uses pushing box to publish to google spreadsheets with a state machine instead of a while loop
Fork of GSM_PUSHING_BOX_STATE_MACHINE by
GSMLibrary.cpp
- Committer:
- es_marble
- Date:
- 2015-04-25
- Revision:
- 29:bc5f53f2922a
- Parent:
- 28:81f1c8bd3299
- Child:
- 30:421aae087064
File content as of revision 29:bc5f53f2922a:
//Libraries #include "GSMLibrary.h" #include "gsmqueue.h" #include <string.h> //Global defines #define TIMEOUTLIMIT SECONDS_TIMEOUT/TIME_CONST //Defines how many "ticks" of the GSM will constitute "timeout" of our "watchdog timer" //Extra defines for transmitter #define START_SMS_TRANSMISSION "START" #define STOP_SMS_TRANSMISSION "STOP" #define GPS_SMS_TRANSMISSION "GPS" #define RECEIVER_PHONE_NUMBER "\"+13853357314\"" #define AT_CMGS "AT+CMGS=" RECEIVER_PHONE_NUMBER //Begin sending SMS with this send command and the phone number #define NUM_SIZE 25 //Size of a temporary variable to help with concatenation of strings #define BEGIN_SENSOR_DATA "$" //$ and % are parsed by using regex by the GUI for the receiver and indicate the start and end of data received #define END_SENSOR_DATA "%" //Define AT commands to send #define AT_OK "AT" //Ask GSM if everything is 'ok' #define AT_CSQ "AT+CSQ" //Check signal strength #define AT_CREG "AT+CREG?" //Check if GSM is registered on cellular network #define AT_CNMI "AT+CNMI=2,0,0,0,0" //Turn off the notification that is normally received when text messages are received #define AT_CMGF "AT+CMGF=1" //Turn on "text message mode" so we can characters (rather than PDU mode in which you send bytes) #define AT_READ_MSG "AT+CMGL=\"REC UNREAD\"" //Read received messages that have not yet been read #define AT_DEL_R_MSGS "AT+QMGDA=\"DEL READ\"" //Delete read messages //Define expected responses for AT commands //Please notice that after ":" the gsm will usually send aditional information #define AT_OK_RESPONSE "OK" //Response after sending "AT" message #define AT_CSQ_RESPONSE "+CSQ:" //+CSQ: <arg1>,<arg2> where <arg1> is signal strength arg1 = 0-30 where a number below 10 means low signal strength and 99 is not knwn or detectable signal and arg2 is bit error rate form 0-7, 99 will represent error #define AT_CREG_RESPONSE "+CREG:"//+CREG: <arg1>,<arg2> where <arg1> = 0-2(see AT command descriptions), <arg2> = 0-5, 0 not registered to nework and not looking for one. 1 is conected to network, 2 is not conected but searching #define AT_CNMI_RESPONSE "OK" #define AT_CMGF_RESPONSE "OK" #define AT_CMGS_RESPONSE ">" //Received after you give the GSM the phone number. (We mistakenly thought it was received a second time after SMS was sent... this is not true!) #define AT_SENDSMS_RESPONSE "+CMGS:" // +CMGS: <id> this will include the message id, or CMS ERROR for error. #define AT_DEL_R_MSGS_RESPONSE "OK" //External variables extern Serial pc; //To print output to computer extern Serial gsm; //To communicate with GSM extern uint8_t buffer[BUFFER_LENGTH]; //DMA queue //Internal variables gsm_states gsm_current_state = GSM_INITIALIZE; int timeout_count = 0; char state_chars[] = "iosntmRPWD"; //For debugging - 1 char to represent each state: init, ok, signalstrength, network, turn off notifications, messagemode, read, phone, writesms, del //Extras for transmitter char send = false; //if true => we will send something (only if send_enable is true) char send_enable = false; //Sending start and stop commands to GSM via SMS changes this variable. If true, we will send SMS messages of our data received char undeleted_msgs = true; //At the beginning assume we have undeleted messages char gsm_msg[MAX_SMS_LENGTH + 250]; //String storing SMS message that will be sent (add 250 length to give leeway) char num[NUM_SIZE]; //Temporary string storage to help with concatenation of strings //"Tick" of the GSM (i.e. this is a state machine) void gsm_tick() { //Don't do anything, unless i) we received a response from the GSM, ii) the watchdog timer timed out, or iii) or we are initializing the GSM if (queueHasResponse() || gsm_timeOut() || gsm_current_state == GSM_INITIALIZE) { //gsm_printState(); //&debug //printQueue(); //&debug gsm_nextStateLogic(); //Next state gsm_mealyOutputs(); //Mealy outputs. This state machine is a little different because Mealy outputs come after the next state logic } } //Prints the current state. To save time printing, simply prints 1 character to indicate the current state. void gsm_printState() { pc.printf("S:%c;", state_chars[gsm_current_state]); } //Advance timeout counter; if timeout, return true bool gsm_timeOut() { if(++timeout_count >= TIMEOUTLIMIT){ timeout_count = 0; gsm_reset(); return true; } else return false; } //Have the GSM send data - L = long, S = short, hh/mm/ss for time, "lat ns" for latitute, "lon we" for longitude void gsm_send_data(float L, float Lref, float S, float Sref, int hh, int mm, int ss, float lat, char ns, float lon, char we) { if (!gsm_ready()) //Don't send if gsm not ready return; //Concatenate data gsm_msg[0] = NULL; strcat(gsm_msg, BEGIN_SENSOR_DATA); snprintf(num, NUM_SIZE, "%f,", L); strcat(gsm_msg, num); snprintf(num, NUM_SIZE, "%f,", Lref); strcat(gsm_msg, num); snprintf(num, NUM_SIZE, "%f,", S); strcat(gsm_msg, num); snprintf(num, NUM_SIZE, "%f,", Sref); strcat(gsm_msg, num); snprintf(num, NUM_SIZE, "%d:%d:%d,", hh, mm, ss); //If there is no data from GPS, the time will just be "0:0:0" (that is okay) strcat(gsm_msg, num); if (ns != NULL) //If there is a gps fix (i.e. the gps has data on our location), ns will be set { snprintf(num, NUM_SIZE, "%.4f,%.4f", (ns == 'N') ? lat : -lat, (we == 'E') ? lon : -lon); //Use + or - rather than N/S, E/W strcat(gsm_msg, num); } else strcat(gsm_msg, "0,0"); //Otherwise just send 0's for latitude and longitude strcat(gsm_msg, END_SENSOR_DATA); send = true; //Mark that we are currently sending a message strcat(gsm_msg, SMS_END_CHAR); //Add SMS end char } //Return true if gsm is ready to send sms //This only occurs if send = false (not currently sending a message) AND gsm received start sequence bool gsm_ready() { return ((!send) && send_enable) ? true : false; } //Reset the gsm. Currently this only resets the state, whether we are currently sending a message, and whether there are messages to delete. //It does not reset send_enable void gsm_reset() { //If we are in the middle of sending a text message, we need to "escape" out of this mode by sending the escape character if (gsm_current_state == GSM_AT_CMGS) sendCommand(SMS_ESCAPE_CHAR); gsm_current_state = GSM_INITIALIZE; undeleted_msgs = true; send = false; } //Next state logic ----------------------------------------------------- //Note how each state (except init) checks the response received to make sure //GSM has properly executed the command. If the response is correct, it changes //the state so that the next command will be sent in the gsm_mealyOutputs function //below. void gsm_nextStateLogic() { switch(gsm_current_state) { case GSM_INITIALIZE: timeout_count = 0; //No AT commands have been sent: this will send the first one gsm_current_state = GSM_AT_OK; break; case GSM_AT_OK: if (findInQueue(AT_OK_RESPONSE, true)) gsm_current_state = GSM_AT_CSQ; break; case GSM_AT_CSQ: if(findInQueue(AT_CSQ_RESPONSE, true)) gsm_current_state = GSM_AT_CREG; break; case GSM_AT_CREG: if(findInQueue(AT_CREG_RESPONSE, true)) { parseInt(); //After the CREG response we receive two integers. The second should be '1' (see AT_CREG_RESPONSE #define) if(parseInt() == 1) gsm_current_state = GSM_AT_CNMI; } break; case GSM_AT_CNMI: if(findInQueue(AT_CNMI_RESPONSE, true)) gsm_current_state = GSM_AT_CMGF; break; case GSM_AT_CMGF: if(findInQueue(AT_CMGF_RESPONSE, true)) gsm_current_state = GSM_READ_MSG; break; case GSM_READ_MSG: if(send_enable) //If we are currently sending SMS, check if we need to stop transmission of SMS { if(findInQueue(STOP_SMS_TRANSMISSION, true)) //Always stop sending if stop sequence received by SMS { undeleted_msgs = true; send_enable = false; //Set send_enable to indicate we will stop sending SMS } else if (send) //Only continue sending if we didn't find stop sequence AND user requested that we send sms gsm_current_state = GSM_AT_CMGS; //Continue sending SMS (change state accordingly) //Implicit: otherwise we will continue checking text messages in this state. } else //If we are not yet sending SMS, check if we need to start transmission of SMS { if(findInQueue(START_SMS_TRANSMISSION, true)) { undeleted_msgs = true; send_enable = true; //Now we are in send SMS mode: whenever 'send' variable is set to true we will send an SMS if (send) //Only begin sending a new SMS if user requested that we send SMS (i.e. there is data to send) gsm_current_state = GSM_AT_CMGS; //Start sending SMS (change state accordingly) } } break; case GSM_AT_CMGS: if(findInQueue(AT_CMGS_RESPONSE, true)) gsm_current_state = GSM_AT_SENDSMS; break; case GSM_AT_SENDSMS: if(findInQueue(AT_SENDSMS_RESPONSE, true)) { //pc.printf("(Wid%i)",parseInt());//&debug timeout_count = 0; //Reset timeout count send = false; //Indicate we are done sending the text message if (undeleted_msgs) //Check if we need to delete read messages gsm_current_state = GSM_DEL_R_MSGS; //Only delete messages if there are unread messages else { gsm_current_state = GSM_READ_MSG; //Otherwise skip the delete messages state; go read text messages again //pc.printf("(Dnone)");//&debug } } else { //pc.printf("(Werr)"); //&debug gsm_current_state = GSM_AT_CMGS; //If failed, try resending the message (i.e. continue until timeout) } break; case GSM_DEL_R_MSGS: if (findInQueue(AT_DEL_R_MSGS_RESPONSE, true)) { undeleted_msgs = false; //pc.printf("(Dsucc)"); //&debug } //else //pc.printf("(Derr)"); //&debug gsm_current_state = GSM_READ_MSG; break; default: //pc.printf("This is a state error\r\n"); } } //Mealy output logic ------------------------------------------------------ void gsm_mealyOutputs() { switch(gsm_current_state) { case GSM_INITIALIZE: break; case GSM_AT_OK: sendCommand(AT_OK); break; case GSM_AT_CSQ: sendCommand(AT_CSQ); break; case GSM_AT_CREG: sendCommand(AT_CREG); break; case GSM_AT_CNMI: sendCommand(AT_CNMI); break; case GSM_AT_CMGF: sendCommand(AT_CMGF); break; case GSM_READ_MSG: sendCommand(AT_READ_MSG); break; case GSM_AT_CMGS: sendCommand(AT_CMGS); break; case GSM_AT_SENDSMS: sendCommand(gsm_msg); //end char included break; case GSM_DEL_R_MSGS: sendCommand(AT_DEL_R_MSGS); break; default: //pc.printf("This is a state error\r\n"); } } //Initialize the GSM void gsm_initialize(){ wait(2.3); //Wait for the GSM to turn on properly before doing this initialization SIM_SCGC6 |= SIM_SCGC6_DMAMUX_MASK; //enabling dmamux clock SIM_SCGC7 |= SIM_SCGC7_DMA_MASK; // enebaling dma clock //pc.printf("initializing DMA...\r\n"); // control register mux, enabling uart3 receive DMAMUX_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK|DMAMUX_CHCFG_SOURCE(8); // Enable request signal for channel 0 DMA_ERQ = DMA_ERQ_ERQ0_MASK; // select round-robin arbitration priority DMA_CR |= DMA_CR_ERCA_MASK; //enable error interrupt for DMA0 (commented out because we won't use interrupts for our implementation) //DMA_EEI = DMA_EEI_EEI0_MASK; //Address for buffer DMA_TCD0_SADDR = (uint32_t) &UART_D_REG(UART3_BASE_PTR); DMA_TCD0_DADDR = (uint32_t) buffer; // Set an offset for source and destination address DMA_TCD0_SOFF = 0x00; DMA_TCD0_DOFF = 0x01; // Destination address offset of 1 byte per transaction // Set source and destination data transfer size DMA_TCD0_ATTR = DMA_ATTR_SSIZE(0) | DMA_ATTR_DSIZE(0); // Number of bytes to be transfered in each service request of the channel DMA_TCD0_NBYTES_MLNO = 0x01; // Current major iteration count DMA_TCD0_CITER_ELINKNO = DMA_CITER_ELINKNO_CITER(BUFFER_LENGTH); DMA_TCD0_BITER_ELINKNO = DMA_BITER_ELINKNO_BITER(BUFFER_LENGTH); // Adjustment value used to restore the source and destiny address to the initial value // After reading 'len' number of times, the DMA goes back to the beginning by subtracting len*2 from the address (going back to the original address) DMA_TCD0_SLAST = 0; // Source address adjustment DMA_TCD0_DLASTSGA = -BUFFER_LENGTH; // Destination address adjustment // Setup control and status register DMA_TCD0_CSR = 0; // enable interrupt call at end of major loop DMA_TCD0_CSR |= DMA_CSR_INTMAJOR_MASK; //Activate dma transfer rx interrupt UART_C2_REG(UART3) |= UART_C2_RIE_MASK; UART_C5_REG(UART3) |= UART_C5_RDMAS_MASK | UART_C5_ILDMAS_MASK | UART_C5_LBKDDMAS_MASK; //activate p fifo register UART_PFIFO_REG(UART3) |= UART_PFIFO_RXFE_MASK; //RXFE and buffer size of 1 word queueInit(); //pc.printf("done...\n\r"); } //For debugging: print registers related to DMA and UART setup void print_registers() { pc.printf("\n\rDMA REGISTERS\n\r"); pc.printf("DMA_MUX: 0x%08x\r\n",DMAMUX_CHCFG0); pc.printf("SADDR0: 0x%08x\r\n",DMA_TCD0_SADDR); pc.printf("DADDR0: 0x%08x\r\n",DMA_TCD0_DADDR); pc.printf("CITER0: 0x%08x\r\n",DMA_TCD0_CITER_ELINKNO); pc.printf("BITER0: 0x%08x\r\n",DMA_TCD0_BITER_ELINKNO); pc.printf("DMA_CR: %08x\r\n", DMA_CR); pc.printf("DMA_ES: %08x\r\n", DMA_ES); pc.printf("DMA_ERQ: %08x\r\n", DMA_ERQ); pc.printf("DMA_EEI: %08x\r\n", DMA_EEI); pc.printf("DMA_CEEI: %02x\r\n", DMA_CEEI); pc.printf("DMA_SEEI: %02x\r\n", DMA_SEEI); pc.printf("DMA_CERQ: %02x\r\n", DMA_CERQ); pc.printf("DMA_SERQ: %02x\r\n", DMA_SERQ); pc.printf("DMA_CDNE: %02x\r\n", DMA_CDNE); pc.printf("DMA_SSRT: %02x\r\n", DMA_SSRT); pc.printf("DMA_CERR: %02x\r\n", DMA_CERR); pc.printf("DMA_CINT: %02x\r\n", DMA_CINT); pc.printf("DMA_INT: %08x\r\n", DMA_INT); pc.printf("DMA_ERR: %08x\r\n", DMA_ERR); pc.printf("DMA_HRS: %08x\r\n", DMA_HRS); pc.printf("DMA_TCD0_DOFF: %08x\r\n",DMA_TCD0_DOFF); pc.printf("\n\rUART REGISTERS\n\r"); pc.printf("UART_BDH_REG: %08x\r\n",UART_BDH_REG(UART3)); pc.printf("UART_C1_REG: %08x\r\n",UART_C1_REG(UART3)); pc.printf("UART_C2_REG: %08x\r\n",UART_C2_REG(UART3)); pc.printf("UART_S1_REG: %08x\r\n",UART_S1_REG(UART3)); pc.printf("UART_s2_REG: %08x\r\n",UART_S2_REG(UART3)); pc.printf("UART_C3_REG: %08x\r\n",UART_C3_REG(UART3)); pc.printf("UART_D_REG: %08x\r\n",UART_D_REG(UART3)); pc.printf("UART_MA1_REG: %08x\r\n",UART_MA1_REG(UART3)); pc.printf("UART_MA2_REG: %08x\r\n",UART_MA2_REG(UART3)); pc.printf("UART_C4_REG: %08x\r\n",UART_C4_REG(UART3)); pc.printf("UART_C5_REG: %08x\r\n",UART_C5_REG(UART3)); pc.printf("UART_ED_REG: %08x\r\n",UART_ED_REG(UART3)); pc.printf("UART_MODEM_REG: %08x\r\n",UART_MODEM_REG(UART3)); pc.printf("UART_IR_REG: %08x\r\n",UART_IR_REG(UART3)); pc.printf("UART_PFIFO_REG: %08x\r\n",UART_PFIFO_REG(UART3)); pc.printf("UART_CFIFO_REG: %08x\r\n",UART_CFIFO_REG(UART3)); pc.printf("UART_SFIFO_REG: %08x\r\n",UART_SFIFO_REG(UART3)); pc.printf("UART_TWFIFO_REG: %08x\r\n",UART_TWFIFO_REG(UART3)); pc.printf("UART_TCFIFO_REG: %08x\r\n",UART_TCFIFO_REG(UART3)); pc.printf("UART_RWFIFO_REG: %08x\r\n",UART_RWFIFO_REG(UART3)); pc.printf("UART_RCFIFO_REG: %08x\r\n",UART_RCFIFO_REG(UART3)); }