF(...) printf(__VA_ARGS__) //+============================================================================= // String must be block of 4 hex digits separated with blanks // bool validate (char* cp, int* len) { for (*len = 0; *cp; (*len)++, cp += 4) { byp(&cp); if ( !ishex(cp[0]) || !ishex(cp[1]) || !ishex(cp[2]) || !ishex(cp[3]) || !isblank(cp[4]) ) return false ; } return true; } //+============================================================================= // Hex-to-Byte : Decode a hex digit // We assume the character has already been validated // uint8_t htob (char ch) { if ((ch >= '0') && (ch <= '9')) return ch - '0' ; if ((ch >= 'A') && (ch <= 'F')) return ch - 'A' + 10 ; if ((ch >= 'a') && (ch <= 'f')) return ch - 'a' + 10 ; } //+============================================================================= // Hex-to-Word : Decode a block of 4 hex digits // We assume the string has already been validated // and the pointer being passed points at the start of a block of 4 hex digits // uint16_t htow (char* cp) { return ( (htob(cp[0]) << 12) | (htob(cp[1]) << 8) | (htob(cp[2]) << 4) | (htob(cp[3]) ) ) ; } //+============================================================================= // Convert the pronto string in to data // bool decode (char* s, pronto_t* p, irCode_t* ir) { int i, len; char* cp; // Validate the Pronto string if (!validate(s, &p->codeLen)) { DEBUGF("Invalid pronto string\n"); return false ; } DEBUGF("Found %d hex codes\n", p->codeLen); // Allocate memory to store the decoded string //if (!(p->code = malloc(p->len))) { // DEBUGF("Memory allocation failed\n"); // return false ; //} // Check in case our code is too long if (p->codeLen > CODEMAX) { DEBUGF("Code too long, edit CODEMAX and recompile\n"); return false ; } // Decode the string cp = s; for (i = 0; i < p->codeLen; i++, cp += 4) { byp(&cp); p->code[i] = htow(cp); } // Announce our findings DEBUGF("Input: |%s|\n", s); DEBUGF("Found: |"); for (i = 0; i < p->codeLen; i++) DEBUGF("%04x ", p->code[i]) ; DEBUGF("|\n"); DEBUGF("Form [%04X] : ", p->code[0]); if (p->code[0] == 0x0000) DEBUGF("Oscillated (Learned)\n"); else if (p->code[0] == 0x0100) DEBUGF("Unmodulated\n"); else DEBUGF("Unknown\n"); if (p->code[0] != 0x0000) return false ; // Can only handle Oscillated // Calculate the carrier frequency (+/- 10%) & uSecs per pulse // Pronto uses a crystal which generates a timeabse of 0.241246 p->freq = (int)(1000000 / (p->code[1] * 0.241246)); p->usec = (int)(((1.0 / p->freq) * 1000000) + 0.5); ir->code[0] = p->freq / 1000; DEBUGF("Freq [%04X] : %d Hz (%d uS/pluse) -> %d KHz\n", p->code[1], p->freq, p->usec, ir->code[0]); // Set the length & start pointer for the "once" code p->onceLen = p->code[2]; p->once = &p->code[4]; ir->code[1] = p->onceLen; DEBUGF("Once [%04X] : %d\n", p->code[2], p->onceLen); // Set the length & start pointer for the "repeat" code p->rptLen = p->code[3]; p->rpt = &p->code[4 + p->onceLen]; ir->code[2] = p->rptLen; DEBUGF("Rpt [%04X] : %d\n", p->code[3], p->rptLen); // Check everything tallies if (1 + 1 + 1 + 1 + (p->onceLen * 2) + (p->rptLen * 2) != p->codeLen) { DEBUGF("Bad code length\n"); return false; } // Convert the IR data to our new format ir->FF = p->code[p->codeLen - 1]; len = (p->onceLen * 2) + (p->rptLen * 2); DEBUGF("Encoded: |"); for (i = 0; i < len; i++) { if (p->code[i+4] == ir->FF) { ir->code[i+3] = 0xFF; } else if (p->code[i+4] > 0xFE) { DEBUGF("\n%04X : Mark/Space overflow\n", p->code[i+4]); return false; } else { ir->code[i+3] = (p->code[i+4] * p->usec) / USECPERTICK; } DEBUGF("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]); } DEBUGF("|\n"); ir->FF = (ir->FF * p->usec) / USECPERTICK; DEBUGF("FF -> %d\n", ir->FF); return true; } //+============================================================================= // void irDump (irCode_t* ir) { int i, len; printf("uint8_t buttonName[%d] = {", len); printf("%d,%d, ", (ir->FF >> 8), ir->FF & 0xFF); printf("%d,%d,%d, ", ir->code[0], ir->code[1], ir->code[2]); len = (ir->code[1] * 2) + (ir->code[2] * 2); for (i = 0; i < len; i++) { printf("%s%d", !i ? "" : (i&1 ? "," : ", "), ir->code[i+3]); } printf("};\n"); } //+============================================================================= // int main ( ) { pronto_t pCode; irCode_t irCode; decode(prontoTest, &pCode, &irCode); irDump(&irCode); return 0; } #endif //0