20160814

Fork of LSM9DS0 by LDSC_Robotics_TAs

Committer:
YCTung
Date:
Fri Feb 26 12:56:04 2016 +0000
Revision:
0:0dbf7ee73651
Child:
1:2c34ccab5256
Modified to Nucleo-64 version

Who changed what in which revision?

UserRevisionLine numberNew contents of line
YCTung 0:0dbf7ee73651 1 //Original author
YCTung 0:0dbf7ee73651 2 /******************************************************************************
YCTung 0:0dbf7ee73651 3 SFE_LSM9DS0.cpp
YCTung 0:0dbf7ee73651 4 SFE_LSM9DS0 Library Source File
YCTung 0:0dbf7ee73651 5 Jim Lindblom @ SparkFun Electronics
YCTung 0:0dbf7ee73651 6 Original Creation Date: February 14, 2014 (Happy Valentines Day!)
YCTung 0:0dbf7ee73651 7 https://github.com/sparkfun/LSM9DS0_Breakout
YCTung 0:0dbf7ee73651 8
YCTung 0:0dbf7ee73651 9 This file implements all functions of the LSM9DS0 class. Functions here range
YCTung 0:0dbf7ee73651 10 from higher level stuff, like reading/writing LSM9DS0 registers to low-level,
YCTung 0:0dbf7ee73651 11 hardware reads and writes. Both SPI and I2C handler functions can be found
YCTung 0:0dbf7ee73651 12 towards the bottom of this file.
YCTung 0:0dbf7ee73651 13
YCTung 0:0dbf7ee73651 14 Development environment specifics:
YCTung 0:0dbf7ee73651 15 IDE: Arduino 1.0.5
YCTung 0:0dbf7ee73651 16 Hardware Platform: Arduino Pro 3.3V/8MHz
YCTung 0:0dbf7ee73651 17 LSM9DS0 Breakout Version: 1.0
YCTung 0:0dbf7ee73651 18
YCTung 0:0dbf7ee73651 19 This code is beerware; if you see me (or any other SparkFun employee) at the
YCTung 0:0dbf7ee73651 20 local, and you've found our code helpful, please buy us a round!
YCTung 0:0dbf7ee73651 21
YCTung 0:0dbf7ee73651 22 Distributed as-is; no warranty is given.
YCTung 0:0dbf7ee73651 23 ******************************************************************************/
YCTung 0:0dbf7ee73651 24
YCTung 0:0dbf7ee73651 25 #include "LSM9DS0.h"
YCTung 0:0dbf7ee73651 26 #include "mbed.h"
YCTung 0:0dbf7ee73651 27
YCTung 0:0dbf7ee73651 28 //I2C i2c(D14,D15);
YCTung 0:0dbf7ee73651 29 //SPI spi(D4,D5,D3);
YCTung 0:0dbf7ee73651 30 //****************************************************************************//
YCTung 0:0dbf7ee73651 31 //
YCTung 0:0dbf7ee73651 32 // LSM9DS0 functions.
YCTung 0:0dbf7ee73651 33 //
YCTung 0:0dbf7ee73651 34 // Construction arguments:
YCTung 0:0dbf7ee73651 35 // (interface_mode interface, uint8_t gAddr, uint8_t xmAddr ),
YCTung 0:0dbf7ee73651 36 //
YCTung 0:0dbf7ee73651 37 // where gAddr and xmAddr are addresses for I2C_MODE and chip select pin
YCTung 0:0dbf7ee73651 38 // number for SPI_MODE
YCTung 0:0dbf7ee73651 39 //
YCTung 0:0dbf7ee73651 40 // For SPI, construct LSM6DS3 myIMU(SPI_MODE, D9, D6);
YCTung 0:0dbf7ee73651 41 //
YCTung 0:0dbf7ee73651 42 //=================================
YCTung 0:0dbf7ee73651 43
YCTung 0:0dbf7ee73651 44 LSM9DS0::LSM9DS0(interface_mode interface, uint8_t gAddr, uint8_t xmAddr) : interfaceMode(SPI_MODE), spi_(D4,D5,D3), i2c_(I2C_SDA,I2C_SCL), csG_(D9), csXM_(D6)
YCTung 0:0dbf7ee73651 45 {
YCTung 0:0dbf7ee73651 46 // interfaceMode will keep track of whether we're using SPI or I2C:
YCTung 0:0dbf7ee73651 47 interfaceMode = interface;
YCTung 0:0dbf7ee73651 48
YCTung 0:0dbf7ee73651 49 // xmAddress and gAddress will store the 7-bit I2C address, if using I2C.
YCTung 0:0dbf7ee73651 50 // If we're using SPI, these variables store the chip-select pins.
YCTung 0:0dbf7ee73651 51 gAddress = gAddr;
YCTung 0:0dbf7ee73651 52 xmAddress = xmAddr;
YCTung 0:0dbf7ee73651 53 }
YCTung 0:0dbf7ee73651 54
YCTung 0:0dbf7ee73651 55 uint16_t LSM9DS0::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl,
YCTung 0:0dbf7ee73651 56 gyro_odr gODR, accel_odr aODR, mag_odr mODR)
YCTung 0:0dbf7ee73651 57 {
YCTung 0:0dbf7ee73651 58 // Store the given scales in class variables. These scale variables
YCTung 0:0dbf7ee73651 59 // are used throughout to calculate the actual g's, DPS,and Gs's.
YCTung 0:0dbf7ee73651 60 gScale = gScl;
YCTung 0:0dbf7ee73651 61 aScale = aScl;
YCTung 0:0dbf7ee73651 62 mScale = mScl;
YCTung 0:0dbf7ee73651 63
YCTung 0:0dbf7ee73651 64 // Once we have the scale values, we can calculate the resolution
YCTung 0:0dbf7ee73651 65 // of each sensor. That's what these functions are for. One for each sensor
YCTung 0:0dbf7ee73651 66 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
YCTung 0:0dbf7ee73651 67 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
YCTung 0:0dbf7ee73651 68 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
YCTung 0:0dbf7ee73651 69
YCTung 0:0dbf7ee73651 70 // Now, initialize our hardware interface.
YCTung 0:0dbf7ee73651 71 if (interfaceMode == I2C_MODE) // If we're using I2C
YCTung 0:0dbf7ee73651 72 initI2C(); // Initialize I2C
YCTung 0:0dbf7ee73651 73 else if (interfaceMode == SPI_MODE) // else, if we're using SPI
YCTung 0:0dbf7ee73651 74 initSPI(); // Initialize SPI
YCTung 0:0dbf7ee73651 75
YCTung 0:0dbf7ee73651 76 // To verify communication, we can read from the WHO_AM_I register of
YCTung 0:0dbf7ee73651 77 // each device. Store those in a variable so we can return them.
YCTung 0:0dbf7ee73651 78 uint8_t gTest = gReadByte(WHO_AM_I_G); // Read the gyro WHO_AM_I
YCTung 0:0dbf7ee73651 79 uint8_t xmTest = xmReadByte(WHO_AM_I_XM); // Read the accel/mag WHO_AM_I
YCTung 0:0dbf7ee73651 80
YCTung 0:0dbf7ee73651 81 // Gyro initialization stuff:
YCTung 0:0dbf7ee73651 82 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
YCTung 0:0dbf7ee73651 83 setGyroODR(gODR); // Set the gyro output data rate and bandwidth.
YCTung 0:0dbf7ee73651 84 setGyroScale(gScale); // Set the gyro range
YCTung 0:0dbf7ee73651 85
YCTung 0:0dbf7ee73651 86 // Accelerometer initialization stuff:
YCTung 0:0dbf7ee73651 87 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
YCTung 0:0dbf7ee73651 88 setAccelODR(aODR); // Set the accel data rate.
YCTung 0:0dbf7ee73651 89 setAccelScale(aScale); // Set the accel range.
YCTung 0:0dbf7ee73651 90
YCTung 0:0dbf7ee73651 91 // Magnetometer initialization stuff:
YCTung 0:0dbf7ee73651 92 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
YCTung 0:0dbf7ee73651 93 setMagODR(mODR); // Set the magnetometer output data rate.
YCTung 0:0dbf7ee73651 94 setMagScale(mScale); // Set the magnetometer's range.
YCTung 0:0dbf7ee73651 95
YCTung 0:0dbf7ee73651 96 // Once everything is initialized, return the WHO_AM_I registers we read:
YCTung 0:0dbf7ee73651 97 return (xmTest << 8) | gTest;
YCTung 0:0dbf7ee73651 98 }
YCTung 0:0dbf7ee73651 99
YCTung 0:0dbf7ee73651 100 void LSM9DS0::initGyro()
YCTung 0:0dbf7ee73651 101 {
YCTung 0:0dbf7ee73651 102 /* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables
YCTung 0:0dbf7ee73651 103 Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen
YCTung 0:0dbf7ee73651 104 DR[1:0] - Output data rate selection
YCTung 0:0dbf7ee73651 105 00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz
YCTung 0:0dbf7ee73651 106 BW[1:0] - Bandwidth selection (sets cutoff frequency)
YCTung 0:0dbf7ee73651 107 Value depends on ODR. See datasheet table 21.
YCTung 0:0dbf7ee73651 108 PD - Power down enable (0=power down mode, 1=normal or sleep mode)
YCTung 0:0dbf7ee73651 109 Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */
YCTung 0:0dbf7ee73651 110 gWriteByte(CTRL_REG1_G, 0xFF); // Normal mode, enable all axes
YCTung 0:0dbf7ee73651 111
YCTung 0:0dbf7ee73651 112 /* CTRL_REG2_G sets up the HPF
YCTung 0:0dbf7ee73651 113 Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0
YCTung 0:0dbf7ee73651 114 HPM[1:0] - High pass filter mode selection
YCTung 0:0dbf7ee73651 115 00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering,
YCTung 0:0dbf7ee73651 116 10=normal, 11=autoreset on interrupt
YCTung 0:0dbf7ee73651 117 HPCF[3:0] - High pass filter cutoff frequency
YCTung 0:0dbf7ee73651 118 Value depends on data rate. See datasheet table 26.
YCTung 0:0dbf7ee73651 119 */
YCTung 0:0dbf7ee73651 120 gWriteByte(CTRL_REG2_G, 0x09); // Normal mode, high cutoff frequency
YCTung 0:0dbf7ee73651 121
YCTung 0:0dbf7ee73651 122 /* CTRL_REG3_G sets up interrupt and DRDY_G pins
YCTung 0:0dbf7ee73651 123 Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY
YCTung 0:0dbf7ee73651 124 I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable)
YCTung 0:0dbf7ee73651 125 I1_BOOT - Boot status available on INT_G (0=disable, 1=enable)
YCTung 0:0dbf7ee73651 126 H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low)
YCTung 0:0dbf7ee73651 127 PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain)
YCTung 0:0dbf7ee73651 128 I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable)
YCTung 0:0dbf7ee73651 129 I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable)
YCTung 0:0dbf7ee73651 130 I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable)
YCTung 0:0dbf7ee73651 131 I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */
YCTung 0:0dbf7ee73651 132 // Int1 enabled (pp, active low), data read on DRDY_G:
YCTung 0:0dbf7ee73651 133 gWriteByte(CTRL_REG3_G, 0x00);
YCTung 0:0dbf7ee73651 134
YCTung 0:0dbf7ee73651 135 /* CTRL_REG4_G sets the scale, update mode
YCTung 0:0dbf7ee73651 136 Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM
YCTung 0:0dbf7ee73651 137 BDU - Block data update (0=continuous, 1=output not updated until read
YCTung 0:0dbf7ee73651 138 BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add)
YCTung 0:0dbf7ee73651 139 FS[1:0] - Full-scale selection
YCTung 0:0dbf7ee73651 140 00=245dps, 01=500dps, 10=2000dps, 11=2000dps
YCTung 0:0dbf7ee73651 141 ST[1:0] - Self-test enable
YCTung 0:0dbf7ee73651 142 00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+)
YCTung 0:0dbf7ee73651 143 SIM - SPI serial interface mode select
YCTung 0:0dbf7ee73651 144 0=4 wire, 1=3 wire */
YCTung 0:0dbf7ee73651 145 gWriteByte(CTRL_REG4_G, 0x30); // Set scale to 245 dps
YCTung 0:0dbf7ee73651 146
YCTung 0:0dbf7ee73651 147 /* CTRL_REG5_G sets up the FIFO, HPF, and INT1
YCTung 0:0dbf7ee73651 148 Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0
YCTung 0:0dbf7ee73651 149 BOOT - Reboot memory content (0=normal, 1=reboot)
YCTung 0:0dbf7ee73651 150 FIFO_EN - FIFO enable (0=disable, 1=enable)
YCTung 0:0dbf7ee73651 151 HPen - HPF enable (0=disable, 1=enable)
YCTung 0:0dbf7ee73651 152 INT1_Sel[1:0] - Int 1 selection configuration
YCTung 0:0dbf7ee73651 153 Out_Sel[1:0] - Out selection configuration */
YCTung 0:0dbf7ee73651 154 gWriteByte(CTRL_REG5_G, 0x00);
YCTung 0:0dbf7ee73651 155
YCTung 0:0dbf7ee73651 156 // Temporary !!! For testing !!! Remove !!! Or make useful !!!
YCTung 0:0dbf7ee73651 157 configGyroInt(0x2A, 0, 0, 0, 0); // Trigger interrupt when above 0 DPS...
YCTung 0:0dbf7ee73651 158 }
YCTung 0:0dbf7ee73651 159
YCTung 0:0dbf7ee73651 160 void LSM9DS0::initAccel()
YCTung 0:0dbf7ee73651 161 {
YCTung 0:0dbf7ee73651 162 /* CTRL_REG0_XM (0x1F) (Default value: 0x00)
YCTung 0:0dbf7ee73651 163 Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2
YCTung 0:0dbf7ee73651 164 BOOT - Reboot memory content (0: normal, 1: reboot)
YCTung 0:0dbf7ee73651 165 FIFO_EN - Fifo enable (0: disable, 1: enable)
YCTung 0:0dbf7ee73651 166 WTM_EN - FIFO watermark enable (0: disable, 1: enable)
YCTung 0:0dbf7ee73651 167 HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled)
YCTung 0:0dbf7ee73651 168 HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled)
YCTung 0:0dbf7ee73651 169 HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */
YCTung 0:0dbf7ee73651 170 xmWriteByte(CTRL_REG0_XM, 0x00);
YCTung 0:0dbf7ee73651 171
YCTung 0:0dbf7ee73651 172 /* CTRL_REG1_XM (0x20) (Default value: 0x07)
YCTung 0:0dbf7ee73651 173 Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN
YCTung 0:0dbf7ee73651 174 AODR[3:0] - select the acceleration data rate:
YCTung 0:0dbf7ee73651 175 0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz,
YCTung 0:0dbf7ee73651 176 0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz,
YCTung 0:0dbf7ee73651 177 1001=800Hz, 1010=1600Hz, (remaining combinations undefined).
YCTung 0:0dbf7ee73651 178 BDU - block data update for accel AND mag
YCTung 0:0dbf7ee73651 179 0: Continuous update
YCTung 0:0dbf7ee73651 180 1: Output registers aren't updated until MSB and LSB have been read.
YCTung 0:0dbf7ee73651 181 AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled.
YCTung 0:0dbf7ee73651 182 0: Axis disabled, 1: Axis enabled */
YCTung 0:0dbf7ee73651 183 xmWriteByte(CTRL_REG1_XM, 0x97); // 100Hz data rate, x/y/z all enabled
YCTung 0:0dbf7ee73651 184
YCTung 0:0dbf7ee73651 185 //Serial.println(xmReadByte(CTRL_REG1_XM));
YCTung 0:0dbf7ee73651 186 /* CTRL_REG2_XM (0x21) (Default value: 0x00)
YCTung 0:0dbf7ee73651 187 Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM
YCTung 0:0dbf7ee73651 188 ABW[1:0] - Accelerometer anti-alias filter bandwidth
YCTung 0:0dbf7ee73651 189 00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz
YCTung 0:0dbf7ee73651 190 AFS[2:0] - Accel full-scale selection
YCTung 0:0dbf7ee73651 191 000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g
YCTung 0:0dbf7ee73651 192 AST[1:0] - Accel self-test enable
YCTung 0:0dbf7ee73651 193 00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed
YCTung 0:0dbf7ee73651 194 SIM - SPI mode selection
YCTung 0:0dbf7ee73651 195 0=4-wire, 1=3-wire */
YCTung 0:0dbf7ee73651 196 xmWriteByte(CTRL_REG2_XM, 0xD8); // Set scale to 2g
YCTung 0:0dbf7ee73651 197
YCTung 0:0dbf7ee73651 198 /* CTRL_REG3_XM is used to set interrupt generators on INT1_XM
YCTung 0:0dbf7ee73651 199 Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY
YCTung 0:0dbf7ee73651 200 */
YCTung 0:0dbf7ee73651 201 // Accelerometer data ready on INT1_XM (0x04)
YCTung 0:0dbf7ee73651 202 xmWriteByte(CTRL_REG3_XM, 0x00);
YCTung 0:0dbf7ee73651 203 }
YCTung 0:0dbf7ee73651 204
YCTung 0:0dbf7ee73651 205 void LSM9DS0::initMag()
YCTung 0:0dbf7ee73651 206 {
YCTung 0:0dbf7ee73651 207 /* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate
YCTung 0:0dbf7ee73651 208 Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1
YCTung 0:0dbf7ee73651 209 TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled)
YCTung 0:0dbf7ee73651 210 M_RES[1:0] - Magnetometer resolution select (0=low, 3=high)
YCTung 0:0dbf7ee73651 211 M_ODR[2:0] - Magnetometer data rate select
YCTung 0:0dbf7ee73651 212 000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz
YCTung 0:0dbf7ee73651 213 LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC)
YCTung 0:0dbf7ee73651 214 0=interrupt request not latched, 1=interrupt request latched
YCTung 0:0dbf7ee73651 215 LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC)
YCTung 0:0dbf7ee73651 216 0=irq not latched, 1=irq latched */
YCTung 0:0dbf7ee73651 217 xmWriteByte(CTRL_REG5_XM, 0x74); // Mag data rate - 100 Hz, disable temperature sensor
YCTung 0:0dbf7ee73651 218
YCTung 0:0dbf7ee73651 219 /* CTRL_REG6_XM sets the magnetometer full-scale
YCTung 0:0dbf7ee73651 220 Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0
YCTung 0:0dbf7ee73651 221 MFS[1:0] - Magnetic full-scale selection
YCTung 0:0dbf7ee73651 222 00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */
YCTung 0:0dbf7ee73651 223 xmWriteByte(CTRL_REG6_XM, 0x40); // Mag scale to +/- 2GS
YCTung 0:0dbf7ee73651 224
YCTung 0:0dbf7ee73651 225 /* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters
YCTung 0:0dbf7ee73651 226 AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0
YCTung 0:0dbf7ee73651 227 AHPM[1:0] - HPF mode selection
YCTung 0:0dbf7ee73651 228 00=normal (resets reference registers), 01=reference signal for filtering,
YCTung 0:0dbf7ee73651 229 10=normal, 11=autoreset on interrupt event
YCTung 0:0dbf7ee73651 230 AFDS - Filtered acceleration data selection
YCTung 0:0dbf7ee73651 231 0=internal filter bypassed, 1=data from internal filter sent to FIFO
YCTung 0:0dbf7ee73651 232 MLP - Magnetic data low-power mode
YCTung 0:0dbf7ee73651 233 0=data rate is set by M_ODR bits in CTRL_REG5
YCTung 0:0dbf7ee73651 234 1=data rate is set to 3.125Hz
YCTung 0:0dbf7ee73651 235 MD[1:0] - Magnetic sensor mode selection (default 10)
YCTung 0:0dbf7ee73651 236 00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */
YCTung 0:0dbf7ee73651 237 xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode
YCTung 0:0dbf7ee73651 238
YCTung 0:0dbf7ee73651 239 /* CTRL_REG4_XM is used to set interrupt generators on INT2_XM
YCTung 0:0dbf7ee73651 240 Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM
YCTung 0:0dbf7ee73651 241 */
YCTung 0:0dbf7ee73651 242 xmWriteByte(CTRL_REG4_XM, 0x00); // Magnetometer data ready on INT2_XM (0x08)
YCTung 0:0dbf7ee73651 243
YCTung 0:0dbf7ee73651 244 /* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high
YCTung 0:0dbf7ee73651 245 Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN
YCTung 0:0dbf7ee73651 246 XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data
YCTung 0:0dbf7ee73651 247 PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od)
YCTung 0:0dbf7ee73651 248 IEA - Interrupt polarity for accel and magneto
YCTung 0:0dbf7ee73651 249 0=active-low, 1=active-high
YCTung 0:0dbf7ee73651 250 IEL - Latch interrupt request for accel and magneto
YCTung 0:0dbf7ee73651 251 0=irq not latched, 1=irq latched
YCTung 0:0dbf7ee73651 252 4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set
YCTung 0:0dbf7ee73651 253 MIEN - Enable interrupt generation for magnetic data
YCTung 0:0dbf7ee73651 254 0=disable, 1=enable) */
YCTung 0:0dbf7ee73651 255 xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull
YCTung 0:0dbf7ee73651 256 }
YCTung 0:0dbf7ee73651 257
YCTung 0:0dbf7ee73651 258 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
YCTung 0:0dbf7ee73651 259 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
YCTung 0:0dbf7ee73651 260 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
YCTung 0:0dbf7ee73651 261 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
YCTung 0:0dbf7ee73651 262 // subtract the biases ourselves. This results in a more accurate measurement in general and can
YCTung 0:0dbf7ee73651 263 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
YCTung 0:0dbf7ee73651 264 // is good practice.
YCTung 0:0dbf7ee73651 265 void LSM9DS0::calLSM9DS0(float * gbias, float * abias)
YCTung 0:0dbf7ee73651 266 {
YCTung 0:0dbf7ee73651 267 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
YCTung 0:0dbf7ee73651 268 int16_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
YCTung 0:0dbf7ee73651 269 int samples, ii;
YCTung 0:0dbf7ee73651 270
YCTung 0:0dbf7ee73651 271 // First get gyro bias
YCTung 0:0dbf7ee73651 272 uint8_t c = gReadByte(CTRL_REG5_G);
YCTung 0:0dbf7ee73651 273 gWriteByte(CTRL_REG5_G, c | 0x40); // Enable gyro FIFO
YCTung 0:0dbf7ee73651 274 wait_ms(20); // Wait for change to take effect
YCTung 0:0dbf7ee73651 275 gWriteByte(FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples
YCTung 0:0dbf7ee73651 276 wait_ms(1000); // delay 1000 milliseconds to collect FIFO samples
YCTung 0:0dbf7ee73651 277
YCTung 0:0dbf7ee73651 278 samples = (gReadByte(FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples
YCTung 0:0dbf7ee73651 279
YCTung 0:0dbf7ee73651 280 for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO
YCTung 0:0dbf7ee73651 281 gReadBytes(OUT_X_L_G, &data[0], 6);
YCTung 0:0dbf7ee73651 282 gyro_bias[0] += (((int16_t)data[1] << 8) | data[0]);
YCTung 0:0dbf7ee73651 283 gyro_bias[1] += (((int16_t)data[3] << 8) | data[2]);
YCTung 0:0dbf7ee73651 284 gyro_bias[2] += (((int16_t)data[5] << 8) | data[4]);
YCTung 0:0dbf7ee73651 285 }
YCTung 0:0dbf7ee73651 286
YCTung 0:0dbf7ee73651 287 gyro_bias[0] /= samples; // average the data
YCTung 0:0dbf7ee73651 288 gyro_bias[1] /= samples;
YCTung 0:0dbf7ee73651 289 gyro_bias[2] /= samples;
YCTung 0:0dbf7ee73651 290
YCTung 0:0dbf7ee73651 291 gbias[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s
YCTung 0:0dbf7ee73651 292 gbias[1] = (float)gyro_bias[1]*gRes;
YCTung 0:0dbf7ee73651 293 gbias[2] = (float)gyro_bias[2]*gRes;
YCTung 0:0dbf7ee73651 294
YCTung 0:0dbf7ee73651 295 c = gReadByte(CTRL_REG5_G);
YCTung 0:0dbf7ee73651 296 gWriteByte(CTRL_REG5_G, c & ~0x40); // Disable gyro FIFO
YCTung 0:0dbf7ee73651 297 wait_ms(20);
YCTung 0:0dbf7ee73651 298 gWriteByte(FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode
YCTung 0:0dbf7ee73651 299
YCTung 0:0dbf7ee73651 300
YCTung 0:0dbf7ee73651 301 // Now get the accelerometer biases
YCTung 0:0dbf7ee73651 302 c = xmReadByte(CTRL_REG0_XM);
YCTung 0:0dbf7ee73651 303 xmWriteByte(CTRL_REG0_XM, c | 0x40); // Enable accelerometer FIFO
YCTung 0:0dbf7ee73651 304 wait_ms(20); // Wait for change to take effect
YCTung 0:0dbf7ee73651 305 xmWriteByte(FIFO_CTRL_REG, 0x20 | 0x1F); // Enable accelerometer FIFO stream mode and set watermark at 32 samples
YCTung 0:0dbf7ee73651 306 wait_ms(1000); // delay 1000 milliseconds to collect FIFO samples
YCTung 0:0dbf7ee73651 307
YCTung 0:0dbf7ee73651 308 samples = (xmReadByte(FIFO_SRC_REG) & 0x1F); // Read number of stored accelerometer samples
YCTung 0:0dbf7ee73651 309
YCTung 0:0dbf7ee73651 310 for(ii = 0; ii < samples ; ii++) { // Read the accelerometer data stored in the FIFO
YCTung 0:0dbf7ee73651 311 xmReadBytes(OUT_X_L_A, &data[0], 6);
YCTung 0:0dbf7ee73651 312 accel_bias[0] += (((int16_t)data[1] << 8) | data[0]);
YCTung 0:0dbf7ee73651 313 accel_bias[1] += (((int16_t)data[3] << 8) | data[2]);
YCTung 0:0dbf7ee73651 314 accel_bias[2] += (((int16_t)data[5] << 8) | data[4]) - (int16_t)(1.0f/aRes); // Assumes sensor facing up!
YCTung 0:0dbf7ee73651 315 }
YCTung 0:0dbf7ee73651 316
YCTung 0:0dbf7ee73651 317 accel_bias[0] /= samples; // average the data
YCTung 0:0dbf7ee73651 318 accel_bias[1] /= samples;
YCTung 0:0dbf7ee73651 319 accel_bias[2] /= samples;
YCTung 0:0dbf7ee73651 320
YCTung 0:0dbf7ee73651 321 abias[0] = (float)accel_bias[0]*aRes; // Properly scale data to get gs
YCTung 0:0dbf7ee73651 322 abias[1] = (float)accel_bias[1]*aRes;
YCTung 0:0dbf7ee73651 323 abias[2] = (float)accel_bias[2]*aRes;
YCTung 0:0dbf7ee73651 324
YCTung 0:0dbf7ee73651 325 c = xmReadByte(CTRL_REG0_XM);
YCTung 0:0dbf7ee73651 326 xmWriteByte(CTRL_REG0_XM, c & ~0x40); // Disable accelerometer FIFO
YCTung 0:0dbf7ee73651 327 wait_ms(20);
YCTung 0:0dbf7ee73651 328 xmWriteByte(FIFO_CTRL_REG, 0x00); // Enable accelerometer bypass mode
YCTung 0:0dbf7ee73651 329 }
YCTung 0:0dbf7ee73651 330
YCTung 0:0dbf7ee73651 331 void LSM9DS0::readAccel()
YCTung 0:0dbf7ee73651 332 {
YCTung 0:0dbf7ee73651 333 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
YCTung 0:0dbf7ee73651 334 xmReadBytes(OUT_X_L_A, temp, 6); // Read 6 bytes, beginning at OUT_X_L_A
YCTung 0:0dbf7ee73651 335 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
YCTung 0:0dbf7ee73651 336 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
YCTung 0:0dbf7ee73651 337 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
YCTung 0:0dbf7ee73651 338 }
YCTung 0:0dbf7ee73651 339
YCTung 0:0dbf7ee73651 340 void LSM9DS0::readMag()
YCTung 0:0dbf7ee73651 341 {
YCTung 0:0dbf7ee73651 342 uint8_t temp[6]; // We'll read six bytes from the mag into temp
YCTung 0:0dbf7ee73651 343 xmReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
YCTung 0:0dbf7ee73651 344 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
YCTung 0:0dbf7ee73651 345 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
YCTung 0:0dbf7ee73651 346 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
YCTung 0:0dbf7ee73651 347 }
YCTung 0:0dbf7ee73651 348
YCTung 0:0dbf7ee73651 349 void LSM9DS0::readTemp()
YCTung 0:0dbf7ee73651 350 {
YCTung 0:0dbf7ee73651 351 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
YCTung 0:0dbf7ee73651 352 xmReadBytes(OUT_TEMP_L_XM, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L_M
YCTung 0:0dbf7ee73651 353 temperature = (((int16_t) temp[1] << 12) | temp[0] << 4 ) >> 4; // Temperature is a 12-bit signed integer
YCTung 0:0dbf7ee73651 354 }
YCTung 0:0dbf7ee73651 355
YCTung 0:0dbf7ee73651 356 void LSM9DS0::readGyro()
YCTung 0:0dbf7ee73651 357 {
YCTung 0:0dbf7ee73651 358 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
YCTung 0:0dbf7ee73651 359 gReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
YCTung 0:0dbf7ee73651 360 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
YCTung 0:0dbf7ee73651 361 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
YCTung 0:0dbf7ee73651 362 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
YCTung 0:0dbf7ee73651 363 }
YCTung 0:0dbf7ee73651 364
YCTung 0:0dbf7ee73651 365 float LSM9DS0::calcGyro(int16_t gyro)
YCTung 0:0dbf7ee73651 366 {
YCTung 0:0dbf7ee73651 367 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
YCTung 0:0dbf7ee73651 368 return gRes * gyro;
YCTung 0:0dbf7ee73651 369 }
YCTung 0:0dbf7ee73651 370
YCTung 0:0dbf7ee73651 371 float LSM9DS0::calcAccel(int16_t accel)
YCTung 0:0dbf7ee73651 372 {
YCTung 0:0dbf7ee73651 373 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
YCTung 0:0dbf7ee73651 374 return aRes * accel;
YCTung 0:0dbf7ee73651 375 }
YCTung 0:0dbf7ee73651 376
YCTung 0:0dbf7ee73651 377 float LSM9DS0::calcMag(int16_t mag)
YCTung 0:0dbf7ee73651 378 {
YCTung 0:0dbf7ee73651 379 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
YCTung 0:0dbf7ee73651 380 return mRes * mag;
YCTung 0:0dbf7ee73651 381 }
YCTung 0:0dbf7ee73651 382
YCTung 0:0dbf7ee73651 383 void LSM9DS0::setGyroScale(gyro_scale gScl)
YCTung 0:0dbf7ee73651 384 {
YCTung 0:0dbf7ee73651 385 // We need to preserve the other bytes in CTRL_REG4_G. So, first read it:
YCTung 0:0dbf7ee73651 386 uint8_t temp = gReadByte(CTRL_REG4_G);
YCTung 0:0dbf7ee73651 387 // Then mask out the gyro scale bits:
YCTung 0:0dbf7ee73651 388 temp &= 0xFF^(0x3 << 4);
YCTung 0:0dbf7ee73651 389 // Then shift in our new scale bits:
YCTung 0:0dbf7ee73651 390 temp |= gScl << 4;
YCTung 0:0dbf7ee73651 391 // And write the new register value back into CTRL_REG4_G:
YCTung 0:0dbf7ee73651 392 gWriteByte(CTRL_REG4_G, temp);
YCTung 0:0dbf7ee73651 393
YCTung 0:0dbf7ee73651 394 // We've updated the sensor, but we also need to update our class variables
YCTung 0:0dbf7ee73651 395 // First update gScale:
YCTung 0:0dbf7ee73651 396 gScale = gScl;
YCTung 0:0dbf7ee73651 397 // Then calculate a new gRes, which relies on gScale being set correctly:
YCTung 0:0dbf7ee73651 398 calcgRes();
YCTung 0:0dbf7ee73651 399 }
YCTung 0:0dbf7ee73651 400
YCTung 0:0dbf7ee73651 401 void LSM9DS0::setAccelScale(accel_scale aScl)
YCTung 0:0dbf7ee73651 402 {
YCTung 0:0dbf7ee73651 403 // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it:
YCTung 0:0dbf7ee73651 404 uint8_t temp = xmReadByte(CTRL_REG2_XM);
YCTung 0:0dbf7ee73651 405 // Then mask out the accel scale bits:
YCTung 0:0dbf7ee73651 406 temp &= 0xFF^(0x7 << 3);
YCTung 0:0dbf7ee73651 407 // Then shift in our new scale bits:
YCTung 0:0dbf7ee73651 408 temp |= aScl << 3;
YCTung 0:0dbf7ee73651 409 // And write the new register value back into CTRL_REG2_XM:
YCTung 0:0dbf7ee73651 410 xmWriteByte(CTRL_REG2_XM, temp);
YCTung 0:0dbf7ee73651 411
YCTung 0:0dbf7ee73651 412 // We've updated the sensor, but we also need to update our class variables
YCTung 0:0dbf7ee73651 413 // First update aScale:
YCTung 0:0dbf7ee73651 414 aScale = aScl;
YCTung 0:0dbf7ee73651 415 // Then calculate a new aRes, which relies on aScale being set correctly:
YCTung 0:0dbf7ee73651 416 calcaRes();
YCTung 0:0dbf7ee73651 417 }
YCTung 0:0dbf7ee73651 418
YCTung 0:0dbf7ee73651 419 void LSM9DS0::setMagScale(mag_scale mScl)
YCTung 0:0dbf7ee73651 420 {
YCTung 0:0dbf7ee73651 421 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
YCTung 0:0dbf7ee73651 422 uint8_t temp = xmReadByte(CTRL_REG6_XM);
YCTung 0:0dbf7ee73651 423 // Then mask out the mag scale bits:
YCTung 0:0dbf7ee73651 424 temp &= 0xFF^(0x3 << 5);
YCTung 0:0dbf7ee73651 425 // Then shift in our new scale bits:
YCTung 0:0dbf7ee73651 426 temp |= mScl << 5;
YCTung 0:0dbf7ee73651 427 // And write the new register value back into CTRL_REG6_XM:
YCTung 0:0dbf7ee73651 428 xmWriteByte(CTRL_REG6_XM, temp);
YCTung 0:0dbf7ee73651 429
YCTung 0:0dbf7ee73651 430 // We've updated the sensor, but we also need to update our class variables
YCTung 0:0dbf7ee73651 431 // First update mScale:
YCTung 0:0dbf7ee73651 432 mScale = mScl;
YCTung 0:0dbf7ee73651 433 // Then calculate a new mRes, which relies on mScale being set correctly:
YCTung 0:0dbf7ee73651 434 calcmRes();
YCTung 0:0dbf7ee73651 435 }
YCTung 0:0dbf7ee73651 436
YCTung 0:0dbf7ee73651 437 void LSM9DS0::setGyroODR(gyro_odr gRate)
YCTung 0:0dbf7ee73651 438 {
YCTung 0:0dbf7ee73651 439 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
YCTung 0:0dbf7ee73651 440 uint8_t temp = gReadByte(CTRL_REG1_G);
YCTung 0:0dbf7ee73651 441 // Then mask out the gyro ODR bits:
YCTung 0:0dbf7ee73651 442 temp &= 0xFF^(0xF << 4);
YCTung 0:0dbf7ee73651 443 // Then shift in our new ODR bits:
YCTung 0:0dbf7ee73651 444 temp |= (gRate << 4);
YCTung 0:0dbf7ee73651 445 // And write the new register value back into CTRL_REG1_G:
YCTung 0:0dbf7ee73651 446 gWriteByte(CTRL_REG1_G, temp);
YCTung 0:0dbf7ee73651 447 }
YCTung 0:0dbf7ee73651 448 void LSM9DS0::setAccelODR(accel_odr aRate)
YCTung 0:0dbf7ee73651 449 {
YCTung 0:0dbf7ee73651 450 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
YCTung 0:0dbf7ee73651 451 uint8_t temp = xmReadByte(CTRL_REG1_XM);
YCTung 0:0dbf7ee73651 452 // Then mask out the accel ODR bits:
YCTung 0:0dbf7ee73651 453 temp &= 0xFF^(0xF << 4);
YCTung 0:0dbf7ee73651 454 // Then shift in our new ODR bits:
YCTung 0:0dbf7ee73651 455 temp |= (aRate << 4);
YCTung 0:0dbf7ee73651 456 // And write the new register value back into CTRL_REG1_XM:
YCTung 0:0dbf7ee73651 457 xmWriteByte(CTRL_REG1_XM, temp);
YCTung 0:0dbf7ee73651 458 }
YCTung 0:0dbf7ee73651 459 void LSM9DS0::setAccelABW(accel_abw abwRate)
YCTung 0:0dbf7ee73651 460 {
YCTung 0:0dbf7ee73651 461 // We need to preserve the other bytes in CTRL_REG2_XM. So, first read it:
YCTung 0:0dbf7ee73651 462 uint8_t temp = xmReadByte(CTRL_REG2_XM);
YCTung 0:0dbf7ee73651 463 // Then mask out the accel ABW bits:
YCTung 0:0dbf7ee73651 464 temp &= 0xFF^(0x3 << 6);
YCTung 0:0dbf7ee73651 465 // Then shift in our new ODR bits:
YCTung 0:0dbf7ee73651 466 temp |= (abwRate << 6);
YCTung 0:0dbf7ee73651 467 // And write the new register value back into CTRL_REG2_XM:
YCTung 0:0dbf7ee73651 468 xmWriteByte(CTRL_REG2_XM, temp);
YCTung 0:0dbf7ee73651 469 }
YCTung 0:0dbf7ee73651 470 void LSM9DS0::setMagODR(mag_odr mRate)
YCTung 0:0dbf7ee73651 471 {
YCTung 0:0dbf7ee73651 472 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
YCTung 0:0dbf7ee73651 473 uint8_t temp = xmReadByte(CTRL_REG5_XM);
YCTung 0:0dbf7ee73651 474 // Then mask out the mag ODR bits:
YCTung 0:0dbf7ee73651 475 temp &= 0xFF^(0x7 << 2);
YCTung 0:0dbf7ee73651 476 // Then shift in our new ODR bits:
YCTung 0:0dbf7ee73651 477 temp |= (mRate << 2);
YCTung 0:0dbf7ee73651 478 // And write the new register value back into CTRL_REG5_XM:
YCTung 0:0dbf7ee73651 479 xmWriteByte(CTRL_REG5_XM, temp);
YCTung 0:0dbf7ee73651 480 }
YCTung 0:0dbf7ee73651 481
YCTung 0:0dbf7ee73651 482 void LSM9DS0::configGyroInt(uint8_t int1Cfg, uint16_t int1ThsX, uint16_t int1ThsY, uint16_t int1ThsZ, uint8_t duration)
YCTung 0:0dbf7ee73651 483 {
YCTung 0:0dbf7ee73651 484 gWriteByte(INT1_CFG_G, int1Cfg);
YCTung 0:0dbf7ee73651 485 gWriteByte(INT1_THS_XH_G, (int1ThsX & 0xFF00) >> 8);
YCTung 0:0dbf7ee73651 486 gWriteByte(INT1_THS_XL_G, (int1ThsX & 0xFF));
YCTung 0:0dbf7ee73651 487 gWriteByte(INT1_THS_YH_G, (int1ThsY & 0xFF00) >> 8);
YCTung 0:0dbf7ee73651 488 gWriteByte(INT1_THS_YL_G, (int1ThsY & 0xFF));
YCTung 0:0dbf7ee73651 489 gWriteByte(INT1_THS_ZH_G, (int1ThsZ & 0xFF00) >> 8);
YCTung 0:0dbf7ee73651 490 gWriteByte(INT1_THS_ZL_G, (int1ThsZ & 0xFF));
YCTung 0:0dbf7ee73651 491 if (duration)
YCTung 0:0dbf7ee73651 492 gWriteByte(INT1_DURATION_G, 0x80 | duration);
YCTung 0:0dbf7ee73651 493 else
YCTung 0:0dbf7ee73651 494 gWriteByte(INT1_DURATION_G, 0x00);
YCTung 0:0dbf7ee73651 495 }
YCTung 0:0dbf7ee73651 496
YCTung 0:0dbf7ee73651 497 void LSM9DS0::calcgRes()
YCTung 0:0dbf7ee73651 498 {
YCTung 0:0dbf7ee73651 499 // Possible gyro scales (and their register bit settings) are:
YCTung 0:0dbf7ee73651 500 // 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm
YCTung 0:0dbf7ee73651 501 // to calculate DPS/(ADC tick) based on that 2-bit value:
YCTung 0:0dbf7ee73651 502 switch (gScale)
YCTung 0:0dbf7ee73651 503 {
YCTung 0:0dbf7ee73651 504 case G_SCALE_245DPS:
YCTung 0:0dbf7ee73651 505 gRes = 245.0 / 32768.0;
YCTung 0:0dbf7ee73651 506 break;
YCTung 0:0dbf7ee73651 507 case G_SCALE_500DPS:
YCTung 0:0dbf7ee73651 508 gRes = 500.0 / 32768.0;
YCTung 0:0dbf7ee73651 509 break;
YCTung 0:0dbf7ee73651 510 case G_SCALE_2000DPS:
YCTung 0:0dbf7ee73651 511 gRes = 2000.0 / 32768.0;
YCTung 0:0dbf7ee73651 512 break;
YCTung 0:0dbf7ee73651 513 }
YCTung 0:0dbf7ee73651 514 }
YCTung 0:0dbf7ee73651 515
YCTung 0:0dbf7ee73651 516 void LSM9DS0::calcaRes()
YCTung 0:0dbf7ee73651 517 {
YCTung 0:0dbf7ee73651 518 // Possible accelerometer scales (and their register bit settings) are:
YCTung 0:0dbf7ee73651 519 // 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an
YCTung 0:0dbf7ee73651 520 // algorithm to calculate g/(ADC tick) based on that 3-bit value:
YCTung 0:0dbf7ee73651 521 aRes = aScale == A_SCALE_16G ? 16.0 / 32768.0 :
YCTung 0:0dbf7ee73651 522 (((float) aScale + 1.0f) * 2.0f) / 32768.0f;
YCTung 0:0dbf7ee73651 523 }
YCTung 0:0dbf7ee73651 524
YCTung 0:0dbf7ee73651 525 void LSM9DS0::calcmRes()
YCTung 0:0dbf7ee73651 526 {
YCTung 0:0dbf7ee73651 527 // Possible magnetometer scales (and their register bit settings) are:
YCTung 0:0dbf7ee73651 528 // 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm
YCTung 0:0dbf7ee73651 529 // to calculate Gs/(ADC tick) based on that 2-bit value:
YCTung 0:0dbf7ee73651 530 mRes = mScale == M_SCALE_2GS ? 2.0 / 32768.0 :
YCTung 0:0dbf7ee73651 531 (float) (mScale << 2) / 32768.0f;
YCTung 0:0dbf7ee73651 532 }
YCTung 0:0dbf7ee73651 533
YCTung 0:0dbf7ee73651 534 void LSM9DS0::gWriteByte(uint8_t subAddress, uint8_t data)
YCTung 0:0dbf7ee73651 535 {
YCTung 0:0dbf7ee73651 536 // Whether we're using I2C or SPI, write a byte using the
YCTung 0:0dbf7ee73651 537 // gyro-specific I2C address or SPI CS pin.
YCTung 0:0dbf7ee73651 538 if (interfaceMode == I2C_MODE)
YCTung 0:0dbf7ee73651 539 I2CwriteByte(gAddress, subAddress, data);
YCTung 0:0dbf7ee73651 540 else if (interfaceMode == SPI_MODE)
YCTung 0:0dbf7ee73651 541 SPIwriteByte(gAddress, subAddress, data);
YCTung 0:0dbf7ee73651 542 }
YCTung 0:0dbf7ee73651 543
YCTung 0:0dbf7ee73651 544 void LSM9DS0::xmWriteByte(uint8_t subAddress, uint8_t data)
YCTung 0:0dbf7ee73651 545 {
YCTung 0:0dbf7ee73651 546 // Whether we're using I2C or SPI, write a byte using the
YCTung 0:0dbf7ee73651 547 // accelerometer-specific I2C address or SPI CS pin.
YCTung 0:0dbf7ee73651 548 if (interfaceMode == I2C_MODE)
YCTung 0:0dbf7ee73651 549 return I2CwriteByte(xmAddress, subAddress, data);
YCTung 0:0dbf7ee73651 550 else if (interfaceMode == SPI_MODE)
YCTung 0:0dbf7ee73651 551 return SPIwriteByte(xmAddress, subAddress, data);
YCTung 0:0dbf7ee73651 552 }
YCTung 0:0dbf7ee73651 553
YCTung 0:0dbf7ee73651 554 uint8_t LSM9DS0::gReadByte(uint8_t subAddress)
YCTung 0:0dbf7ee73651 555 {
YCTung 0:0dbf7ee73651 556 // Whether we're using I2C or SPI, read a byte using the
YCTung 0:0dbf7ee73651 557 // gyro-specific I2C address or SPI CS pin.
YCTung 0:0dbf7ee73651 558 if (interfaceMode == I2C_MODE)
YCTung 0:0dbf7ee73651 559 return I2CreadByte(gAddress, subAddress);
YCTung 0:0dbf7ee73651 560 else if (interfaceMode == SPI_MODE)
YCTung 0:0dbf7ee73651 561 return SPIreadByte(gAddress, subAddress);
YCTung 0:0dbf7ee73651 562 else
YCTung 0:0dbf7ee73651 563 return SPIreadByte(gAddress, subAddress);
YCTung 0:0dbf7ee73651 564 }
YCTung 0:0dbf7ee73651 565
YCTung 0:0dbf7ee73651 566 void LSM9DS0::gReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
YCTung 0:0dbf7ee73651 567 {
YCTung 0:0dbf7ee73651 568 // Whether we're using I2C or SPI, read multiple bytes using the
YCTung 0:0dbf7ee73651 569 // gyro-specific I2C address or SPI CS pin.
YCTung 0:0dbf7ee73651 570 if (interfaceMode == I2C_MODE)
YCTung 0:0dbf7ee73651 571 I2CreadBytes(gAddress, subAddress, dest, count);
YCTung 0:0dbf7ee73651 572 else if (interfaceMode == SPI_MODE)
YCTung 0:0dbf7ee73651 573 SPIreadBytes(gAddress, subAddress, dest, count);
YCTung 0:0dbf7ee73651 574 }
YCTung 0:0dbf7ee73651 575
YCTung 0:0dbf7ee73651 576 uint8_t LSM9DS0::xmReadByte(uint8_t subAddress)
YCTung 0:0dbf7ee73651 577 {
YCTung 0:0dbf7ee73651 578 // Whether we're using I2C or SPI, read a byte using the
YCTung 0:0dbf7ee73651 579 // accelerometer-specific I2C address or SPI CS pin.
YCTung 0:0dbf7ee73651 580 if (interfaceMode == I2C_MODE)
YCTung 0:0dbf7ee73651 581 return I2CreadByte(xmAddress, subAddress);
YCTung 0:0dbf7ee73651 582 else if (interfaceMode == SPI_MODE)
YCTung 0:0dbf7ee73651 583 return SPIreadByte(xmAddress, subAddress);
YCTung 0:0dbf7ee73651 584 else
YCTung 0:0dbf7ee73651 585 return SPIreadByte(xmAddress, subAddress);
YCTung 0:0dbf7ee73651 586 }
YCTung 0:0dbf7ee73651 587
YCTung 0:0dbf7ee73651 588 void LSM9DS0::xmReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
YCTung 0:0dbf7ee73651 589 {
YCTung 0:0dbf7ee73651 590 // Whether we're using I2C or SPI, read multiple bytes using the
YCTung 0:0dbf7ee73651 591 // accelerometer-specific I2C address or SPI CS pin.
YCTung 0:0dbf7ee73651 592 if (interfaceMode == I2C_MODE)
YCTung 0:0dbf7ee73651 593 I2CreadBytes(xmAddress, subAddress, dest, count);
YCTung 0:0dbf7ee73651 594 else if (interfaceMode == SPI_MODE)
YCTung 0:0dbf7ee73651 595 SPIreadBytes(xmAddress, subAddress, dest, count);
YCTung 0:0dbf7ee73651 596 }
YCTung 0:0dbf7ee73651 597
YCTung 0:0dbf7ee73651 598 void LSM9DS0::initSPI()
YCTung 0:0dbf7ee73651 599 {
YCTung 0:0dbf7ee73651 600 csG_ = 1;
YCTung 0:0dbf7ee73651 601 csXM_= 1;
YCTung 0:0dbf7ee73651 602
YCTung 0:0dbf7ee73651 603 // Maximum SPI frequency is 10MHz:
YCTung 0:0dbf7ee73651 604 // spi_.frequency(1000000);
YCTung 0:0dbf7ee73651 605 spi_.format(8,0b11);
YCTung 0:0dbf7ee73651 606 }
YCTung 0:0dbf7ee73651 607
YCTung 0:0dbf7ee73651 608 void LSM9DS0::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
YCTung 0:0dbf7ee73651 609 {
YCTung 0:0dbf7ee73651 610 // Initiate communication
YCTung 0:0dbf7ee73651 611 if(csPin == gAddress)
YCTung 0:0dbf7ee73651 612 csG_ = 0;
YCTung 0:0dbf7ee73651 613 else if(csPin == xmAddress)
YCTung 0:0dbf7ee73651 614 csXM_= 0;
YCTung 0:0dbf7ee73651 615
YCTung 0:0dbf7ee73651 616 // If write, bit 0 (MSB) should be 0
YCTung 0:0dbf7ee73651 617 // If single write, bit 1 should be 0
YCTung 0:0dbf7ee73651 618 spi_.write(subAddress & 0x3F); // Send Address
YCTung 0:0dbf7ee73651 619 spi_.write(data); // Send data
YCTung 0:0dbf7ee73651 620
YCTung 0:0dbf7ee73651 621 csG_ = 1; // Close communication
YCTung 0:0dbf7ee73651 622 csXM_= 1;
YCTung 0:0dbf7ee73651 623 }
YCTung 0:0dbf7ee73651 624
YCTung 0:0dbf7ee73651 625 uint8_t LSM9DS0::SPIreadByte(uint8_t csPin, uint8_t subAddress)
YCTung 0:0dbf7ee73651 626 {
YCTung 0:0dbf7ee73651 627 uint8_t temp;
YCTung 0:0dbf7ee73651 628 // Use the multiple read function to read 1 byte.
YCTung 0:0dbf7ee73651 629 // Value is returned to `temp`.
YCTung 0:0dbf7ee73651 630 SPIreadBytes(csPin, subAddress, &temp, 1);
YCTung 0:0dbf7ee73651 631 return temp;
YCTung 0:0dbf7ee73651 632 }
YCTung 0:0dbf7ee73651 633
YCTung 0:0dbf7ee73651 634 void LSM9DS0::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
YCTung 0:0dbf7ee73651 635 uint8_t * dest, uint8_t count)
YCTung 0:0dbf7ee73651 636 {
YCTung 0:0dbf7ee73651 637 // Initiate communication
YCTung 0:0dbf7ee73651 638 if(csPin == gAddress)
YCTung 0:0dbf7ee73651 639 csG_ = 0;
YCTung 0:0dbf7ee73651 640 else if(csPin == xmAddress)
YCTung 0:0dbf7ee73651 641 csXM_= 0;
YCTung 0:0dbf7ee73651 642 // To indicate a read, set bit 0 (msb) to 1
YCTung 0:0dbf7ee73651 643 // If we're reading multiple bytes, set bit 1 to 1
YCTung 0:0dbf7ee73651 644 // The remaining six bytes are the address to be read
YCTung 0:0dbf7ee73651 645 if (count > 1)
YCTung 0:0dbf7ee73651 646 spi_.write(0xC0 | (subAddress & 0x3F));
YCTung 0:0dbf7ee73651 647 else
YCTung 0:0dbf7ee73651 648 spi_.write(0x80 | (subAddress & 0x3F));
YCTung 0:0dbf7ee73651 649 for (int i=0; i<count; i++)
YCTung 0:0dbf7ee73651 650 {
YCTung 0:0dbf7ee73651 651 dest[i] = spi_.write(0x00); // Read into destination array
YCTung 0:0dbf7ee73651 652 }
YCTung 0:0dbf7ee73651 653 csG_ = 1; // Close communication
YCTung 0:0dbf7ee73651 654 csXM_= 1;
YCTung 0:0dbf7ee73651 655 }
YCTung 0:0dbf7ee73651 656
YCTung 0:0dbf7ee73651 657 void LSM9DS0::initI2C()
YCTung 0:0dbf7ee73651 658 {
YCTung 0:0dbf7ee73651 659 // Wire.begin(); // Initialize I2C library
YCTung 0:0dbf7ee73651 660 ;
YCTung 0:0dbf7ee73651 661 }
YCTung 0:0dbf7ee73651 662
YCTung 0:0dbf7ee73651 663 // Wire.h read and write protocols
YCTung 0:0dbf7ee73651 664 void LSM9DS0::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
YCTung 0:0dbf7ee73651 665 {
YCTung 0:0dbf7ee73651 666 ;
YCTung 0:0dbf7ee73651 667 // Wire.beginTransmission(address); // Initialize the Tx buffer
YCTung 0:0dbf7ee73651 668 // Wire.write(subAddress); // Put slave register address in Tx buffer
YCTung 0:0dbf7ee73651 669 // Wire.write(data); // Put data in Tx buffer
YCTung 0:0dbf7ee73651 670 // Wire.endTransmission(); // Send the Tx buffer
YCTung 0:0dbf7ee73651 671 }
YCTung 0:0dbf7ee73651 672
YCTung 0:0dbf7ee73651 673 uint8_t LSM9DS0::I2CreadByte(uint8_t address, uint8_t subAddress)
YCTung 0:0dbf7ee73651 674 {
YCTung 0:0dbf7ee73651 675 return 0;
YCTung 0:0dbf7ee73651 676 // uint8_t data; // `data` will store the register data
YCTung 0:0dbf7ee73651 677 // Wire.beginTransmission(address); // Initialize the Tx buffer
YCTung 0:0dbf7ee73651 678 // Wire.write(subAddress); // Put slave register address in Tx buffer
YCTung 0:0dbf7ee73651 679 // Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
YCTung 0:0dbf7ee73651 680 // Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
YCTung 0:0dbf7ee73651 681 // data = Wire.read(); // Fill Rx buffer with result
YCTung 0:0dbf7ee73651 682 // return data; // Return data read from slave register
YCTung 0:0dbf7ee73651 683 }
YCTung 0:0dbf7ee73651 684
YCTung 0:0dbf7ee73651 685 void LSM9DS0::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
YCTung 0:0dbf7ee73651 686 {
YCTung 0:0dbf7ee73651 687 ;
YCTung 0:0dbf7ee73651 688 // Wire.beginTransmission(address); // Initialize the Tx buffer
YCTung 0:0dbf7ee73651 689 // // Next send the register to be read. OR with 0x80 to indicate multi-read.
YCTung 0:0dbf7ee73651 690 // Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
YCTung 0:0dbf7ee73651 691 // Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
YCTung 0:0dbf7ee73651 692 // uint8_t i = 0;
YCTung 0:0dbf7ee73651 693 // Wire.requestFrom(address, count); // Read bytes from slave register address
YCTung 0:0dbf7ee73651 694 // while (Wire.available())
YCTung 0:0dbf7ee73651 695 // {
YCTung 0:0dbf7ee73651 696 // dest[i++] = Wire.read(); // Put read results in the Rx buffer
YCTung 0:0dbf7ee73651 697 // }
YCTung 0:0dbf7ee73651 698 }