mbed-os

Dependents:   cobaLCDJoyMotor_Thread odometry_omni_3roda_v3 odometry_omni_3roda_v1 odometry_omni_3roda_v2 ... more

tools/dev/dsp_fir.py

Committer:
be_bryan
Date:
2017-12-11
Revision:
0:b74591d5ab33

File content as of revision 0:b74591d5ab33:

"""
mbed SDK
Copyright (c) 2011-2013 ARM Limited

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from numpy import sin, arange, pi
from scipy.signal import lfilter, firwin
from pylab import figure, plot, grid, show

#------------------------------------------------
# Create a signal for demonstration.
#------------------------------------------------
# 320 samples of (1000Hz + 15000 Hz) at 48 kHz
sample_rate = 48000.
nsamples = 320

F_1KHz = 1000.
A_1KHz = 1.0

F_15KHz = 15000.
A_15KHz = 0.5

t = arange(nsamples) / sample_rate
signal = A_1KHz * sin(2*pi*F_1KHz*t) + A_15KHz*sin(2*pi*F_15KHz*t)

#------------------------------------------------
# Create a FIR filter and apply it to signal.
#------------------------------------------------
# The Nyquist rate of the signal.
nyq_rate = sample_rate / 2.

# The cutoff frequency of the filter: 6KHz
cutoff_hz = 6000.0

# Length of the filter (number of coefficients, i.e. the filter order + 1)
numtaps = 29

# Use firwin to create a lowpass FIR filter
fir_coeff = firwin(numtaps, cutoff_hz/nyq_rate)

# Use lfilter to filter the signal with the FIR filter
filtered_signal = lfilter(fir_coeff, 1.0, signal)

#------------------------------------------------
# Plot the original and filtered signals.
#------------------------------------------------

# The first N-1 samples are "corrupted" by the initial conditions
warmup = numtaps - 1

# The phase delay of the filtered signal
delay = (warmup / 2) / sample_rate

figure(1)
# Plot the original signal
plot(t, signal)

# Plot the filtered signal, shifted to compensate for the phase delay
plot(t-delay, filtered_signal, 'r-')

# Plot just the "good" part of the filtered signal.  The first N-1
# samples are "corrupted" by the initial conditions.
plot(t[warmup:]-delay, filtered_signal[warmup:], 'g', linewidth=4)

grid(True)

show()

#------------------------------------------------
# Print values
#------------------------------------------------
def print_values(label, values):
    var = "float32_t %s[%d]" % (label, len(values))
    print "%-30s = {%s}" % (var, ', '.join(["%+.10f" % x for x in values]))

print_values('signal', signal)
print_values('fir_coeff', fir_coeff)
print_values('filtered_signal', filtered_signal)