mbed-os
Dependents: cobaLCDJoyMotor_Thread odometry_omni_3roda_v3 odometry_omni_3roda_v1 odometry_omni_3roda_v2 ... more
tools/dev/dsp_fir.py
- Committer:
- be_bryan
- Date:
- 2017-12-11
- Revision:
- 0:b74591d5ab33
File content as of revision 0:b74591d5ab33:
""" mbed SDK Copyright (c) 2011-2013 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from numpy import sin, arange, pi from scipy.signal import lfilter, firwin from pylab import figure, plot, grid, show #------------------------------------------------ # Create a signal for demonstration. #------------------------------------------------ # 320 samples of (1000Hz + 15000 Hz) at 48 kHz sample_rate = 48000. nsamples = 320 F_1KHz = 1000. A_1KHz = 1.0 F_15KHz = 15000. A_15KHz = 0.5 t = arange(nsamples) / sample_rate signal = A_1KHz * sin(2*pi*F_1KHz*t) + A_15KHz*sin(2*pi*F_15KHz*t) #------------------------------------------------ # Create a FIR filter and apply it to signal. #------------------------------------------------ # The Nyquist rate of the signal. nyq_rate = sample_rate / 2. # The cutoff frequency of the filter: 6KHz cutoff_hz = 6000.0 # Length of the filter (number of coefficients, i.e. the filter order + 1) numtaps = 29 # Use firwin to create a lowpass FIR filter fir_coeff = firwin(numtaps, cutoff_hz/nyq_rate) # Use lfilter to filter the signal with the FIR filter filtered_signal = lfilter(fir_coeff, 1.0, signal) #------------------------------------------------ # Plot the original and filtered signals. #------------------------------------------------ # The first N-1 samples are "corrupted" by the initial conditions warmup = numtaps - 1 # The phase delay of the filtered signal delay = (warmup / 2) / sample_rate figure(1) # Plot the original signal plot(t, signal) # Plot the filtered signal, shifted to compensate for the phase delay plot(t-delay, filtered_signal, 'r-') # Plot just the "good" part of the filtered signal. The first N-1 # samples are "corrupted" by the initial conditions. plot(t[warmup:]-delay, filtered_signal[warmup:], 'g', linewidth=4) grid(True) show() #------------------------------------------------ # Print values #------------------------------------------------ def print_values(label, values): var = "float32_t %s[%d]" % (label, len(values)) print "%-30s = {%s}" % (var, ', '.join(["%+.10f" % x for x in values])) print_values('signal', signal) print_values('fir_coeff', fir_coeff) print_values('filtered_signal', filtered_signal)