Mouse code for the MacroRat

Dependencies:   ITG3200 QEI

Revision:
18:6a4db94011d3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed-dev/targets/TARGET_Atmel/TARGET_SAM_CortexM4/spi_api.c	Sun May 14 23:18:57 2017 +0000
@@ -0,0 +1,506 @@
+/* mbed Microcontroller Library
+ * Copyright (c) 2006-2013 ARM Limited
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "device.h"
+#include "dma_api.h"
+#include "buffer.h"
+#include "spi_api.h"
+#include "pinmap.h"
+#include "spi_driver.h"
+#include "PeripheralPins.h"
+#include "pdc.h"
+
+
+/* Chip select. */
+#define SPI_CHIP_SEL 0
+
+/* Clock polarity. */
+#define SPI_CLK_POLARITY 0
+
+/* Clock phase. */
+#define SPI_CLK_PHASE 0
+
+/* Last data */
+#define SPI_LAST	0
+
+
+/* Delay before SPCK. */
+#define SPI_DLYBS 0x40
+
+/* Delay between consecutive transfers. */
+#define SPI_DLYBCT 0x10
+
+#define MAX_SPI	8
+
+/* SPI clock setting (Hz). */
+uint32_t gSPI_clock=500000;
+
+extern uint8_t g_sys_init;
+
+
+
+void pinmap_find_spi_info(Spi *sercombase, spi_t *obj)
+{
+    if(sercombase==SPI0) {
+        obj->spi.flexcom=FLEXCOM0;
+        obj->spi.module_number=0;
+        obj->spi.pdc =PDC_SPI0;
+        obj->spi.irq_type=FLEXCOM0_IRQn;
+    } else if(sercombase==SPI1) {
+        obj->spi.flexcom=FLEXCOM1;
+        obj->spi.module_number=1;
+        obj->spi.pdc =PDC_SPI1;
+        obj->spi.irq_type=FLEXCOM1_IRQn;
+    } else if(sercombase==SPI2) {
+        obj->spi.flexcom=FLEXCOM2;
+        obj->spi.module_number=2;
+        obj->spi.pdc =PDC_SPI2;
+        obj->spi.irq_type=FLEXCOM2_IRQn;
+    } else if(sercombase==SPI3) {
+        obj->spi.flexcom=FLEXCOM3;
+        obj->spi.module_number=3;
+        obj->spi.pdc =PDC_SPI3;
+        obj->spi.irq_type=FLEXCOM3_IRQn;
+    } else if(sercombase==SPI4) {
+        obj->spi.flexcom=FLEXCOM4;
+        obj->spi.module_number=4;
+        obj->spi.pdc =PDC_SPI4;
+        obj->spi.irq_type=FLEXCOM4_IRQn;
+    } else if(sercombase==SPI5) {
+        obj->spi.flexcom=FLEXCOM5;
+        obj->spi.module_number=5;
+        obj->spi.pdc =PDC_SPI5;
+        obj->spi.irq_type=FLEXCOM5_IRQn;
+    } else if(sercombase==SPI6) {
+        obj->spi.flexcom=FLEXCOM6;
+        obj->spi.module_number=6;
+        obj->spi.pdc =PDC_SPI6;
+        obj->spi.irq_type=FLEXCOM6_IRQn;
+    } else if(sercombase==SPI7) {
+        obj->spi.flexcom=FLEXCOM7;
+        obj->spi.module_number=7;
+        obj->spi.pdc =PDC_SPI7;
+        obj->spi.irq_type=FLEXCOM7_IRQn;
+    } else {
+        obj->spi.flexcom=(Flexcom *)NC;
+        obj->spi.module_number=0;
+        obj->spi.pdc =(Pdc *) NC;
+    }
+}
+
+Spi* pinmap_find_sercom(PinName mosi, PinName miso, PinName sclk)
+{
+    Spi* sercomIndex=(Spi*)pinmap_peripheral (mosi,PinMap_SPI_MOSI);
+    if(sercomIndex== (Spi*)pinmap_peripheral (miso, PinMap_SPI_MISO) &&
+            sercomIndex == (Spi*)pinmap_peripheral (sclk, PinMap_SPI_SCLK))
+        return sercomIndex;
+
+    return (Spi*)NC;
+}
+
+
+/** Initialize the SPI peripheral
+ *
+ * Configures the pins used by SPI, sets a default format and frequency, and enables the peripheral
+ * @param[out] obj  The SPI object to initialize
+ * @param[in]  mosi The pin to use for MOSI
+ * @param[in]  miso The pin to use for MISO
+ * @param[in]  sclk The pin to use for SCLK
+ * @param[in]  ssel The pin to use for SSEL <Not Used>
+ */
+void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel /*Not Used*/)
+{
+    MBED_ASSERT(obj);
+    MBED_ASSERT(mosi !=NC && miso!=NC && sclk !=NC );
+
+    if (g_sys_init == 0) {
+        sysclk_init();
+        system_board_init();
+        g_sys_init = 1;
+    }
+
+    Spi *sercombase = pinmap_find_sercom(mosi,miso,sclk);
+    MBED_ASSERT(sercombase!=NC);
+
+    pinmap_find_spi_info(sercombase, obj);
+    MBED_ASSERT(obj->spi.flexcom!=NC);
+    MBED_ASSERT(obj->spi.pdc!=NC);
+
+    /* Configure SPI pins */
+    pin_function(mosi, pinmap_find_function(mosi, PinMap_SPI_MOSI));
+    ioport_disable_pin(mosi);
+
+    pin_function(miso, pinmap_find_function(miso, PinMap_SPI_MISO));
+    ioport_disable_pin(miso);
+
+    pin_function(sclk, pinmap_find_function(sclk, PinMap_SPI_SCLK));
+    ioport_disable_pin(sclk);
+
+#if (SAMG55)
+    /* Enable the peripheral and set SPI mode. */
+    flexcom_enable(obj->spi.flexcom);
+    flexcom_set_opmode(obj->spi.flexcom, FLEXCOM_SPI);
+#else
+    /* Configure an SPI peripheral. */
+    spi_enable_clock(sercombase);
+#endif
+    spi_disable(sercombase);
+    spi_reset(sercombase);
+    spi_set_lastxfer(sercombase);
+    spi_set_master_mode(sercombase);
+    spi_disable_mode_fault_detect(sercombase);
+    spi_set_peripheral_chip_select_value(sercombase, SPI_CHIP_SEL);
+    spi_set_clock_polarity(sercombase, SPI_CHIP_SEL, SPI_CLK_POLARITY);
+    spi_set_clock_phase(sercombase, SPI_CHIP_SEL, SPI_CLK_PHASE);
+    spi_set_bits_per_transfer(sercombase, SPI_CHIP_SEL, SPI_CSR_BITS_8_BIT);
+    spi_set_baudrate_div(sercombase, SPI_CHIP_SEL,(sysclk_get_cpu_hz() / gSPI_clock));
+    spi_set_transfer_delay(sercombase, SPI_CHIP_SEL, SPI_DLYBS,SPI_DLYBCT);
+
+    spi_enable(sercombase);
+
+    pdc_disable_transfer(obj->spi.pdc, PERIPH_PTCR_RXTDIS |	PERIPH_PTCR_TXTDIS);
+
+    obj->spi.spi_base=sercombase;
+    obj->spi.cs= SPI_CHIP_SEL;
+    obj->spi.polarity=SPI_CLK_POLARITY;
+    obj->spi.phase=SPI_CLK_PHASE;
+    obj->spi.transferrate=SPI_CSR_BITS_8_BIT;
+    obj->spi.is_slave=0;
+}
+
+/** Release a SPI object
+ *
+ * TODO: spi_free is currently unimplemented
+ * This will require reference counting at the C++ level to be safe
+ *
+ * Return the pins owned by the SPI object to their reset state
+ * Disable the SPI peripheral
+ * Disable the SPI clock
+ * @param[in] obj The SPI object to deinitialize
+ */
+void spi_free(spi_t *obj)
+{
+    MBED_ASSERT(obj);
+    spi_disable(obj->spi.spi_base);
+    spi_reset(obj->spi.spi_base);
+    flexcom_disable((Flexcom *)obj->spi.flexcom);
+}
+
+uint32_t get_transfer_rate(int bits)
+{
+    switch(bits) {
+        case 8:
+            return SPI_CSR_BITS_8_BIT;
+        case 9:
+            return SPI_CSR_BITS_9_BIT;
+        case 10:
+            return SPI_CSR_BITS_10_BIT;
+        case 11:
+            return SPI_CSR_BITS_11_BIT;
+        case 12:
+            return SPI_CSR_BITS_12_BIT;
+        case 13:
+            return SPI_CSR_BITS_13_BIT;
+        case 14:
+            return SPI_CSR_BITS_14_BIT;
+        case 15:
+            return SPI_CSR_BITS_15_BIT;
+        case 16:
+            return SPI_CSR_BITS_16_BIT;
+        default:
+            return NC;
+    }
+}
+
+/** Configure the SPI format
+ *
+ * Set the number of bits per frame, configure clock polarity and phase, shift order and master/slave mode
+ * @param[in,out] obj   The SPI object to configure
+ * @param[in]     bits  The number of bits per frame
+ * @param[in]     mode  The SPI mode (clock polarity, phase, and shift direction)
+ * @param[in]     slave Zero for master mode or non-zero for slave mode
+ */
+void spi_format(spi_t *obj, int bits, int mode, int slave)
+{
+    uint32_t transferrate= get_transfer_rate(bits);
+    MBED_ASSERT(transferrate!=NC);
+
+    spi_disable(obj->spi.spi_base);
+    obj->spi.transferrate=transferrate;
+    if(slave) {
+        spi_set_slave_mode(obj->spi.spi_base);
+        obj->spi.is_slave=1;
+    } else {
+        spi_set_master_mode(obj->spi.spi_base);
+        obj->spi.is_slave=0;
+    }
+    spi_set_bits_per_transfer(obj->spi.spi_base, obj->spi.cs, obj->spi.transferrate);
+    spi_set_clock_phase(obj->spi.spi_base, SPI_CHIP_SEL, (mode & 0x01));
+    spi_set_clock_polarity(obj->spi.spi_base, SPI_CHIP_SEL, (mode & 0x02));
+
+    obj->spi.phase=(mode & 0x01);
+    obj->spi.polarity=(mode & 0x02);
+    spi_enable(obj->spi.spi_base);
+}
+
+/** Set the SPI baud rate
+ *
+ * Actual frequency may differ from the desired frequency due to available dividers and bus clock
+ * Configures the SPI peripheral's baud rate
+ * @param[in,out] obj The SPI object to configure
+ * @param[in]     hz  The baud rate in Hz
+ */
+
+void spi_frequency(spi_t *obj, int hz)
+{
+    spi_disable(obj->spi.spi_base);
+    int16_t baudrate_div=spi_calc_baudrate_div(hz, sysclk_get_cpu_hz());
+    spi_set_baudrate_div(obj->spi.spi_base,obj->spi.cs,(uint8_t)baudrate_div);
+    spi_enable(obj->spi.spi_base);
+}
+
+/**@}*/
+/**
+ * \defgroup SynchSPI Synchronous SPI Hardware Abstraction Layer
+ * @{
+ */
+
+/** Write a byte out in master mode and receive a value
+ *
+ * @param[in] obj   The SPI peripheral to use for sending
+ * @param[in] value The value to send
+ * @return Returns the value received during send
+ */
+int  spi_master_write(spi_t *obj, int value)
+{
+    spi_status_t status=spi_write(obj->spi.spi_base,(uint16_t)value,obj->spi.cs,SPI_LAST);
+    if(status ==SPI_OK) {
+        uint16_t data;
+        status =spi_read(obj->spi.spi_base,&data,&obj->spi.cs);
+        if(status == SPI_OK)
+            return data;
+    }
+    return 0;
+}
+
+/** Check if a value is available to read
+ *
+ * @param[in] obj The SPI peripheral to check
+ * @return non-zero if a value is available
+ */
+int  spi_slave_receive(spi_t *obj)
+{
+    if(obj->spi.spi_base->SPI_SR & SPI_SR_RDRF)
+        return 1;
+    return 0;
+}
+
+/** Get a received value out of the SPI receive buffer in slave mode
+ *
+ * Blocks until a value is available
+ * @param[in] obj The SPI peripheral to read
+ * @return The value received
+ */
+int  spi_slave_read(spi_t *obj)
+{
+    uint16_t data;
+    spi_status_t status =spi_read(obj->spi.spi_base, &data, &obj->spi.cs);
+    if(status == SPI_OK)
+        return data;
+    return 0;
+}
+
+/** Write a value to the SPI peripheral in slave mode
+ *
+ * Blocks until the SPI peripheral can be written to
+ * @param[in] obj   The SPI peripheral to write
+ * @param[in] value The value to write
+ */
+void spi_slave_write(spi_t *obj, int value)
+{
+    spi_write(obj->spi.spi_base,(uint16_t)value,obj->spi.cs,SPI_LAST);
+}
+
+/** Checks if the specified SPI peripheral is in use
+ *
+ * @param[in] obj The SPI peripheral to check
+ * @return non-zero if the peripheral is currently transmitting
+ */
+int  spi_busy(spi_t *obj)
+{
+    if(obj->spi.spi_base->SPI_SR & SPI_SR_TDRE) //Transmit Data Register Empty
+        return 0;
+    return 1;
+}
+
+/** Get the module number
+ *
+ * @param[in] obj The SPI peripheral to check
+ * @return The module number
+ */
+uint8_t spi_get_module(spi_t *obj)
+{
+    return obj->spi.module_number;
+}
+
+
+/**@}*/
+#if DEVICE_SPI_ASYNCH
+/**
+ * \defgroup AsynchSPI Asynchronous SPI Hardware Abstraction Layer
+ * @{
+ */
+
+/** Begin the SPI transfer. Buffer pointers and lengths are specified in tx_buff and rx_buff
+ *
+ * @param[in] obj       The SPI object which holds the transfer information
+ * @param[in] tx        The buffer to send
+ * @param[in] tx_length The number of words to transmit
+ * @param[in] rx        The buffer to receive
+ * @param[in] rx_length The number of words to receive
+ * @param[in] bit_width The bit width of buffer words
+ * @param[in] event     The logical OR of events to be registered
+ * @param[in] handler   SPI interrupt handler
+ * @param[in] hint      A suggestion for how to use DMA with this transfer
+ */
+#warning "Only DMA async supported by SPI master transfer"
+
+void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
+{
+    uint32_t pdcenable=0;
+
+    if(bit_width) {
+        uint32_t transferrate= get_transfer_rate(bit_width);
+        spi_set_bits_per_transfer(obj->spi.spi_base, obj->spi.cs, transferrate);
+    }
+
+    if(tx) {
+        pdc_packet_t pdc_packet_tx;
+        pdc_packet_tx.ul_addr=(uint32_t)tx;
+        pdc_packet_tx.ul_size=tx_length;
+
+        pdcenable|=PERIPH_PTCR_TXTEN;
+        /* Configure PDC for data send */
+        pdc_tx_init(obj->spi.pdc, &pdc_packet_tx, NULL);
+    }
+
+    if(rx) {
+        pdc_rx_clear_cnt(obj->spi.pdc);
+        pdc_packet_t pdc_packet_rx;
+        pdc_packet_rx.ul_addr=(uint32_t)rx;
+        pdc_packet_rx.ul_size=rx_length;
+        pdcenable|=PERIPH_PTCR_RXTEN;
+        char *rxbuffer=(char *)rx;
+        for(uint8_t index=0; index<rx_length; index++, rxbuffer++)
+            *rxbuffer=SPI_FILL_WORD;
+
+        /* Configure PDC for data receive */
+        pdc_rx_init(obj->spi.pdc, &pdc_packet_rx, NULL);
+    }
+
+    obj->spi.dma_usage=hint;
+    obj->spi.event=event;
+
+    NVIC_ClearPendingIRQ(obj->spi.irq_type);
+    NVIC_DisableIRQ(obj->spi.irq_type);
+	NVIC_SetVector(obj->spi.irq_type,handler);
+    NVIC_EnableIRQ(obj->spi.irq_type);
+
+    /* Enable SPI IRQ */
+    spi_enable_interrupt(obj->spi.spi_base, SPI_IER_RXBUFF| SPI_IER_TXBUFE | SPI_IER_MODF | SPI_IER_OVRES);
+
+    /* Enable PDC transfers */
+    pdc_enable_transfer(obj->spi.pdc, pdcenable );
+
+}
+
+/** The asynchronous IRQ handler
+ *
+ * Reads the received values out of the RX FIFO, writes values into the TX FIFO and checks for transfer termination
+ * conditions, such as buffer overflows or transfer complete.
+ * @param[in] obj     The SPI object which holds the transfer information
+ * @return event flags if a transfer termination condition was met or 0 otherwise.
+ */
+uint32_t spi_irq_handler_asynch(spi_t *obj)
+{
+    uint32_t event=0;
+
+    // Data transferred via DMA
+    if((obj->spi.spi_base->SPI_SR & SPI_IER_TXBUFE)) {
+	    spi_disable_interrupt(obj->spi.spi_base, SPI_IDR_TXBUFE | SPI_IDR_MODF | SPI_IDR_OVRES);
+        if(obj->spi.event | SPI_EVENT_COMPLETE)
+            event |=SPI_EVENT_COMPLETE;
+    }
+	
+    if((obj->spi.spi_base->SPI_SR & SPI_IER_RXBUFF)) {
+	    spi_disable_interrupt(obj->spi.spi_base, SPI_IDR_RXBUFF | SPI_IDR_MODF | SPI_IDR_OVRES);
+	    if(obj->spi.event | SPI_EVENT_COMPLETE)
+	    event |=SPI_EVENT_COMPLETE;
+    }	
+
+    if(obj->spi.spi_base->SPI_SR & SPI_SR_MODF) {
+        if(obj->spi.event | SPI_EVENT_ERROR)
+            event |=SPI_EVENT_ERROR;
+    }
+
+    if(obj->spi.spi_base->SPI_SR & SPI_SR_OVRES) {
+        if(obj->spi.event | SPI_EVENT_RX_OVERFLOW)
+            event |=SPI_EVENT_RX_OVERFLOW;
+    }
+
+    return event;
+}
+
+/** Attempts to determine if the SPI peripheral is already in use.
+ *
+ * If a temporary DMA channel has been allocated, peripheral is in use.
+ * If a permanent DMA channel has been allocated, check if the DMA channel is in use.  If not, proceed as though no DMA
+ * channel were allocated.
+ * If no DMA channel is allocated, check whether tx and rx buffers have been assigned.  For each assigned buffer, check
+ * if the corresponding buffer position is less than the buffer length.  If buffers do not indicate activity, check if
+ * there are any bytes in the FIFOs.
+ * @param[in] obj The SPI object to check for activity
+ * @return non-zero if the SPI port is active or zero if it is not.
+ */
+
+uint8_t spi_active(spi_t *obj)
+{
+    if(obj->spi.spi_base->SPI_SR & SPI_SR_ENDTX && obj->spi.spi_base->SPI_SR & SPI_SR_ENDRX)
+        return 0;
+    return 1;
+}
+
+/** Abort an SPI transfer
+ *
+ * @param obj The SPI peripheral to stop
+ */
+void spi_abort_asynch(spi_t *obj)
+{
+    /* Disable PDC transfers */
+    pdc_disable_transfer(obj->spi.pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS);
+
+    /* Clear PDC buffer receive counter */
+    pdc_rx_clear_cnt(obj->spi.pdc);
+
+    /* Disable SPI IRQ */
+    spi_disable_interrupt(obj->spi.spi_base, SPI_IDR_TXBUFE);
+    spi_disable_interrupt(obj->spi.spi_base, SPI_IDR_RXBUFF);
+
+    /* Disable SPI interrupt */
+    NVIC_DisableIRQ(obj->spi.irq_type);
+}
+
+#endif
\ No newline at end of file