Test program for a Max30102 heartrate sensor on a STM32L476RG specific board ENSMM

Dependencies:   mbed

These two pictures show how to connect the Mheuve Sensor to the ST-Link debugger (don't forget to disable ST-link jumpers and JP5 on the board! ):

https://os.mbed.com/media/uploads/jimbaud/1611739514454.jpghttps://os.mbed.com/media/uploads/jimbaud/1611739514453.jpg

These two pictures show how to connect the Mheuve Sensor TX RX to the ST-Link debugger (don't forget to cross TX and RX, it means Mheuve sensor TX on ST-Link RX and ST-Link TX on Mheuve sensor RX ):

https://os.mbed.com/media/uploads/jimbaud/1611739514450.jpg https://os.mbed.com/media/uploads/jimbaud/1611739514452.jpg

The Mheuve sensor board needs to be powered by an external battery.

The result appears on the terminal, speed config is 115200 bds.

https://os.mbed.com/media/uploads/jimbaud/terminal.jpg

main.cpp

Committer:
jimbaud
Date:
2021-01-27
Revision:
5:648aa1e83d65
Parent:
4:5273ab1085ab

File content as of revision 5:648aa1e83d65:

#include "mbed.h"
#include "algorithm.h"
#include "MAX30102.h"

#define MAX_BRIGHTNESS 255

uint32_t aun_ir_buffer[500]; //IR LED sensor data
int32_t n_ir_buffer_length;    //data length
uint32_t aun_red_buffer[500];    //Red LED sensor data
int32_t n_sp02; //SPO2 value
int8_t ch_spo2_valid;   //indicator to show if the SP02 calculation is valid
int32_t n_heart_rate;   //heart rate value
int8_t  ch_hr_valid;    //indicator to show if the heart rate calculation is valid
uint8_t uch_dummy;

Serial pc(PB_10, PB_11);    //initializes the serial port

DigitalOut led(PC_4);  //initializes the pwm output that connects to the on board LED
DigitalIn INT(PC_13);  //pin PTD1 connects to the interrupt output pin of the MAX30102

DigitalOut VEN(PC_2);  

// the setup routine runs once when you press reset:
int main() { 
    uint32_t un_min, un_max, un_prev_data;  //variables to calculate the on-board LED brightness that reflects the heartbeats
    int i;
    int32_t n_brightness;
    float f_temp;
    
    maxim_max30102_reset(); //resets the MAX30102
    // initialize serial communication at 115200 bits per second:
    pc.baud(115200);
    pc.format(8,SerialBase::None,1);
    wait(1);
    led = 1;
    
    //read and clear status register
    maxim_max30102_read_reg(0,&uch_dummy);
 
    VEN = 1;
    maxim_max30102_init();  //initializes the MAX30102
         
    n_brightness=0;
    un_min=0x3FFFF;
    un_max=0;
  
    n_ir_buffer_length=500; //buffer length of 100 stores 5 seconds of samples running at 100sps
    
    //read the first 500 samples, and determine the signal range
    for(i=0;i<n_ir_buffer_length;i++)
    {
        //while(INT.read()==1);   //wait until the interrupt pin asserts
        
        maxim_max30102_read_fifo((aun_red_buffer+i), (aun_ir_buffer+i));  //read from MAX30102 FIFO
            
        if(un_min>aun_red_buffer[i])
            un_min=aun_red_buffer[i];    //update signal min
        if(un_max<aun_red_buffer[i])
            un_max=aun_red_buffer[i];    //update signal max
        pc.printf("red=");
        pc.printf("%i", aun_red_buffer[i]);
        pc.printf(", ir=");
        pc.printf("%i\n\r", aun_ir_buffer[i]);
    }
    un_prev_data=aun_red_buffer[i];
  
    
    //calculate heart rate and SpO2 after first 500 samples (first 5 seconds of samples)
    maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); 
    
    //Continuously taking samples from MAX30102.  Heart rate and SpO2 are calculated every 1 second
    while(1)
    {
        i=0;
        un_min=0x3FFFF;
        un_max=0;
        
        //dumping the first 100 sets of samples in the memory and shift the last 400 sets of samples to the top
        for(i=100;i<500;i++)
        {
            aun_red_buffer[i-100]=aun_red_buffer[i];
            aun_ir_buffer[i-100]=aun_ir_buffer[i];
            
            //update the signal min and max
            if(un_min>aun_red_buffer[i])
            un_min=aun_red_buffer[i];
            if(un_max<aun_red_buffer[i])
            un_max=aun_red_buffer[i];
        }
        
        //take 100 sets of samples before calculating the heart rate.
        for(i=400;i<500;i++)
        {
            un_prev_data=aun_red_buffer[i-1];
            while(INT.read()==1);
            maxim_max30102_read_fifo((aun_red_buffer+i), (aun_ir_buffer+i));
        
            if(aun_red_buffer[i]>un_prev_data)
            {
                f_temp=aun_red_buffer[i]-un_prev_data;
                f_temp/=(un_max-un_min);
                f_temp*=MAX_BRIGHTNESS;
                n_brightness-=(int)f_temp;
                if(n_brightness<0)
                    n_brightness=0;
            }
            else
            {
                f_temp=un_prev_data-aun_red_buffer[i];
                f_temp/=(un_max-un_min);
                f_temp*=MAX_BRIGHTNESS;
                n_brightness+=(int)f_temp;
                if(n_brightness>MAX_BRIGHTNESS)
                    n_brightness=MAX_BRIGHTNESS;
            }

            led = 1;

            //send samples and calculation result to terminal program through UART
            pc.printf("red=");
            pc.printf("%i", aun_red_buffer[i]);
            pc.printf(", ir=");
            pc.printf("%i", aun_ir_buffer[i]);
            pc.printf(", HR=%i, ", n_heart_rate); 
            pc.printf("HRvalid=%i, ", ch_hr_valid);
            pc.printf("SpO2=%i, ", n_sp02);
            pc.printf("SPO2Valid=%i\n\r", ch_spo2_valid);
           // wait(1);
        }
        maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); 
    }
}