Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
decawave_network.cpp
- Committer:
- jdawkins
- Date:
- 2017-06-01
- Revision:
- 8:a69bdc60d93e
- Parent:
- 7:bdfcc94be056
- Child:
- 10:b5672b451e2e
File content as of revision 8:a69bdc60d93e:
#include "decawave_network.h"
DecaWaveNetwork::DecaWaveNetwork(DW1000& DW) : dw(DW)
{
isAnchor = true;
overflow = false;
address = 0;
rxTimestamp = 0;
timediffRec = 0;
timediffSend = 0;
for (int i = 0; i < MAX_NODES; i++)
acknowledgement[i] = true;
dw.setCallbacks(this, &DecaWaveNetwork::callbackRX, &DecaWaveNetwork::callbackTX);
LocalTimer.start();
//checkConn.attach(this,&DecaWaveNetwork::checkConnectivity, 10.0);
dw.startRX();
}
void DecaWaveNetwork::callbackRX()
{
int n = dw.getFramelength();
dw.readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)&receivedFrame, n);
if (receivedFrame.destination == address){
switch (receivedFrame.type) {
case PING:
rxTimestamp = dw.getRXTimestamp();
receiverTimestamps[receivedFrame.source][0] = rxTimestamp; //Save the first timestamp on the receiving node/anchor (T_rp)
sendDelayedAnswer(receivedFrame.source, ANCHOR_RESPONSE, rxTimestamp);
break;
case ANCHOR_RESPONSE:
rxTimestamp = dw.getRXTimestamp();
senderTimestamps[receivedFrame.source][1] = rxTimestamp; //Save the second timestamp on the sending node/beacon (T_rr)
sendDelayedAnswer(receivedFrame.source, 3, rxTimestamp);
break;
case BEACON_RESPONSE:
rxTimestamp = dw.getRXTimestamp();
receiverTimestamps[receivedFrame.source][2] = rxTimestamp; //Save the third timestamp on the receiving node/anchor (T_rf)
correctReceiverTimestamps(receivedFrame.source); //Correct the timestamps for the case of a counter overflow
//calculation of the summand on the receiving node/anchor
timediffRec = - 2*receiverTimestamps[receivedFrame.source][1] + receiverTimestamps[receivedFrame.source][0] + receiverTimestamps[receivedFrame.source][2];
sendTransferFrame(receivedFrame.source, timediffRec );
break;
case TRANSFER_FRAME:
//calculation of the summand on the sending node/beacon
timediffSend = 2 * senderTimestamps[receivedFrame.source][1] - senderTimestamps[receivedFrame.source][0] - senderTimestamps[receivedFrame.source][2];
//calculation of the resulting sum of all four ToFs.
tofs[receivedFrame.source] = receivedFrame.signedTime + timediffSend;
acknowledgement[receivedFrame.source] = true;
break;
default :
break;
}
} else{
memcpy(&mavlink_buffer,&receivedFrame,n);
// int i;
/* for(int i=0; i<n; i++) {
printf("%X",mavlink_buffer[i]);
}
printf("\r\n");*/
} // end else
parseMavlinkMsg(n);
dw.startRX();
}
void DecaWaveNetwork::callbackTX()
{
switch (rangingFrame.type) {
case PING:
senderTimestamps[rangingFrame.destination][0] = dw.getTXTimestamp(); //Save the first timestamp on the sending node/beacon (T_sp)
break;
case ANCHOR_RESPONSE:
receiverTimestamps[rangingFrame.destination][1] = dw.getTXTimestamp(); //Save the second timestamp on the receiving node/anchor (T_sr)
break;
case BEACON_RESPONSE:
senderTimestamps[rangingFrame.destination][2] = dw.getTXTimestamp(); //Save the third timestamp on the sending node/beacon (T_sr)
correctSenderTimestamps(rangingFrame.destination); //Correct the timestamps for the case of a counter overflow
break;
default:
break;
}
}
/**
* Get the distance to the Anchor with address @param destination.
*
* @param destination The address of the anchor
*/
void DecaWaveNetwork::requestRanging(uint8_t destination)
{
acknowledgement[destination] = false;
float time_before = LocalTimer.read();
sendPingFrame(destination);
while(!acknowledgement[destination] && (LocalTimer.read() < time_before + 0.02f)); // wait for succeeding ranging or timeout
roundtriptimes[destination] = LocalTimer.read() - time_before;
if(acknowledgement[destination]) {
distances[destination] = calibratedDistance(destination);
} else {
distances[destination] = -1;
}
}
inline float DecaWaveNetwork::calibratedDistance(uint8_t destination)
{
float rawDistance = (tofs[destination] * 300 * TIMEUNITS_TO_US / 4);
// Least Squares calibration parameters determined from dynamic data on quadrotor with Optitrack
float calibDistance = 0.9710*rawDistance - 0.5075;
// Calibration for Nucleo 0 (and 1)
// if (this->address == 1) rawDistance+= 10;
// switch(destination){
// case 2:
// return rawDistance * 0.9754 - 0.5004;
// case 3:
// return rawDistance * 0.9759 - 0.4103;
// case 4:
// return rawDistance * 0.9798 - 0.5499;
// case 5:
// return rawDistance * 0.9765 - 0.5169;
// }
return calibDistance;
}
void DecaWaveNetwork::requestRangingAll()
{
for (int i = 1; i <= 4; i++) { // Request ranging to all anchors
requestRanging(i);
}
}
void DecaWaveNetwork::sendPingFrame(uint8_t destination)
{
rangingFrame.source = address;
rangingFrame.destination = destination;
rangingFrame.type = PING;
dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame));
}
void DecaWaveNetwork::sendTransferFrame(uint8_t destination, int timeDiffsReceiver)
{
transferFrame.source = address;
transferFrame.destination = destination;
transferFrame.type = TRANSFER_FRAME;
transferFrame.signedTime = timeDiffsReceiver; //cast the time difference
dw.sendFrame((uint8_t*)&transferFrame, sizeof(transferFrame));
}
void DecaWaveNetwork::sendDelayedAnswer(uint8_t destination, uint8_t type, uint64_t rxTimestamp)
{
rangingFrame.source = address;
rangingFrame.destination = destination;
rangingFrame.type = type;
if(rxTimestamp + ANSWER_DELAY_TIMEUNITS > MMRANGING_2POWER40)
dw.sendDelayedFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), rxTimestamp + ANSWER_DELAY_TIMEUNITS - MMRANGING_2POWER40);
else
dw.sendDelayedFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), rxTimestamp + ANSWER_DELAY_TIMEUNITS);
}
void DecaWaveNetwork::correctReceiverTimestamps(uint8_t source)
{
if(receiverTimestamps[source][0] > receiverTimestamps[source][1]) {
receiverTimestamps[source][1] += MMRANGING_2POWER40;
receiverTimestamps[source][2] += MMRANGING_2POWER40;
}
if(receiverTimestamps[source][1] > receiverTimestamps[source][2]) {
receiverTimestamps[source][2] += MMRANGING_2POWER40;
}
}
void DecaWaveNetwork::correctSenderTimestamps(uint8_t source)
{
if (senderTimestamps[source][0] > senderTimestamps[source][1]) {
senderTimestamps[source][1] += MMRANGING_2POWER40;
senderTimestamps[source][2] += MMRANGING_2POWER40;
overflow = true;
} else if (senderTimestamps[source][1] > senderTimestamps[source][2]) {
senderTimestamps[source][2] += MMRANGING_2POWER40;
overflow = true;
} else overflow = false;
}
void DecaWaveNetwork::sendMessage(uint8_t *msg,uint8_t length)
{
dw.sendFrame(msg,length);
}
void DecaWaveNetwork::parseMavlinkMsg(uint8_t msg_len)
{
//char buf[1024];
uint8_t byte;
mavlink_message_t msg;
mavlink_status_t status;
for(int i=0; i<msg_len; i++) {
memcpy(&byte,&mavlink_buffer[i],1);
if(mavlink_parse_char(MAVLINK_COMM_0,byte,&msg,&status)) {
//printf("Parse Successfully msg id %d\r\n",msg.msgid);
if(msg.msgid == MAVLINK_MSG_ID_HEARTBEAT) {
mavlink_heartbeat_t hb_msg;
mavlink_msg_heartbeat_decode(&msg,&hb_msg);
printf("System ID %d Comp ID %d Base Mode %d\r\n",msg.sysid,msg.compid,hb_msg.base_mode);
nodes_in_range[msg.sysid]= msg.compid;
last_heartbeat[msg.sysid]=LocalTimer.read();
if(msg.compid == MASTER){
curr_mode = hb_msg.base_mode;
}
// dwm_LED = !dwm_LED;
}
/* if(msg.msgid==MAVLINK_MSG_ID_FUSED_IMU) {
mavlink_fused_imu_t imu_msg;
// sendMessage(&pc,buf,n);
mavlink_msg_fused_imu_decode(&msg,&imu_msg);
imu_time = imu_msg.time_boot_ms;
roll = imu_msg.roll;
pitch = imu_msg.pitch;
yaw = imu_msg.yaw;
gx = imu_msg.gyro_x;
gy = imu_msg.gyro_y;
gz = imu_msg.gyro_z;
ax = imu_msg.accel_x;
ay = imu_msg.accel_y;
az = imu_msg.accel_z;
imu_LED = !imu_LED;
}*/
//This is from the perspective of the anchor node which doesn't compute the range
if(msg.msgid == MAVLINK_MSG_ID_RANGE_TO_NODE) {
mavlink_range_to_node_t rng_msg;
mavlink_msg_range_to_node_decode(&msg,&rng_msg);
if(rng_msg.tgt_id==address) { // if the range message is inteded for me
// rng_time = rng_msg.time_boot_ms;
ranges[rng_msg.my_id] = rng_msg.range; // my_id is the id of the sender
}
}
if(msg.msgid == MAVLINK_MSG_ID_LOCAL_POSITION_NED) {
mavlink_local_position_ned_t pose_msg;
mavlink_msg_local_position_ned_decode(&msg,&pose_msg);
//printf("System ID %d Comp ID %d \r\n",msg.sysid,msg.compid);
node_pose[msg.sysid] = pose_msg;
}
}// if Mavlink Parse Returns true
}// End For number of bytes
}
void DecaWaveNetwork::checkConnectivity(){
printf("connectivity check\r\n");
for(int i=0;i<MAX_NODES;i++){
if(LocalTimer.read()-last_heartbeat[i] > 5.0){ //if its been more than 5 seconds since we recieved a heartbeat assume node is out of range
nodes_in_range[i] = 0;
}
}
}
float DecaWaveNetwork::getRange(int node){
return ranges[node];
}