A board support package for the LPC4088 Display Module.
Dependencies: DM_HttpServer DM_USBHost
Dependents: lpc4088_displaymodule_emwin lpc4088_displaymodule_demo_sphere sampleGUI sampleEmptyGUI ... more
Fork of DMSupport by
Memory/sdram.cpp
- Committer:
- embeddedartists
- Date:
- 2019-10-23
- Revision:
- 41:e06e764ff4fd
- Parent:
- 30:a97015441bb4
File content as of revision 41:e06e764ff4fd:
/* * Copyright 2014 Embedded Artists AB * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /****************************************************************************** * Includes *****************************************************************************/ #include "mbed.h" #include "sdram.h" #if defined(TOOLCHAIN_ARM) /* KEIL uVision and mbed online compiler */ #include "sys_helper.h" #endif /****************************************************************************** * Defines and typedefs *****************************************************************************/ /****************************************************************************** * External global variables *****************************************************************************/ /****************************************************************************** * Local variables *****************************************************************************/ static volatile uint32_t ringosccount[2] = {0,0}; static bool okToUseSdramForHeap = true; static bool initialized = false; /****************************************************************************** * Overridden Global Functions *****************************************************************************/ #if defined(TOOLCHAIN_ARM) /* KEIL uVision and mbed online compiler */ //http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0349c/Cihehbce.html extern "C" unsigned __rt_heap_extend(unsigned size, void **block) { static uint32_t lastReturnedBlock = 0; if (okToUseSdramForHeap && !initialized) { sdram_init(); } // Make sure that SDRAM is only returned once (as all of it is returned // the first time) and only if the user has chosen to do it (via the // okToUseSdramForHeap variable. if (okToUseSdramForHeap && lastReturnedBlock==0) { *block = (void*)SDRAM_BASE; lastReturnedBlock = SDRAM_BASE; return SDRAM_SIZE; } return 0; } // Overrides the WEAK function in sys_helper.cpp to allow reserving a specific // amount of memory for the stack. Without this function it is possible to allocate // so much of the internal RAM that there is no free memory for the stack which // in turn causes the program to crash. uint32_t __reserved_stack_size() { return 0x3000; // Reserve 0x3000 bytes of the IRAM for the stack } #elif defined(TOOLCHAIN_GCC_CR) /* CodeRed's RedSuite or LPCXpresso IDE */ // NOTE: This way of overriding the implementation of malloc in NEWLIB // will prevent the internal RAM from being used by malloc as // it only exposes the SDRAM. // Dynamic memory allocation related syscall. extern "C" caddr_t _sbrk(int incr) { static unsigned char* heap = (unsigned char*)SDRAM_BASE; unsigned char* prev_heap = heap; unsigned char* new_heap = heap + incr; if (okToUseSdramForHeap && !initialized) { sdram_init(); } if (!okToUseSdramForHeap) { //errno = ENOMEM; return (caddr_t)-1; } if (new_heap >= (unsigned char*)(SDRAM_BASE + SDRAM_SIZE)) { //errno = ENOMEM; return (caddr_t)-1; } heap = new_heap; return (caddr_t) prev_heap; } #endif /****************************************************************************** * Local Functions *****************************************************************************/ static void pinConfig(void) { LPC_IOCON->P3_0 |= 1; /* D0 @ P3.0 */ LPC_IOCON->P3_1 |= 1; /* D1 @ P3.1 */ LPC_IOCON->P3_2 |= 1; /* D2 @ P3.2 */ LPC_IOCON->P3_3 |= 1; /* D3 @ P3.3 */ LPC_IOCON->P3_4 |= 1; /* D4 @ P3.4 */ LPC_IOCON->P3_5 |= 1; /* D5 @ P3.5 */ LPC_IOCON->P3_6 |= 1; /* D6 @ P3.6 */ LPC_IOCON->P3_7 |= 1; /* D7 @ P3.7 */ LPC_IOCON->P3_8 |= 1; /* D8 @ P3.8 */ LPC_IOCON->P3_9 |= 1; /* D9 @ P3.9 */ LPC_IOCON->P3_10 |= 1; /* D10 @ P3.10 */ LPC_IOCON->P3_11 |= 1; /* D11 @ P3.11 */ LPC_IOCON->P3_12 |= 1; /* D12 @ P3.12 */ LPC_IOCON->P3_13 |= 1; /* D13 @ P3.13 */ LPC_IOCON->P3_14 |= 1; /* D14 @ P3.14 */ LPC_IOCON->P3_15 |= 1; /* D15 @ P3.15 */ LPC_IOCON->P3_16 |= 1; /* D16 @ P3.16 */ LPC_IOCON->P3_17 |= 1; /* D17 @ P3.17 */ LPC_IOCON->P3_18 |= 1; /* D18 @ P3.18 */ LPC_IOCON->P3_19 |= 1; /* D19 @ P3.19 */ LPC_IOCON->P3_20 |= 1; /* D20 @ P3.20 */ LPC_IOCON->P3_21 |= 1; /* D21 @ P3.21 */ LPC_IOCON->P3_22 |= 1; /* D22 @ P3.22 */ LPC_IOCON->P3_23 |= 1; /* D23 @ P3.23 */ LPC_IOCON->P3_24 |= 1; /* D24 @ P3.24 */ LPC_IOCON->P3_25 |= 1; /* D25 @ P3.25 */ LPC_IOCON->P3_26 |= 1; /* D26 @ P3.26 */ LPC_IOCON->P3_27 |= 1; /* D27 @ P3.27 */ LPC_IOCON->P3_28 |= 1; /* D28 @ P3.28 */ LPC_IOCON->P3_29 |= 1; /* D29 @ P3.29 */ LPC_IOCON->P3_30 |= 1; /* D30 @ P3.30 */ LPC_IOCON->P3_31 |= 1; /* D31 @ P3.31 */ LPC_IOCON->P4_0 |= 1; /* A0 @ P4.0 */ LPC_IOCON->P4_1 |= 1; /* A1 @ P4.1 */ LPC_IOCON->P4_2 |= 1; /* A2 @ P4.2 */ LPC_IOCON->P4_3 |= 1; /* A3 @ P4.3 */ LPC_IOCON->P4_4 |= 1; /* A4 @ P4.4 */ LPC_IOCON->P4_5 |= 1; /* A5 @ P4.5 */ LPC_IOCON->P4_6 |= 1; /* A6 @ P4.6 */ LPC_IOCON->P4_7 |= 1; /* A7 @ P4.7 */ LPC_IOCON->P4_8 |= 1; /* A8 @ P4.8 */ LPC_IOCON->P4_9 |= 1; /* A9 @ P4.9 */ LPC_IOCON->P4_10 |= 1; /* A10 @ P4.10 */ LPC_IOCON->P4_11 |= 1; /* A11 @ P4.11 */ LPC_IOCON->P4_12 |= 1; /* A12 @ P4.12 */ LPC_IOCON->P4_13 |= 1; /* A13 @ P4.13 */ LPC_IOCON->P4_14 |= 1; /* A14 @ P4.14 */ #if 0 // not used for SDRAM LPC_IOCON->P4_15 |= 1; /* A15 @ P4.15 */ LPC_IOCON->P4_16 |= 1; /* A16 @ P4.16 */ LPC_IOCON->P4_17 |= 1; /* A17 @ P4.17 */ LPC_IOCON->P4_18 |= 1; /* A18 @ P4.18 */ LPC_IOCON->P4_19 |= 1; /* A19 @ P4.19 */ LPC_IOCON->P4_20 |= 1; /* A20 @ P4.20 */ LPC_IOCON->P4_21 |= 1; /* A21 @ P4.21 */ LPC_IOCON->P4_22 |= 1; /* A22 @ P4.22 */ LPC_IOCON->P4_23 |= 1; /* A23 @ P4.23 */ #endif //LPC_IOCON->P4_24 |= 1; /* OEN @ P4.24 */ LPC_IOCON->P4_25 |= 1; /* WEN @ P4.25 */ #if 0 // not used for SDRAM LPC_IOCON->P4_26 |= 1; /* BLSN[0] @ P4.26 */ LPC_IOCON->P4_27 |= 1; /* BLSN[1] @ P4.27 */ LPC_IOCON->P4_28 |= 1; /* BLSN[2] @ P4.28 */ LPC_IOCON->P4_29 |= 1; /* BLSN[3] @ P4.29 */ LPC_IOCON->P4_30 |= 1; /* CSN[0] @ P4.30 */ LPC_IOCON->P4_31 |= 1; /* CSN[1] @ P4.31 */ #endif LPC_IOCON->P2_14 |= 1; /* CSN[2] @ P2.14 */ LPC_IOCON->P2_15 |= 1; /* CSN[3] @ P2.15 */ LPC_IOCON->P2_16 |= 1; /* CASN @ P2.16 */ LPC_IOCON->P2_17 |= 1; /* RASN @ P2.17 */ LPC_IOCON->P2_18 |= 1; /* CLK[0] @ P2.18 */ #if 0 // not used for SDRAM LPC_IOCON->P2_19 |= 1; /* CLK[1] @ P2.19 */ #endif LPC_IOCON->P2_20 |= 1; /* DYCSN[0] @ P2.20 */ #if 0 // not used for SDRAM LPC_IOCON->P2_21 |= 1; /* DYCSN[1] @ P2.21 */ LPC_IOCON->P2_22 |= 1; /* DYCSN[2] @ P2.22 */ LPC_IOCON->P2_23 |= 1; /* DYCSN[3] @ P2.23 */ #endif LPC_IOCON->P2_24 |= 1; /* CKE[0] @ P2.24 */ #if 0 // not used for SDRAM LPC_IOCON->P2_25 |= 1; /* CKE[1] @ P2.25 */ LPC_IOCON->P2_26 |= 1; /* CKE[2] @ P2.26 */ LPC_IOCON->P2_27 |= 1; /* CKE[3] @ P2.27 */ #endif LPC_IOCON->P2_28 |= 1; /* DQM[0] @ P2.28 */ LPC_IOCON->P2_29 |= 1; /* DQM[1] @ P2.29 */ LPC_IOCON->P2_30 |= 1; /* DQM[2] @ P2.30 */ LPC_IOCON->P2_31 |= 1; /* DQM[3] @ P2.31 */ } static uint32_t sdram_test( void ) { volatile uint32_t *wr_ptr; volatile uint16_t *short_wr_ptr; uint32_t data; uint32_t i, j; wr_ptr = (uint32_t *)SDRAM_BASE; short_wr_ptr = (uint16_t *)wr_ptr; /* Clear content before 16 bit access test */ // for (i = 0; i < SDRAM_SIZE/4; i++) // { // *wr_ptr++ = 0; // } /* 16 bit write */ for (i = 0; i < SDRAM_SIZE/0x40000; i++) { for (j = 0; j < 0x100; j++) { *short_wr_ptr++ = (i + j); *short_wr_ptr++ = (i + j) + 1; } } /* Verifying */ wr_ptr = (uint32_t *)SDRAM_BASE; for (i = 0; i < SDRAM_SIZE/0x40000; i++) { for (j = 0; j < 0x100; j++) { data = *wr_ptr; if (data != (((((i + j) + 1) & 0xFFFF) << 16) | ((i + j) & 0xFFFF))) { return 0x0; } wr_ptr++; } } return 0x1; } static uint32_t find_cmddly(void) { uint32_t cmddly, cmddlystart, cmddlyend, dwtemp; uint32_t ppass = 0x0, pass = 0x0; cmddly = 0x0; cmddlystart = cmddlyend = 0xFF; while (cmddly < 32) { dwtemp = LPC_SC->EMCDLYCTL & ~0x1F; LPC_SC->EMCDLYCTL = dwtemp | cmddly; if (sdram_test() == 0x1) { /* Test passed */ if (cmddlystart == 0xFF) { cmddlystart = cmddly; } ppass = 0x1; } else { /* Test failed */ if (ppass == 1) { cmddlyend = cmddly; pass = 0x1; ppass = 0x0; } } /* Try next value */ cmddly++; } /* If the test passed, the we can use the average of the min and max values to get an optimal DQSIN delay */ if (pass == 0x1) { cmddly = (cmddlystart + cmddlyend) / 2; } else if (ppass == 0x1) { cmddly = (cmddlystart + 0x1F) / 2; } else { /* A working value couldn't be found, just pick something safe so the system doesn't become unstable */ cmddly = 0x10; } dwtemp = LPC_SC->EMCDLYCTL & ~0x1F; LPC_SC->EMCDLYCTL = dwtemp | cmddly; return (pass | ppass); } static uint32_t find_fbclkdly(void) { uint32_t fbclkdly, fbclkdlystart, fbclkdlyend, dwtemp; uint32_t ppass = 0x0, pass = 0x0; fbclkdly = 0x0; fbclkdlystart = fbclkdlyend = 0xFF; while (fbclkdly < 32) { dwtemp = LPC_SC->EMCDLYCTL & ~0x1F00; LPC_SC->EMCDLYCTL = dwtemp | (fbclkdly << 8); if (sdram_test() == 0x1) { /* Test passed */ if (fbclkdlystart == 0xFF) { fbclkdlystart = fbclkdly; } ppass = 0x1; } else { /* Test failed */ if (ppass == 1) { fbclkdlyend = fbclkdly; pass = 0x1; ppass = 0x0; } } /* Try next value */ fbclkdly++; } /* If the test passed, the we can use the average of the min and max values to get an optimal DQSIN delay */ if (pass == 0x1) { fbclkdly = (fbclkdlystart + fbclkdlyend) / 2; } else if (ppass == 0x1) { fbclkdly = (fbclkdlystart + 0x1F) / 2; } else { /* A working value couldn't be found, just pick something safe so the system doesn't become unstable */ fbclkdly = 0x10; } dwtemp = LPC_SC->EMCDLYCTL & ~0x1F00; LPC_SC->EMCDLYCTL = dwtemp | (fbclkdly << 8); return (pass | ppass); } static uint32_t calibration( void ) { uint32_t dwtemp, i; uint32_t cnt = 0; for (i = 0; i < 10; i++) { dwtemp = LPC_SC->EMCCAL & ~0x4000; LPC_SC->EMCCAL = dwtemp | 0x4000; dwtemp = LPC_SC->EMCCAL; while ((dwtemp & 0x8000) == 0x0000) { dwtemp = LPC_SC->EMCCAL; } cnt += (dwtemp & 0xFF); } return (cnt / 10); } static void allowExecutionOfCodeInSDRAM(void) { //----- Adjust MPU to allow execution of code from SDRAM /* Disable MPU */ MPU->CTRL = 0x00; /* Select to use the default memory map as base and only modify parts */ MPU->CTRL = 0x04; // PRIVDEFENA=1 #define _RBAR(_ADDR, _VALID, _REGION) \ ((_ADDR) | ((_VALID) << 4) | (_REGION)) #define _RASR(_XN, _AP, _TYPE, _SRD, _SIZE, _ENABLE) \ (((_XN) << 28) | ((_AP) << 24) | ((_TYPE) << 16) | ((_SRD) << 8) | ((_SIZE) << 1) | (_ENABLE)) #define AP_RW 0x03 // 011 = Full Access #define MEM_TYPE_ERAM 0x07 // Normal, Sharable, Cached, Buffered, write-back & write allocate #define SIZE_32M 0x18 // Region size in bytes = 2^(0x18+1) = 32MB /* Setup MPU Region 4 for the SDRAM (0xA0000000 - 0xA1FFFFFF*/ MPU->RBAR = _RBAR(0xA0000000, 1, 4); MPU->RASR = _RASR(0, AP_RW, MEM_TYPE_ERAM, 0, SIZE_32M, 1); /* (Re-)Enable MPU */ MPU->CTRL |= 0x01; //----- End of MPU adjustments } /****************************************************************************** * Public Functions *****************************************************************************/ void adjust_timing( void ) { uint32_t dwtemp, cmddly, fbclkdly; /* Current value */ ringosccount[1] = calibration(); dwtemp = LPC_SC->EMCDLYCTL; cmddly = ((dwtemp & 0x1F) * ringosccount[0] / ringosccount[1]) & 0x1F; fbclkdly = ((dwtemp & 0x1F00) * ringosccount[0] / ringosccount[1]) & 0x1F00; LPC_SC->EMCDLYCTL = (dwtemp & ~0x1F1F) | fbclkdly | cmddly; } /****************************************************************************** * * Description: * Initialize the SDRAM * *****************************************************************************/ uint32_t sdram_init (void) { uint32_t i; uint32_t dwtemp = 0; //uint16_t wtemp = 0; if (initialized) { return 0; } LPC_SC->PCONP |= 0x00000800; LPC_SC->EMCDLYCTL = 0x00001010; LPC_EMC->Control = 0x00000001; LPC_EMC->Config = 0x00000000; pinConfig(); //Full 32-bit Data bus, 24-bit Address /* Configure memory layout, but MUST DISABLE BUFFERs during configuration */ /* 256MB, 8Mx32, 4 banks, row=12, column=9 */ LPC_EMC->DynamicConfig0 = 0x00004480; /*Configure timing for ISSI IS4x32800D SDRAM*/ #if (SDRAM_SPEED==SDRAM_SPEED_48) //Timing for 48MHz Bus LPC_EMC->DynamicRasCas0 = 0x00000201; /* 1 RAS, 2 CAS latency */ LPC_EMC->DynamicReadConfig = 0x00000001; /* Command delayed strategy, using EMCCLKDELAY */ LPC_EMC->DynamicRP = 0x00000000; /* ( n + 1 ) -> 1 clock cycles */ LPC_EMC->DynamicRAS = 0x00000002; /* ( n + 1 ) -> 3 clock cycles */ LPC_EMC->DynamicSREX = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicAPR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicDAL = 0x00000002; /* ( n ) -> 2 clock cycles */ LPC_EMC->DynamicWR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRC = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicRFC = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicXSR = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicRRD = 0x00000000; /* ( n + 1 ) -> 1 clock cycles */ LPC_EMC->DynamicMRD = 0x00000000; /* ( n + 1 ) -> 1 clock cycles */ #elif (SDRAM_SPEED==SDRAM_SPEED_50) //Timing for 50MHz Bus (with 100MHz M3 Core) LPC_EMC->DynamicRasCas0 = 0x00000201; /* 1 RAS, 2 CAS latency */ LPC_EMC->DynamicReadConfig = 0x00000001; /* Command delayed strategy, using EMCCLKDELAY */ LPC_EMC->DynamicRP = 0x00000000; /* ( n + 1 ) -> 1 clock cycles */ LPC_EMC->DynamicRAS = 0x00000002; /* ( n + 1 ) -> 3 clock cycles */ LPC_EMC->DynamicSREX = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicAPR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicDAL = 0x00000002; /* ( n ) -> 2 clock cycles */ LPC_EMC->DynamicWR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRC = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicRFC = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicXSR = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicRRD = 0x00000000; /* ( n + 1 ) -> 1 clock cycles */ LPC_EMC->DynamicMRD = 0x00000000; /* ( n + 1 ) -> 1 clock cycles */ #elif (SDRAM_SPEED==SDRAM_SPEED_60) //Timing for 60 MHz Bus (same as 72MHz) LPC_EMC->DynamicRasCas0 = 0x00000202; /* 2 RAS, 2 CAS latency */ LPC_EMC->DynamicReadConfig = 0x00000001; /* Command delayed strategy, using EMCCLKDELAY */ LPC_EMC->DynamicRP = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRAS = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicSREX = 0x00000005; /* ( n + 1 ) -> 6 clock cycles */ LPC_EMC->DynamicAPR = 0x00000002; /* ( n + 1 ) -> 3 clock cycles */ LPC_EMC->DynamicDAL = 0x00000003; /* ( n ) -> 3 clock cycles */ LPC_EMC->DynamicWR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRC = 0x00000004; /* ( n + 1 ) -> 5 clock cycles */ LPC_EMC->DynamicRFC = 0x00000004; /* ( n + 1 ) -> 5 clock cycles */ LPC_EMC->DynamicXSR = 0x00000005; /* ( n + 1 ) -> 6 clock cycles */ LPC_EMC->DynamicRRD = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicMRD = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ #elif (SDRAM_SPEED==SDRAM_SPEED_72) //Timing for 72 MHz Bus LPC_EMC->DynamicRasCas0 = 0x00000202; /* 2 RAS, 2 CAS latency */ LPC_EMC->DynamicReadConfig = 0x00000001; /* Command delayed strategy, using EMCCLKDELAY */ LPC_EMC->DynamicRP = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRAS = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicSREX = 0x00000005; /* ( n + 1 ) -> 6 clock cycles */ LPC_EMC->DynamicAPR = 0x00000002; /* ( n + 1 ) -> 3 clock cycles */ LPC_EMC->DynamicDAL = 0x00000003; /* ( n ) -> 3 clock cycles */ LPC_EMC->DynamicWR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRC = 0x00000004; /* ( n + 1 ) -> 5 clock cycles */ LPC_EMC->DynamicRFC = 0x00000004; /* ( n + 1 ) -> 5 clock cycles */ LPC_EMC->DynamicXSR = 0x00000005; /* ( n + 1 ) -> 6 clock cycles */ LPC_EMC->DynamicRRD = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicMRD = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ #elif (SDRAM_SPEED==SDRAM_SPEED_80) //Timing for 80 MHz Bus (same as 72MHz) LPC_EMC->DynamicRasCas0 = 0x00000202; /* 2 RAS, 2 CAS latency */ LPC_EMC->DynamicReadConfig = 0x00000001; /* Command delayed strategy, using EMCCLKDELAY */ LPC_EMC->DynamicRP = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRAS = 0x00000003; /* ( n + 1 ) -> 4 clock cycles */ LPC_EMC->DynamicSREX = 0x00000005; /* ( n + 1 ) -> 6 clock cycles */ LPC_EMC->DynamicAPR = 0x00000002; /* ( n + 1 ) -> 3 clock cycles */ LPC_EMC->DynamicDAL = 0x00000003; /* ( n ) -> 3 clock cycles */ LPC_EMC->DynamicWR = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicRC = 0x00000004; /* ( n + 1 ) -> 5 clock cycles */ LPC_EMC->DynamicRFC = 0x00000004; /* ( n + 1 ) -> 5 clock cycles */ LPC_EMC->DynamicXSR = 0x00000005; /* ( n + 1 ) -> 6 clock cycles */ LPC_EMC->DynamicRRD = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ LPC_EMC->DynamicMRD = 0x00000001; /* ( n + 1 ) -> 2 clock cycles */ #else #error UNSUPPORTED SDRAM FREQ #endif LPC_EMC->DynamicControl = 0x00000183; /* Issue NOP command */ //wait(0.2); /* wait 200ms */ ThisThread::sleep_for(200); LPC_EMC->DynamicControl = 0x00000103; /* Issue PALL command */ LPC_EMC->DynamicRefresh = 0x00000002; /* ( n * 16 ) -> 32 clock cycles */ for(i = 0; i < 0x80; i++); /* wait 128 AHB clock cycles */ #if (SDRAM_SPEED==SDRAM_SPEED_48) //Timing for 48MHz Bus LPC_EMC->DynamicRefresh = 0x0000002E; /* ( n * 16 ) -> 736 clock cycles -> 15.330uS at 48MHz <= 15.625uS ( 64ms / 4096 row ) */ #elif (SDRAM_SPEED==SDRAM_SPEED_50) //Timing for 50MHz Bus LPC_EMC->DynamicRefresh = 0x0000003A; /* ( n * 16 ) -> 768 clock cycles -> 15.360uS at 50MHz <= 15.625uS ( 64ms / 4096 row ) */ #elif (SDRAM_SPEED==SDRAM_SPEED_60) //Timing for 60MHz Bus LPC_EMC->DynamicRefresh = 0x0000003A; /* ( n * 16 ) -> 928 clock cycles -> 15.466uS at 60MHz <= 15.625uS ( 64ms / 4096 row ) */ #elif (SDRAM_SPEED==SDRAM_SPEED_72) //Timing for 72MHz Bus LPC_EMC->DynamicRefresh = 0x00000046; /* ( n * 16 ) -> 1120 clock cycles -> 15.556uS at 72MHz <= 15.625uS ( 64ms / 4096 row ) */ #elif (SDRAM_SPEED==SDRAM_SPEED_80) //Timing for 80MHz Bus LPC_EMC->DynamicRefresh = 0x0000004E; /* ( n * 16 ) -> 1248 clock cycles -> 15.600uS at 80MHz <= 15.625uS ( 64ms / 4096 row ) */ #else #error UNSUPPORTED SDRAM FREQ #endif LPC_EMC->DynamicControl = 0x00000083; /* Issue MODE command */ //Timing for 48/60/72MHZ Bus dwtemp = *((volatile uint32_t *)(SDRAM_BASE | (0x22<<(2+2+9)))); /* 4 burst, 2 CAS latency */ dwtemp = dwtemp; LPC_EMC->DynamicControl = 0x00000000; /* Issue NORMAL command */ //[re]enable buffers LPC_EMC->DynamicConfig0 = 0x00084480; /* 256MB, 8Mx32, 4 banks, row=12, column=9 */ /* Nominal value */ ringosccount[0] = calibration(); if (find_cmddly() == 0x0) { //while (1); /* fatal error */ return 1;//FALSE; } if (find_fbclkdly() == 0x0) { //while (1); /* fatal error */ return 1;//FALSE; } adjust_timing(); allowExecutionOfCodeInSDRAM(); initialized = true; return 0;//TRUE; } void sdram_disableMallocSdram() { okToUseSdramForHeap = false; }