fgjfjfdjdjdjd
Dependencies: mbed
Fork of EDP2_display by
main.cpp
- Committer:
- raduschirila
- Date:
- 2018-03-07
- Revision:
- 5:4152a51f0724
- Parent:
- 4:82c807b7685e
- Child:
- 6:66dca4356808
File content as of revision 5:4152a51f0724:
#include "mbed.h" #define max7219_reg_noop 0x00 #define max7219_reg_digit0 0x01 #define max7219_reg_digit1 0x02 #define max7219_reg_digit2 0x03 #define max7219_reg_digit3 0x04 #define max7219_reg_digit4 0x05 #define max7219_reg_digit5 0x06 #define max7219_reg_digit6 0x07 #define max7219_reg_digit7 0x08 #define max7219_reg_decodeMode 0x09 #define max7219_reg_intensity 0x0a #define max7219_reg_scanLimit 0x0b #define max7219_reg_shutdown 0x0c #define max7219_reg_displayTest 0x0f Serial pc(USBTX, USBRX); // tx, rx this is for the data to be sent via the usb port to the computer Ticker pulse,freq,display_rate; InterruptIn button(PTD5); AnalogIn pulse_in(PTB0); AnalogOut o(PTE30); DigitalOut led(PTD5); float xi,ypast,y,alpha=0.5,sum=0; float v[80]; int q=0; bool first=true; inline bool slope(float f[80]) { float r=(f[9]-f[3])/6; return( (r>-0.01 && r<-0.03) ? true: false); } void get_pulse() { xi=(float)pulse_in; //noise reduction algorithm if(!first) { //noise filtering procedure y= (alpha*xi)+ ((1-alpha)*ypast); ypast=y; sum+=y; q++; } else first=false; //normalization procedure v[q-1]=y-(sum/(float)q)+0.1;//normalization procedure raw pulse value minus the trendline(running average) //o=v[q-1]; if(q==80) { q=0; sum=sum/80; } if(slope) frq++; } #define LOW 0 #define HIGH 1 SPI max72_spi(PTD2, NC, PTD1); DigitalOut load(PTD0); //will provide the load signal //patterns declarations do not touch char heart[8] = {0x00,0x36,0x7f,0x7f,0x3e,0x1c,0x08,0x00}; char five[8]= {0x7c,0x40,0x40,0x78,0x04,0x04,0x04,0x78}; char six[8]= {0x00,0x3c,0x20,0x20,0x3e,0x22,0x22,0x3e}; char seven[8]= {0x7c,0x04,0x04,0x08,0x08,0x08,0x08,0x08}; char eight[8]= {0x7e,0x42,0x42,0x42,0x7e,0x42,0x42,0x7e}; char nine[8]= {0x3e,0x22,0x22,0x3e,0x02,0x02,0x02,0x1e}; char ten[8]= {0x4f,0x49,0x49,0x49,0x49,0x49,0x49,0x4f}; char eleven[8]= {0x48,0x48,0x48,0x48,0x48,0x48,0x48,0x48}; char twlv[8]= {0x4f,0x41,0x41,0x41,0x4f,0x48,0x48,0x4f}; char thirtn[8]= {0x4f,0x41,0x41,0x4f,0x41,0x41,0x41,0x4f}; char fourtn[8]= {0x49,0x49,0x49,0x4f,0x41,0x41,0x41,0x41}; char fiftn[8]= {0x4f,0x48,0x48,0x4f,0x41,0x41,0x41,0x4f}; char wave[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}; //DISPLAY FUNCTIONS DO NOT TOUCH void write_to_max( int reg, int col) { load = LOW; // begin max72_spi.write(reg); // specify register max72_spi.write(col); // put data load = HIGH; // make sure data is loaded (on rising edge of LOAD/CS) } //writes 8 bytes to the display void pattern_to_display(char *testdata) { int cdata; for(int idx = 0; idx <= 7; idx++) { cdata = testdata[idx]; write_to_max(idx+1,cdata); } } void setup_dot_matrix () { // initiation of the max 7219 // SPI setup: 8 bits, mode 0 max72_spi.format(8, 0); max72_spi.frequency(100000); //down to 100khx easier to scope ;-) write_to_max(max7219_reg_scanLimit, 0x07); write_to_max(max7219_reg_decodeMode, 0x00); // using an led matrix (not digits) write_to_max(max7219_reg_shutdown, 0x01); // not in shutdown mode write_to_max(max7219_reg_displayTest, 0x00); // no display test for (int e=1; e<=8; e++) { // empty registers, turn all LEDs off write_to_max(e,0); } // maxAll(max7219_reg_intensity, 0x0f & 0x0f); // the first 0x0f is the value you can set write_to_max(max7219_reg_intensity, 0x08); } void clear() { for (int e=1; e<=8; e++) { // empty registers, turn all LEDs off write_to_max(e,0); } } //END OF DISPLAY FUNCTIONS void splash_screen() { setup_dot_matrix (); /* setup matric */ pattern_to_display(heart); wait_ms(1000); heart[7]=0x01; heart[0]=0x01; for(int i=1; i<=8; ++i) { pattern_to_display(heart); wait(0.2); heart[7]<<=1; heart[7]|=1; heart[0]=heart[7]; } for(int i=1; i<=6; ++i) { heart[i]=~heart[i]; } pattern_to_display(heart); wait(1); clear(); } void shift_all(char wav[8]) { for(int i=1;i<=7;++i) { wav[i-1]=wav[i]; } wav[7]=0x00; pattern_to_display(wav); } char wave[8] = {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01}; void frq() { void disp() { int steps=v[q]/0.0125; for(int i=1;i<=steps;++i) { wave[7]<<=1; wave[7]|=1; } pattern_to_display(wave); shift_all(wave); } int main() { splash_screen();//wait for the pulse to be stable by showing stuff on the display so the user is happy pulse.attach(&get_pulse,0.0125);//attach the interrupt thing so it starts the ISR every 0.0125 s button.rise(%frq); display_rate.attach(&disp,0.1); while(1) { } }