Wireless interface using LoRa technology

Dependencies:   AlohaTransceiver RingBuffer SX1276Lib SerialInterfaceProtocol mbed L3PDU

main.cpp

Committer:
rba90
Date:
2016-08-11
Revision:
14:25e836a5a7bf
Parent:
12:2ead6bfd9f2a
Child:
15:182b95c25cf2

File content as of revision 14:25e836a5a7bf:

#include "mbed.h"
#include "AlohaTransceiver.h"
#include "buffer.h"
#include "SerialInterfaceProtocol.h"
#include "AlohaFrame.h"
#include "ControlPacket.h"
#include "DataBlockPacket.h"

Serial pc(USBTX, USBRX);

// sip uses two buffer queues
CircularBuffer<uint8_t> SerialInputBuffer;
CircularBuffer<uint8_t> SerialOutputBuffer;
SerialInterfaceProtocol SIP(&SerialInputBuffer, &SerialOutputBuffer);

// aloha transceiver
AlohaTransceiver aloha(DEVICE_ID);
AlohaFrame txFrame;

void serialInterruptHandler() {
    // Note: you need to actually read from the serial to clear the RX interrupt
    int c = pc.getc();
    
    // add to buffer
    if (SerialInputBuffer.isLocked())
    {
        printf("Mutex Locked\r\n");
    }
    else
    {
        SerialInputBuffer.enqueue((uint8_t) c);   
    }
}

int toggleChecksum(uint8_t *payload, uint8_t payload_length, uint8_t *response, uint8_t *response_length)
{
    // one payload
    if (payload_length != 1)
    {
        sprintf((char *) response, "Wrong Payload Length\r\n");
        *response_length = 22;
        return 1;
    } 
    
    if ((bool) payload[0])
    {
        SIP.enableChecksum();
    }
    else
    {
        SIP.disableChecksum();
    }
    
    return 0;
}

/*
 * Format: 
 * <        : start flag
 * 02       : command
 * xx       : length
 * xx:      : 00: get, 01: set
 * xx       : index for parameters
 * ...
 * ff       :checksum (not currently in used)
 * >        :end flag
 */
int configureRadio(uint8_t *payload, uint8_t payload_length, uint8_t *response, uint8_t *response_length)
{
    // read settings from radio
#if USE_MODEM_LORA == 1
    AlohaTransceiver::LoRaSettings_t *settings = aloha.getSettings();
#elif USE_MODEM_FSK == 1
    AlohaTransceiver::FskSettings_t *settings = aloha.getSettings();
#else
    #error "Please define a modem in the compiler options."
#endif

    if (payload_length < 2)
    {
        sprintf((char *) response, "Wrong Payload Length\r\n");
        *response_length = 22;
        return 1;
    }
    
    // true is set, false is get
    bool isSet = (bool) payload[0];
    uint8_t idx = payload[1];
    
    switch(idx)
    {
        case 0x00: // Power
        {
            if (isSet)
            {
                int8_t Power = (int8_t) payload[2];
                settings->Power = Power;
                
                return 0;
            }
            else
            {
                response[0] = (uint8_t) settings->Power;
                *response_length = 1;

                return 0;
            }
        }
        
        case 0x01: // Bandwidth
        {
            if (isSet)
            {
                uint32_t Bandwidth = (payload[5]) | 
                                     (payload[4] << 8) |
                                     (payload[3] << 16) | 
                                     (payload[2] << 24);
                settings->Bandwidth = Bandwidth;
                
                return 0;
            }
            else
            {
                response[3] = (uint8_t) (settings->Bandwidth);
                response[2] = (uint8_t) (settings->Bandwidth >> 8);
                response[1] = (uint8_t) (settings->Bandwidth >> 16);
                response[0] = (uint8_t) (settings->Bandwidth >> 24);
                *response_length = 4;
                
                return 0;
            }
            
        }
        
        case 0x02: // Datarate, AKA Spreading Factor
        {
            if (isSet)
            {
                uint32_t Datarate = (payload[5]) | 
                                    (payload[4] << 8) |
                                    (payload[3] << 16) | 
                                    (payload[2] << 24);
                settings->Datarate = Datarate;
                
                return 0;
            }
            else
            {
                response[3] = (uint8_t) (settings->Datarate);
                response[2] = (uint8_t) (settings->Datarate >> 8);
                response[1] = (uint8_t) (settings->Datarate >> 16);
                response[0] = (uint8_t) (settings->Datarate >> 24);
                *response_length = 4;
                
                return 0;
            }
        }
        
        case 0x03: // Coderate
        {
            if (isSet)
            {
                uint8_t Coderate = payload[2];
                settings->Coderate = Coderate;
                
                return 0;
            }
            else
            {
                response[0] = (uint8_t) settings->Coderate;
                *response_length = 1;

                return 0;
            }
        }
        
        case 0x04: //Preamble Length
        {
            if (isSet) 
            {
                uint16_t PreambleLen = payload[3] | (payload[2] << 8);
                settings->PreambleLen = PreambleLen;
                return 0;
            }
            else
            {
                response[1] = (uint8_t) (settings->PreambleLen);
                response[0] = (uint8_t)(settings->PreambleLen >> 8);
                *response_length = 2;
                
                return 0;
            }
        }
        
        case 0x05: //Symbol Timeout
        {
             if (isSet) 
             {
                 uint16_t SymbolTimeout = payload[3] | (payload[2] << 8);
                 settings->SymbolTimeout = SymbolTimeout;
                 return 0;
             }
             else 
             {
                 response[1] = (uint8_t) (settings->SymbolTimeout);
                 response[0] = (uint8_t) (settings->SymbolTimeout >> 8);
                 *response_length = 2;
                 
                 return 0;
             }
        }
        
        case 0x06: //FixLen
        {
             if (isSet) 
             {
                 bool FixLen = payload[2];
                 settings->FixLen = FixLen;
                 return 0;
             }
             else 
             {
                 response[0] = (bool) (settings->SymbolTimeout);
                 *response_length = 1;
                 
                 return 0;
             }
        }
        
        case 0x07: //PayloadLen
        {
             if (isSet)
             {
                 uint8_t PayloadLen = payload[2];
                 settings->PayloadLen = PayloadLen;
                 return 0;
             }
             else 
             {
                 response[0] = (uint8_t) (settings->PayloadLen);
                 
                 return 0;
            }
        }
        
        case 0x08: //CrcOn
        {
            if (isSet) {
                bool CrcOn = payload[2];
                settings->CrcOn = CrcOn;
                return 0;
            }
            else 
            {
                response[0] = (bool) (settings->CrcOn);
                
                return 0;
            }
        }
        
        case 0x09: //FreqHopOn
        {
             if (isSet) {
                 bool FreqHopOn = payload[2];
                 settings->FreqHopOn = FreqHopOn;
                 return 0;
            }
            else 
            {
                response[0] = (bool) (settings->FreqHopOn);
                
                return 0;
            }
        }
        
        case 0x0A: //HopPeriod
        {
             if (isSet) {
                 uint8_t HopPeriod = payload[2];
                 settings->HopPeriod = HopPeriod;
                 return 0;
            }
            else 
            {
                response[0] = (uint8_t) (settings->HopPeriod);
                return 0;
            }
        }
        
        case 0x0B: //IqInverted
        {
             if (isSet) {
                 bool IqInverted = payload[2];
                 settings->IqInverted = IqInverted;
                 return 0;
            }
            else 
            {
                response[0] = (bool) (settings->IqInverted);
                return 0;
            }
        }
        
        case 0x0C: //RxContinuous
        {
             if(isSet) 
             {
                 bool RxContinuous = payload[2];
                 settings->RxContinuous = RxContinuous;
                 return 0;
            }
            else 
            {
                response[0] = (bool) (settings->RxContinuous);
                return 0;
            }
        }
        
        case 0x0D: //TxTimeout
        {
             if (isSet) 
             {
                 uint32_t TxTimeout = (payload[5]) | 
                                (payload[4] << 8) |
                                (payload[3] << 16) | 
                                (payload[2] << 24);
                settings->TxTimeout = TxTimeout;
                return 0;
            }
            else 
            {
                response[3] = (uint8_t) (settings->TxTimeout);
                response[2] = (uint8_t) (settings->TxTimeout >> 8);
                response[1] = (uint8_t) (settings->TxTimeout >> 16);
                response[0] = (uint8_t) (settings->TxTimeout >> 24);
                *response_length = 4;
                
                return 0;
            }
        }
                 
        
        default:
        {
            break;
        }
        
        //case 
    }
        
    
    return 0;
}

int radioUpdateSettings(uint8_t *payload, uint8_t payload_length, uint8_t *response, uint8_t *response_length)
{
    aloha.updateSettings();
    
    return 0;
}

/*
 * Format:
 * <            : start flag
 * 04           : command
 * 02           : length (2 bytes in this case)
 * 00/01        : query for temperature or door sensor
 * xx           : node to query
 * ff           : checksum (not currently in used)
 * >            : end flag
 */
int querySensors(uint8_t *payload, uint8_t payload_length, uint8_t *response, uint8_t *response_length)
{
    // check with payloads
    if (payload_length != 2)
    {
        sprintf((char *) response, "Wrong Payload Length");
        *response_length = 20;
        return 1;
    } 
    
    // decode the user message
    uint8_t sensor_type = payload[0];
    uint8_t node_id = payload[1];
    
    // create a command packet
    ControlPacket packet;
    
    // sequence id is not in used in this case
    packet.setSequenceID(0x0);
    
    // set source id as current device id
    packet.setSourceID(aloha.getDeviceID());
    
    // set destination id as node id
    packet.setDestinationID(node_id);
    
    // set command as query (00 in this case)
    packet.setCommand(0x00);
    
    // store sensor type in data block 0
    packet.setData(0, sensor_type);
    
    // generate crc
    packet.generateCrc();
    
    // create buffer for transmission
    uint8_t buffer[8];
    memset(buffer, 0x0, sizeof(buffer));
    
    // copy bytes into buffer
    packet.serialize(buffer);
    
    // send to aloha transceiver
    aloha.send(buffer, 8, node_id);
    
    return 0;
}

void AlohaDataPacketHandler(uint8_t *payload, uint8_t payload_length, uint8_t src_addr)
{
    // try to decode packet
    BasicPacket packet(payload);
    
    // verify crc
    if (!packet.verify())
    {
        printf("Oops, catch a invalid packet\r\n");
        return;
    }
    
    // process the packet based on different feature id
    BasicPacket::L3Fid_t fid = (BasicPacket::L3Fid_t) packet.getFid();
    
    // we don't care about the type conversion. just create a new one.
    switch (fid)
    {
        case BasicPacket::L3ControlPacket:
        {
            ControlPacket controlPacket(payload);
            
            // currently the base station do not respond to any control packet
            
            break;
        }
        case BasicPacket::L3DataBlockPacket:
        {
            DataBlockPacket dataBlockPacket(payload);
            
            // do something
            break;
        }
        default:
            break;
    }
}


int main() {
    // initialize radio module
    aloha.boardInit();
    aloha.updateSettings();
    aloha.enable();
    
    // attach serial interrupt handler
    pc.attach(&serialInterruptHandler);
    
    // register callback functions for SIP
    SIP.registerCommand(0x00, toggleChecksum);
    SIP.registerCommand(0x02, configureRadio);
    SIP.registerCommand(0x03, radioUpdateSettings);
    SIP.registerCommand(0x04, querySensors);
    
    // register callback functions for aloha transceiver
    aloha.registerType(AlohaFrame::Aloha_Data, AlohaDataPacketHandler);
    
    while(1) {
        SIP.poll();
        aloha.poll();
        
        while (SerialOutputBuffer.getCounter() > 0)
        {
            uint8_t ch;
            ch = SerialOutputBuffer.dequeue();
            pc.putc(ch);
        }
    }
}