Digiti II
/
MPU_RFID_MAX_LAB
ptoo elq ue lo lea
MFRC522.cpp
- Committer:
- AtomX
- Date:
- 2013-12-18
- Revision:
- 0:efd786b99a72
- Child:
- 1:63d729186747
File content as of revision 0:efd786b99a72:
/* * MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. * _Please_ see the comments in MFRC522.h - they give useful hints and background. * Released into the public domain. */ #include "MFRC522.h" static const char* const _TypeNamePICC[] = { "Unknown type", "PICC compliant with ISO/IEC 14443-4", "PICC compliant with ISO/IEC 18092 (NFC)", "MIFARE Mini, 320 bytes", "MIFARE 1KB", "MIFARE 4KB", "MIFARE Ultralight or Ultralight C", "MIFARE Plus", "MIFARE TNP3XXX", /* not complete UID */ "SAK indicates UID is not complete" }; static const char* const _ErrorMessage[] = { "Unknown error", "Success", "Error in communication", "Collision detected", "Timeout in communication", "A buffer is not big enough", "Internal error in the code, should not happen", "Invalid argument", "The CRC_A does not match", "A MIFARE PICC responded with NAK" }; #define MFRC522_MaxPICCs (sizeof(_TypeNamePICC)/sizeof(_TypeNamePICC[0])) #define MFRC522_MaxError (sizeof(_ErrorMessage)/sizeof(_ErrorMessage[0])) ///////////////////////////////////////////////////////////////////////////////////// // Functions for setting up the driver ///////////////////////////////////////////////////////////////////////////////////// /** * Constructor. * Prepares the output pins. */ MFRC522::MFRC522(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset) { /* Configure SPI bus */ m_SPI.format(8, 0); m_SPI.frequency(8000000); /* Release SPI-CS pin */ m_CS = 1; /* Release RESET pin */ m_RESET = 1; } // End constructor /** * Destructor. */ MFRC522::~MFRC522() { } ///////////////////////////////////////////////////////////////////////////////////// // Basic interface functions for communicating with the MFRC522 ///////////////////////////////////////////////////////////////////////////////////// /** * Writes a byte to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value) { m_CS = 0; /* Select SPI Chip MFRC522 */ // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. (void) m_SPI.write(reg & 0x7E); (void) m_SPI.write(value); m_CS = 1; /* Release SPI Chip MFRC522 */ } // End PCD_WriteRegister() /** * Writes a number of bytes to the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values) { m_CS = 0; /* Select SPI Chip MFRC522 */ // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. (void) m_SPI.write(reg & 0x7E); for (uint8_t index = 0; index < count; index++) { (void) m_SPI.write(values[index]); } m_CS = 1; /* Release SPI Chip MFRC522 */ } // End PCD_WriteRegister() /** * Reads a byte from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ uint8_t MFRC522::PCD_ReadRegister(uint8_t reg) { uint8_t value; m_CS = 0; /* Select SPI Chip MFRC522 */ // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. (void) m_SPI.write(0x80 | reg); // Read the value back. Send 0 to stop reading. value = m_SPI.write(0); m_CS = 1; /* Release SPI Chip MFRC522 */ return value; } // End PCD_ReadRegister() /** * Reads a number of bytes from the specified register in the MFRC522 chip. * The interface is described in the datasheet section 8.1.2. */ void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign) { if (count == 0) { return; } uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. uint8_t index = 0; // Index in values array. m_CS = 0; /* Select SPI Chip MFRC522 */ count--; // One read is performed outside of the loop (void) m_SPI.write(address); // Tell MFRC522 which address we want to read while (index < count) { if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0] { // Create bit mask for bit positions rxAlign..7 uint8_t mask = 0; for (uint8_t i = rxAlign; i <= 7; i++) { mask |= (1 << i); } // Read value and tell that we want to read the same address again. uint8_t value = m_SPI.write(address); // Apply mask to both current value of values[0] and the new data in value. values[0] = (values[index] & ~mask) | (value & mask); } else { // Read value and tell that we want to read the same address again. values[index] = m_SPI.write(address); } index++; } values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading. m_CS = 1; /* Release SPI Chip MFRC522 */ } // End PCD_ReadRegister() /** * Sets the bits given in mask in register reg. */ void MFRC522::PCD_SetRegisterBits(uint8_t reg, uint8_t mask) { uint8_t tmp = PCD_ReadRegister(reg); PCD_WriteRegister(reg, tmp | mask); // set bit mask } // End PCD_SetRegisterBitMask() /** * Clears the bits given in mask from register reg. */ void MFRC522::PCD_ClrRegisterBits(uint8_t reg, uint8_t mask) { uint8_t tmp = PCD_ReadRegister(reg); PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask } // End PCD_ClearRegisterBitMask() /** * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. */ uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result) { PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73�s. uint16_t i = 5000; uint8_t n; while (1) { n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved if (n & 0x04) { // CRCIRq bit set - calculation done break; } if (--i == 0) { // The emergency break. We will eventually terminate on this one after 89ms. // Communication with the MFRC522 might be down. return STATUS_TIMEOUT; } } // Stop calculating CRC for new content in the FIFO. PCD_WriteRegister(CommandReg, PCD_Idle); // Transfer the result from the registers to the result buffer result[0] = PCD_ReadRegister(CRCResultRegL); result[1] = PCD_ReadRegister(CRCResultRegH); return STATUS_OK; } // End PCD_CalculateCRC() ///////////////////////////////////////////////////////////////////////////////////// // Functions for manipulating the MFRC522 ///////////////////////////////////////////////////////////////////////////////////// /** * Initializes the MFRC522 chip. */ void MFRC522::PCD_Init() { /* Reset MFRC522 */ m_RESET = 0; wait_ms(10); m_RESET = 1; // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. wait_ms(50); // When communicating with a PICC we need a timeout if something goes wrong. // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s. PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. PCD_WriteRegister(TReloadRegL, 0xE8); PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) PCD_WriteRegister(RFCfgReg, (0x07<<4)); // Set Rx Gain to max PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) } // End PCD_Init() /** * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. */ void MFRC522::PCD_Reset() { PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command. // The datasheet does not mention how long the SoftRest command takes to complete. // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. wait_ms(50); // Wait for the PowerDown bit in CommandReg to be cleared while (PCD_ReadRegister(CommandReg) & (1<<4)) { // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry. } } // End PCD_Reset() /** * Turns the antenna on by enabling pins TX1 and TX2. * After a reset these pins disabled. */ void MFRC522::PCD_AntennaOn() { uint8_t value = PCD_ReadRegister(TxControlReg); if ((value & 0x03) != 0x03) { PCD_WriteRegister(TxControlReg, value | 0x03); } } // End PCD_AntennaOn() ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with PICCs ///////////////////////////////////////////////////////////////////////////////////// /** * Executes the Transceive command. * CRC validation can only be done if backData and backLen are specified. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. uint8_t sendLen, ///< Number of bytes to transfer to the FIFO. uint8_t *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. uint8_t *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. uint8_t *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL. uint8_t rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. bool checkCRC) ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. { uint8_t waitIRq = 0x30; // RxIRq and IdleIRq return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC); } // End PCD_TransceiveData() /** * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO. * CRC validation can only be done if backData and backLen are specified. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command, ///< The command to execute. One of the PCD_Command enums. uint8_t waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command. uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. uint8_t sendLen, ///< Number of bytes to transfer to the FIFO. uint8_t *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. uint8_t *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. uint8_t *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. uint8_t rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. bool checkCRC) ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. { uint8_t n, _validBits = 0; uint32_t i; // Prepare values for BitFramingReg uint8_t txLastBits = validBits ? *validBits : 0; uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits PCD_SetRegisterBits(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments PCD_WriteRegister(CommandReg, command); // Execute the command if (command == PCD_Transceive) { PCD_SetRegisterBits(BitFramingReg, 0x80); // StartSend=1, transmission of data starts } // Wait for the command to complete. // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. // Each iteration of the do-while-loop takes 17.86�s. i = 2000; while (1) { n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq if (n & waitIRq) { // One of the interrupts that signal success has been set. break; } if (n & 0x01) { // Timer interrupt - nothing received in 25ms return STATUS_TIMEOUT; } if (--i == 0) { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down. return STATUS_TIMEOUT; } } // Stop now if any errors except collisions were detected. uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr return STATUS_ERROR; } // If the caller wants data back, get it from the MFRC522. if (backData && backLen) { n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO if (n > *backLen) { return STATUS_NO_ROOM; } *backLen = n; // Number of bytes returned PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. if (validBits) { *validBits = _validBits; } } // Tell about collisions if (errorRegValue & 0x08) { // CollErr return STATUS_COLLISION; } // Perform CRC_A validation if requested. if (backData && backLen && checkCRC) { // In this case a MIFARE Classic NAK is not OK. if ((*backLen == 1) && (_validBits == 4)) { return STATUS_MIFARE_NACK; } // We need at least the CRC_A value and all 8 bits of the last byte must be received. if ((*backLen < 2) || (_validBits != 0)) { return STATUS_CRC_WRONG; } // Verify CRC_A - do our own calculation and store the control in controlBuffer. uint8_t controlBuffer[2]; n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]); if (n != STATUS_OK) { return n; } if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) { return STATUS_CRC_WRONG; } } return STATUS_OK; } // End PCD_CommunicateWithPICC() /** * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize) { return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize); } // End PICC_RequestA() /** * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize) { return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize); } // End PICC_WakeupA() /** * Transmits REQA or WUPA commands. * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize) { uint8_t validBits; uint8_t status; if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long. return STATUS_NO_ROOM; } // ValuesAfterColl=1 => Bits received after collision are cleared. PCD_ClrRegisterBits(CollReg, 0x80); // For REQA and WUPA we need the short frame format // - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] validBits = 7; status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits); if (status != STATUS_OK) { return status; } if ((*bufferSize != 2) || (validBits != 0)) { // ATQA must be exactly 16 bits. return STATUS_ERROR; } return STATUS_OK; } // End PICC_REQA_or_WUPA() /** * Transmits SELECT/ANTICOLLISION commands to select a single PICC. * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). * On success: * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. * * A PICC UID consists of 4, 7 or 10 bytes. * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: * UID size Number of UID bytes Cascade levels Example of PICC * ======== =================== ============== =============== * single 4 1 MIFARE Classic * double 7 2 MIFARE Ultralight * triple 10 3 Not currently in use? * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits) { bool uidComplete; bool selectDone; bool useCascadeTag; uint8_t cascadeLevel = 1; uint8_t result; uint8_t count; uint8_t index; uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. uint8_t *responseBuffer; uint8_t responseLength; // Description of buffer structure: // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. // Byte 3: UID-data // Byte 4: UID-data // Byte 5: UID-data // Byte 6: BCC Block Check Character - XOR of bytes 2-5 // Byte 7: CRC_A // Byte 8: CRC_A // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level. // // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) // UID size Cascade level Byte2 Byte3 Byte4 Byte5 // ======== ============= ===== ===== ===== ===== // 4 bytes 1 uid0 uid1 uid2 uid3 // 7 bytes 1 CT uid0 uid1 uid2 // 2 uid3 uid4 uid5 uid6 // 10 bytes 1 CT uid0 uid1 uid2 // 2 CT uid3 uid4 uid5 // 3 uid6 uid7 uid8 uid9 // Sanity checks if (validBits > 80) { return STATUS_INVALID; } // Prepare MFRC522 // ValuesAfterColl=1 => Bits received after collision are cleared. PCD_ClrRegisterBits(CollReg, 0x80); // Repeat Cascade Level loop until we have a complete UID. uidComplete = false; while ( ! uidComplete) { // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. switch (cascadeLevel) { case 1: buffer[0] = PICC_CMD_SEL_CL1; uidIndex = 0; useCascadeTag = validBits && (uid->size > 4); // When we know that the UID has more than 4 bytes break; case 2: buffer[0] = PICC_CMD_SEL_CL2; uidIndex = 3; useCascadeTag = validBits && (uid->size > 7); // When we know that the UID has more than 7 bytes break; case 3: buffer[0] = PICC_CMD_SEL_CL3; uidIndex = 6; useCascadeTag = false; // Never used in CL3. break; default: return STATUS_INTERNAL_ERROR; //break; } // How many UID bits are known in this Cascade Level? if(validBits > (8 * uidIndex)) { currentLevelKnownBits = validBits - (8 * uidIndex); } else { currentLevelKnownBits = 0; } // Copy the known bits from uid->uidByte[] to buffer[] index = 2; // destination index in buffer[] if (useCascadeTag) { buffer[index++] = PICC_CMD_CT; } uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. if (bytesToCopy) { // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag uint8_t maxBytes = useCascadeTag ? 3 : 4; if (bytesToCopy > maxBytes) { bytesToCopy = maxBytes; } for (count = 0; count < bytesToCopy; count++) { buffer[index++] = uid->uidByte[uidIndex + count]; } } // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits if (useCascadeTag) { currentLevelKnownBits += 8; } // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. selectDone = false; while ( ! selectDone) { // Find out how many bits and bytes to send and receive. if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes // Calulate BCC - Block Check Character buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; // Calculate CRC_A result = PCD_CalculateCRC(buffer, 7, &buffer[7]); if (result != STATUS_OK) { return result; } txLastBits = 0; // 0 => All 8 bits are valid. bufferUsed = 9; // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) responseBuffer = &buffer[6]; responseLength = 3; } else { // This is an ANTICOLLISION. //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); txLastBits = currentLevelKnownBits % 8; count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits bufferUsed = index + (txLastBits ? 1 : 0); // Store response in the unused part of buffer responseBuffer = &buffer[index]; responseLength = sizeof(buffer) - index; } // Set bit adjustments rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read. PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] // Transmit the buffer and receive the response. result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign); if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] if (result & 0x20) { // CollPosNotValid return STATUS_COLLISION; // Without a valid collision position we cannot continue } uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32. if (collisionPos == 0) { collisionPos = 32; } if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen return STATUS_INTERNAL_ERROR; } // Choose the PICC with the bit set. currentLevelKnownBits = collisionPos; count = (currentLevelKnownBits - 1) % 8; // The bit to modify index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. buffer[index] |= (1 << count); } else if (result != STATUS_OK) { return result; } else { // STATUS_OK if (currentLevelKnownBits >= 32) { // This was a SELECT. selectDone = true; // No more anticollision // We continue below outside the while. } else { // This was an ANTICOLLISION. // We now have all 32 bits of the UID in this Cascade Level currentLevelKnownBits = 32; // Run loop again to do the SELECT. } } } // End of while ( ! selectDone) // We do not check the CBB - it was constructed by us above. // Copy the found UID bytes from buffer[] to uid->uidByte[] index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; for (count = 0; count < bytesToCopy; count++) { uid->uidByte[uidIndex + count] = buffer[index++]; } // Check response SAK (Select Acknowledge) if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). return STATUS_ERROR; } // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); if (result != STATUS_OK) { return result; } if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) { return STATUS_CRC_WRONG; } if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes cascadeLevel++; } else { uidComplete = true; uid->sak = responseBuffer[0]; } } // End of while ( ! uidComplete) // Set correct uid->size uid->size = 3 * cascadeLevel + 1; return STATUS_OK; } // End PICC_Select() /** * Instructs a PICC in state ACTIVE(*) to go to state HALT. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PICC_HaltA() { uint8_t result; uint8_t buffer[4]; // Build command buffer buffer[0] = PICC_CMD_HLTA; buffer[1] = 0; // Calculate CRC_A result = PCD_CalculateCRC(buffer, 2, &buffer[2]); if (result == STATUS_OK) { // Send the command. // The standard says: // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the // HLTA command, this response shall be interpreted as 'not acknowledge'. // We interpret that this way: Only STATUS_TIMEOUT is an success. result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0); if (result == STATUS_TIMEOUT) { result = STATUS_OK; } else if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) result = STATUS_ERROR; } } return result; } // End PICC_HaltA() ///////////////////////////////////////////////////////////////////////////////////// // Functions for communicating with MIFARE PICCs ///////////////////////////////////////////////////////////////////////////////////// /** * Executes the MFRC522 MFAuthent command. * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. * For use with MIFARE Classic PICCs. * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. * * All keys are set to FFFFFFFFFFFFh at chip delivery. * * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. */ uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid) { uint8_t i, waitIRq = 0x10; // IdleIRq // Build command buffer uint8_t sendData[12]; sendData[0] = command; sendData[1] = blockAddr; for (i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes sendData[2+i] = key->keyByte[i]; } for (i = 0; i < 4; i++) { // The first 4 bytes of the UID sendData[8+i] = uid->uidByte[i]; } // Start the authentication. return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData)); } // End PCD_Authenticate() /** * Used to exit the PCD from its authenticated state. * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. */ void MFRC522::PCD_StopCrypto1() { // Clear MFCrypto1On bit PCD_ClrRegisterBits(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] } // End PCD_StopCrypto1() /** * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. * The MF0ICU1 returns a NAK for higher addresses. * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. * * The buffer must be at least 18 bytes because a CRC_A is also returned. * Checks the CRC_A before returning STATUS_OK. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize) { uint8_t result = STATUS_NO_ROOM; // Sanity check if ((buffer == NULL) || (*bufferSize < 18)) { return result; } // Build command buffer buffer[0] = PICC_CMD_MF_READ; buffer[1] = blockAddr; // Calculate CRC_A result = PCD_CalculateCRC(buffer, 2, &buffer[2]); if (result != STATUS_OK) { return result; } // Transmit the buffer and receive the response, validate CRC_A. return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true); } // End MIFARE_Read() /** * Writes 16 bytes to the active PICC. * * For MIFARE Classic the sector containing the block must be authenticated before calling this function. * * For MIFARE Ultralight the opretaion is called "COMPATIBILITY WRITE". * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. * * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize) { uint8_t result; // Sanity check if (buffer == NULL || bufferSize < 16) { return STATUS_INVALID; } // Mifare Classic protocol requires two communications to perform a write. // Step 1: Tell the PICC we want to write to block blockAddr. uint8_t cmdBuffer[2]; cmdBuffer[0] = PICC_CMD_MF_WRITE; cmdBuffer[1] = blockAddr; // Adds CRC_A and checks that the response is MF_ACK. result = PCD_MIFARE_Transceive(cmdBuffer, 2); if (result != STATUS_OK) { return result; } // Step 2: Transfer the data // Adds CRC_A and checks that the response is MF_ACK. result = PCD_MIFARE_Transceive(buffer, bufferSize); if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_Write() /** * Writes a 4 byte page to the active MIFARE Ultralight PICC. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_UltralightWrite(uint8_t page, uint8_t *buffer, uint8_t bufferSize) { uint8_t result; // Sanity check if (buffer == NULL || bufferSize < 4) { return STATUS_INVALID; } // Build commmand buffer uint8_t cmdBuffer[6]; cmdBuffer[0] = PICC_CMD_UL_WRITE; cmdBuffer[1] = page; memcpy(&cmdBuffer[2], buffer, 4); // Perform the write result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK. if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_Ultralight_Write() /** * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta) { return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta); } // End MIFARE_Decrement() /** * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta) { return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta); } // End MIFARE_Increment() /** * MIFARE Restore copies the value of the addressed block into a volatile memory. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * Use MIFARE_Transfer() to store the result in a block. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr) { // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. // Doing only a single step does not work, so I chose to transfer 0L in step two. return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L); } // End MIFARE_Restore() /** * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data) { uint8_t result; uint8_t cmdBuffer[2]; // We only need room for 2 bytes. // Step 1: Tell the PICC the command and block address cmdBuffer[0] = command; cmdBuffer[1] = blockAddr; // Adds CRC_A and checks that the response is MF_ACK. result = PCD_MIFARE_Transceive(cmdBuffer, 2); if (result != STATUS_OK) { return result; } // Step 2: Transfer the data // Adds CRC_A and accept timeout as success. result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true); if (result != STATUS_OK) { return result; } return STATUS_OK; } // End MIFARE_TwoStepHelper() /** * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr) { uint8_t cmdBuffer[2]; // We only need room for 2 bytes. // Tell the PICC we want to transfer the result into block blockAddr. cmdBuffer[0] = PICC_CMD_MF_TRANSFER; cmdBuffer[1] = blockAddr; // Adds CRC_A and checks that the response is MF_ACK. return PCD_MIFARE_Transceive(cmdBuffer, 2); } // End MIFARE_Transfer() ///////////////////////////////////////////////////////////////////////////////////// // Support functions ///////////////////////////////////////////////////////////////////////////////////// /** * Wrapper for MIFARE protocol communication. * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. * * @return STATUS_OK on success, STATUS_??? otherwise. */ uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout) { uint8_t result; uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. // Sanity check if (sendData == NULL || sendLen > 16) { return STATUS_INVALID; } // Copy sendData[] to cmdBuffer[] and add CRC_A memcpy(cmdBuffer, sendData, sendLen); result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]); if (result != STATUS_OK) { return result; } sendLen += 2; // Transceive the data, store the reply in cmdBuffer[] uint8_t waitIRq = 0x30; // RxIRq and IdleIRq uint8_t cmdBufferSize = sizeof(cmdBuffer); uint8_t validBits = 0; result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits); if (acceptTimeout && result == STATUS_TIMEOUT) { return STATUS_OK; } if (result != STATUS_OK) { return result; } // The PICC must reply with a 4 bit ACK if (cmdBufferSize != 1 || validBits != 4) { return STATUS_ERROR; } if (cmdBuffer[0] != MF_ACK) { return STATUS_MIFARE_NACK; } return STATUS_OK; } // End PCD_MIFARE_Transceive() /** * Translates the SAK (Select Acknowledge) to a PICC type. * * @return PICC_Type */ uint8_t MFRC522::PICC_GetType(uint8_t sak) { uint8_t retType = PICC_TYPE_UNKNOWN; if (sak & 0x04) { // UID not complete retType = PICC_TYPE_NOT_COMPLETE; } else { switch (sak) { case 0x09: retType = PICC_TYPE_MIFARE_MINI; break; case 0x08: retType = PICC_TYPE_MIFARE_1K; break; case 0x18: retType = PICC_TYPE_MIFARE_4K; break; case 0x00: retType = PICC_TYPE_MIFARE_UL; break; case 0x10: case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break; case 0x01: retType = PICC_TYPE_TNP3XXX; break; default: if (sak & 0x20) { retType = PICC_TYPE_ISO_14443_4; } else if (sak & 0x40) { retType = PICC_TYPE_ISO_18092; } break; } } return (retType); } // End PICC_GetType() /** * Returns a string pointer to the PICC type name. * */ char* MFRC522::PICC_GetTypeName(uint8_t piccType) { if(piccType == PICC_TYPE_NOT_COMPLETE) { piccType = MFRC522_MaxPICCs - 1; } return((char *) _TypeNamePICC[piccType]); } // End PICC_GetTypeName() /** * Returns a string pointer to a status code name. * */ char* MFRC522::GetStatusCodeName(uint8_t code) { return((char *) _ErrorMessage[code]); } // End GetStatusCodeName() /** * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). */ void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. uint8_t g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) uint8_t g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) uint8_t g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) uint8_t g3) ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) { uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF); accessBitBuffer[2] = c3 << 4 | c2; } // End MIFARE_SetAccessBits() ///////////////////////////////////////////////////////////////////////////////////// // Convenience functions - does not add extra functionality ///////////////////////////////////////////////////////////////////////////////////// /** * Returns true if a PICC responds to PICC_CMD_REQA. * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. * * @return bool */ bool MFRC522::PICC_IsNewCardPresent(void) { uint8_t bufferATQA[2]; uint8_t bufferSize = sizeof(bufferATQA); uint8_t result = PICC_RequestA(bufferATQA, &bufferSize); return ((result == STATUS_OK) || (result == STATUS_COLLISION)); } // End PICC_IsNewCardPresent() /** * Simple wrapper around PICC_Select. * Returns true if a UID could be read. * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. * The read UID is available in the class variable uid. * * @return bool */ bool MFRC522::PICC_ReadCardSerial(void) { uint8_t result = PICC_Select(&uid); return (result == STATUS_OK); } // End PICC_ReadCardSerial()