Jared's DAC Code
Dependencies: mbed
Fork of Chemical_Sensor_DMA by
SignalProcessing.cpp
- Committer:
- baxterja
- Date:
- 2015-10-31
- Revision:
- 3:a85b742be262
- Parent:
- 2:3771b3195c7b
- Child:
- 4:9fd291254686
File content as of revision 3:a85b742be262:
#include "mbed.h" #include "SignalProcessing.h" #define pre_compute_length 2000 #define DMA_PERIOD .00001 #define DMA_FREQUENCY 100000 #define CARRIERFREQUENCY 10000 uint16_t phase_counter = 0; float i_mod_pre[pre_compute_length]; float q_mod_pre[pre_compute_length]; int out_val_pre[pre_compute_length]; float twopi = 3.14159265359 * 2; void pre_compute_tables() { // This function will precompute the cos and sin tables used in the rest of the program for(int precompute_counter = 0; precompute_counter < pre_compute_length; precompute_counter++){ out_val_pre[precompute_counter] = (int) (cos(twopi * CARRIERFREQUENCY * DMA_PERIOD * precompute_counter) * 4965.0 + 49650.0); i_mod_pre[precompute_counter] = (cos(twopi * CARRIERFREQUENCY * DMA_PERIOD * precompute_counter)); q_mod_pre[precompute_counter] = (-sin(twopi * CARRIERFREQUENCY * DMA_PERIOD * precompute_counter)); } } #define FIR_100_LENGTH 64 float FIR100_Sample1_i[FIR_100_LENGTH]; float FIR100_Sample1_q[FIR_100_LENGTH]; float FIR100_Sample2_i[FIR_100_LENGTH]; float FIR100_Sample2_q[FIR_100_LENGTH]; uint8_t FIR100_Position = 0; //Fs = 100, Order = 63, Fpass = 1, Fstop = 5 static float lp_100_coeff[FIR_100_LENGTH] = { -0.00122570885798289, -0.00188999637047550, -0.00153249020825747, -0.00274386935197498, -0.00291939338925560, -0.00386012904484287, -0.00422028369122005, -0.00487674304247136, -0.00511534666379814, -0.00534548809850574, -0.00517201272363819, -0.00477057905668482, -0.00391668442164137, -0.00268115305854952, -0.000941210196010094, 0.00126714884107596, 0.00399477044758532, 0.00719945087788976, 0.0108724813712926, 0.0149475081564352, 0.0193653158514034, 0.0240295387918664, 0.0288389643323217, 0.0336754471496198, 0.0384141305817155, 0.0429241300038060, 0.0470794715470055, 0.0507566277450335, 0.0538451475324508, 0.0562499862639974, 0.0578974160014292, 0.0587336099426047, 0.0587336099426047, 0.0578974160014292, 0.0562499862639974, 0.0538451475324508, 0.0507566277450335, 0.0470794715470055, 0.0429241300038060, 0.0384141305817155, 0.0336754471496198, 0.0288389643323217, 0.0240295387918664, 0.0193653158514034, 0.0149475081564352, 0.0108724813712926, 0.00719945087788976, 0.00399477044758532, 0.00126714884107596, -0.000941210196010094, -0.00268115305854952, -0.00391668442164137, -0.00477057905668482, -0.00517201272363819, -0.00534548809850574, -0.00511534666379814, -0.00487674304247136, -0.00422028369122005, -0.00386012904484287, -0.00291939338925560, -0.00274386935197498, -0.00153249020825747, -0.00188999637047550, -0.00122570885798289 }; #define NUMSAMPLESAVERAGE 100 #define DecimationFactor_10K 10 void filter100(float FIR100_Sample1_i_input, float FIR100_Sample1_q_input, float FIR100_Sample2_i_input, float FIR100_Sample2_q_input) { static uint8_t finalAverageCounter = 0; static uint8_t decimationCounter = 0;//used to keep track of how many samples you have currently decimated static float FIR100_Sample1_i_DecimatedSum=0; static float FIR100_Sample1_q_DecimatedSum=0;//when decimating sum up all 10 samples at a time have that be your output value static float FIR100_Sample2_i_DecimatedSum=0; static float FIR100_Sample2_q_DecimatedSum=0; static float Final_Average1_i=0; static float Final_Average1_q=0;//when decimating sum up all 10 samples at a time have that be your output value static float Final_Average2_i=0; static float Final_Average2_q=0; FIR100_Sample1_i_DecimatedSum += FIR100_Sample1_i_input;//add sample to the sum of previous sample FIR100_Sample1_q_DecimatedSum += FIR100_Sample1_q_input; FIR100_Sample2_i_DecimatedSum += FIR100_Sample2_i_input; FIR100_Sample2_q_DecimatedSum += FIR100_Sample2_q_input; decimationCounter++; if (decimationCounter >= DecimationFactor_10K)//once 10 samples have com { decimationCounter = 0;//reset decimation counter //add sample to 10K filter FIR100_Sample1_i[FIR100_Position] = FIR100_Sample1_i_DecimatedSum; FIR100_Sample1_q[FIR100_Position] = FIR100_Sample1_q_DecimatedSum; FIR100_Sample2_i[FIR100_Position] = FIR100_Sample2_i_DecimatedSum; FIR100_Sample2_q[FIR100_Position] = FIR100_Sample2_q_DecimatedSum; FIR100_Sample1_i_DecimatedSum = 0;//reset decimated sum to 0 for next sample FIR100_Sample1_q_DecimatedSum = 0; FIR100_Sample2_i_DecimatedSum = 0; FIR100_Sample2_q_DecimatedSum = 0; FIR100_Position++; //increment circular buffer if (FIR100_Position >= FIR_100_LENGTH) //wrap around { FIR100_Position = 0; } // Low pass filter of demodulated signal float FIR100_Sample1_i_Output = FIR100_Sample1_i[FIR100_Position] * lp_100_coeff[0];//first multiply of convolution float FIR100_Sample1_q_Output = FIR100_Sample1_q[FIR100_Position] * lp_100_coeff[0]; float FIR100_Sample2_i_Output = FIR100_Sample2_i[FIR100_Position] * lp_100_coeff[0]; float FIR100_Sample2_q_Output = FIR100_Sample2_q[FIR100_Position] * lp_100_coeff[0]; int fir_index; for(int fir_counter = 1; fir_counter < FIR_100_LENGTH; fir_counter++)//the rest of the convolution { fir_index = FIR100_Position + fir_counter; if (fir_index >= FIR_100_LENGTH) { fir_index -= FIR_100_LENGTH; } FIR100_Sample1_i_Output += FIR100_Sample1_i[fir_index] * lp_100_coeff[fir_counter];//convolving FIR100_Sample1_q_Output += FIR100_Sample1_q[fir_index] * lp_100_coeff[fir_counter]; FIR100_Sample2_i_Output += FIR100_Sample2_i[fir_index] * lp_100_coeff[fir_counter]; FIR100_Sample2_q_Output += FIR100_Sample2_q[fir_index] * lp_100_coeff[fir_counter]; } //float mag1 = sqrt(FIR100_Sample1_i_Output*FIR100_Sample1_i_Output+FIR100_Sample1_q_Output*FIR100_Sample1_q_Output); //float mag2 = sqrt(FIR100_Sample2_i_Output*FIR100_Sample2_i_Output+FIR100_Sample2_q_Output*FIR100_Sample2_q_Output); //printf("V1: %f\tV2: %f\n\r",mag1,mag2); Final_Average1_i+=FIR100_Sample1_i_Output; Final_Average1_q+=FIR100_Sample1_q_Output;//when decimating sum up all 10 samples at a time have that be your output value Final_Average2_i+=FIR100_Sample2_i_Output; Final_Average2_q+=FIR100_Sample2_q_Output; finalAverageCounter++; if (finalAverageCounter>=NUMSAMPLESAVERAGE) { finalAverageCounter=0; float mag1 = sqrt(Final_Average1_i*Final_Average1_i+Final_Average1_q*Final_Average1_q); float mag2 = sqrt(Final_Average2_i*Final_Average2_i+Final_Average2_q*Final_Average2_q); printf("V1: %f\tV2: %f\n\r",mag1,mag2); Final_Average1_i=0; Final_Average1_q=0;//when decimating sum up all 10 samples at a time have that be your output value Final_Average2_i=0; Final_Average2_q=0; } //float mag1 = sqrt(FIR100_Sample1_i_Output*FIR100_Sample1_i_Output+FIR100_Sample1_q_Output*FIR100_Sample1_q_Output); //float mag2 = sqrt(FIR100_Sample2_i_Output*FIR100_Sample2_i_Output+FIR100_Sample2_q_Output*FIR100_Sample2_q_Output); //printf("V1: %f\tV2: %f\n\r",mag1,mag2); //filter100(FIR100_Sample1_i_Output, FIR100_Sample1_q_Output, FIR100_Sample2_i_Output, FIR100_Sample2_q_Output); } } #define FIR_1K_LENGTH 32 float FIR1K_Sample1_i[FIR_1K_LENGTH]; float FIR1K_Sample1_q[FIR_1K_LENGTH]; float FIR1K_Sample2_i[FIR_1K_LENGTH]; float FIR1K_Sample2_q[FIR_1K_LENGTH]; uint8_t FIR1K_Position = 0; //Fs = 1000, Order = 31, Fpass = 1, Fstop = 50 static float lp_1K_coeff[FIR_1K_LENGTH] = { 0.0108990071119901, 0.00826963267129267, 0.0110961530344968, 0.0143019800886844, 0.0178397268153335, 0.0216326995075556, 0.0255928087296069, 0.0296287914936736, 0.0336287768230528, 0.0374693714591658, 0.0410324028349472, 0.0442148191339877, 0.0468906440777966, 0.0489881978583567, 0.0504243479483288, 0.0511581882807637, 0.0511581882807637, 0.0504243479483288, 0.0489881978583567, 0.0468906440777966, 0.0442148191339877, 0.0410324028349472, 0.0374693714591658, 0.0336287768230528, 0.0296287914936736, 0.0255928087296069, 0.0216326995075556, 0.0178397268153335, 0.0143019800886844, 0.0110961530344968, 0.00826963267129267, 0.0108990071119901 }; #define DecimationFactor_10K 10 void filter1K(float FIR1K_Sample1_i_input, float FIR1K_Sample1_q_input, float FIR1K_Sample2_i_input, float FIR1K_Sample2_q_input) { static uint8_t decimationCounter = 0;//used to keep track of how many samples you have currently decimated static float FIR1K_Sample1_i_DecimatedSum=0; static float FIR1K_Sample1_q_DecimatedSum=0;//when decimating sum up all 10 samples at a time have that be your output value static float FIR1K_Sample2_i_DecimatedSum=0; static float FIR1K_Sample2_q_DecimatedSum=0; FIR1K_Sample1_i_DecimatedSum += FIR1K_Sample1_i_input;//add sample to the sum of previous sample FIR1K_Sample1_q_DecimatedSum += FIR1K_Sample1_q_input; FIR1K_Sample2_i_DecimatedSum += FIR1K_Sample2_i_input; FIR1K_Sample2_q_DecimatedSum += FIR1K_Sample2_q_input; decimationCounter++; if (decimationCounter >= DecimationFactor_10K)//once 10 samples have com { decimationCounter = 0;//reset decimation counter //add sample to 10K filter FIR1K_Sample1_i[FIR1K_Position] = FIR1K_Sample1_i_DecimatedSum; FIR1K_Sample1_q[FIR1K_Position] = FIR1K_Sample1_q_DecimatedSum; FIR1K_Sample2_i[FIR1K_Position] = FIR1K_Sample2_i_DecimatedSum; FIR1K_Sample2_q[FIR1K_Position] = FIR1K_Sample2_q_DecimatedSum; FIR1K_Sample1_i_DecimatedSum = 0;//reset decimated sum to 0 for next sample FIR1K_Sample1_q_DecimatedSum = 0; FIR1K_Sample2_i_DecimatedSum = 0; FIR1K_Sample2_q_DecimatedSum = 0; FIR1K_Position++; //increment circular buffer if (FIR1K_Position >= FIR_1K_LENGTH) //wrap around { FIR1K_Position = 0; } // Low pass filter of demodulated signal float FIR1K_Sample1_i_Output = FIR1K_Sample1_i[FIR1K_Position] * lp_1K_coeff[0];//first multiply of convolution float FIR1K_Sample1_q_Output = FIR1K_Sample1_q[FIR1K_Position] * lp_1K_coeff[0]; float FIR1K_Sample2_i_Output = FIR1K_Sample2_i[FIR1K_Position] * lp_1K_coeff[0]; float FIR1K_Sample2_q_Output = FIR1K_Sample2_q[FIR1K_Position] * lp_1K_coeff[0]; int fir_index; for(int fir_counter = 1; fir_counter < FIR_1K_LENGTH; fir_counter++)//the rest of the convolution { fir_index = FIR1K_Position + fir_counter; if (fir_index >= FIR_1K_LENGTH) { fir_index -= FIR_1K_LENGTH; } FIR1K_Sample1_i_Output += FIR1K_Sample1_i[fir_index] * lp_1K_coeff[fir_counter];//convolving FIR1K_Sample1_q_Output += FIR1K_Sample1_q[fir_index] * lp_1K_coeff[fir_counter]; FIR1K_Sample2_i_Output += FIR1K_Sample2_i[fir_index] * lp_1K_coeff[fir_counter]; FIR1K_Sample2_q_Output += FIR1K_Sample2_q[fir_index] * lp_1K_coeff[fir_counter]; } //float mag1 = sqrt(FIR1K_Sample1_i_Output*FIR1K_Sample1_i_Output+FIR1K_Sample1_q_Output*FIR1K_Sample1_q_Output); //float mag2 = sqrt(FIR1K_Sample2_i_Output*FIR1K_Sample2_i_Output+FIR1K_Sample2_q_Output*FIR1K_Sample2_q_Output); //printf("V1: %f\tV2: %f\n\r",mag1,mag2); filter100(FIR1K_Sample1_i_Output, FIR1K_Sample1_q_Output, FIR1K_Sample2_i_Output, FIR1K_Sample2_q_Output); } } #define FIR_10K_LENGTH 16 float FIR10K_Sample1_i[FIR_10K_LENGTH]; float FIR10K_Sample1_q[FIR_10K_LENGTH]; float FIR10K_Sample2_i[FIR_10K_LENGTH]; float FIR10K_Sample2_q[FIR_10K_LENGTH]; uint8_t FIR10K_Position = 0; //Fs = 10000, Order = 15, Fpass = 10, Fstop = 900 static float lp_10K_coeff[FIR_10K_LENGTH] = { 0.0242947345184044, 0.0283599756767857, 0.0416004471421328, 0.0557840684332377, 0.0695867614174704, 0.0816182734401924, 0.0904748943926879, 0.0951919735506062, 0.0951919735506062, 0.0904748943926879, 0.0816182734401924, 0.0695867614174704, 0.0557840684332377, 0.0416004471421328, 0.0283599756767857, 0.0242947345184044 }; #define DecimationFactor_100K 10 void filter10K(float FIR10K_Sample1_i_input, float FIR10K_Sample1_q_input, float FIR10K_Sample2_i_input, float FIR10K_Sample2_q_input) { static uint8_t decimationCounter = 0;//used to keep track of how many samples you have currently decimated static float FIR10K_Sample1_i_DecimatedSum=0; static float FIR10K_Sample1_q_DecimatedSum=0;//when decimating sum up all 10 samples at a time have that be your output value static float FIR10K_Sample2_i_DecimatedSum=0; static float FIR10K_Sample2_q_DecimatedSum=0; FIR10K_Sample1_i_DecimatedSum += FIR10K_Sample1_i_input;//add sample to the sum of previous sample FIR10K_Sample1_q_DecimatedSum += FIR10K_Sample1_q_input; FIR10K_Sample2_i_DecimatedSum += FIR10K_Sample2_i_input; FIR10K_Sample2_q_DecimatedSum += FIR10K_Sample2_q_input; decimationCounter++; if (decimationCounter >= DecimationFactor_100K)//once 10 samples have com { decimationCounter = 0;//reset decimation counter //add sample to 10K filter FIR10K_Sample1_i[FIR10K_Position] = FIR10K_Sample1_i_DecimatedSum; FIR10K_Sample1_q[FIR10K_Position] = FIR10K_Sample1_q_DecimatedSum; FIR10K_Sample2_i[FIR10K_Position] = FIR10K_Sample2_i_DecimatedSum; FIR10K_Sample2_q[FIR10K_Position] = FIR10K_Sample2_q_DecimatedSum; FIR10K_Sample1_i_DecimatedSum = 0;//reset decimated sum to 0 for next sample FIR10K_Sample1_q_DecimatedSum = 0; FIR10K_Sample2_i_DecimatedSum = 0; FIR10K_Sample2_q_DecimatedSum = 0; FIR10K_Position++; //increment circular buffer if (FIR10K_Position >= FIR_10K_LENGTH) //wrap around { FIR10K_Position = 0; } // Low pass filter of demodulated signal float FIR10K_Sample1_i_Output = FIR10K_Sample1_i[FIR10K_Position] * lp_10K_coeff[0];//first multiply of convolution float FIR10K_Sample1_q_Output = FIR10K_Sample1_q[FIR10K_Position] * lp_10K_coeff[0]; float FIR10K_Sample2_i_Output = FIR10K_Sample2_i[FIR10K_Position] * lp_10K_coeff[0]; float FIR10K_Sample2_q_Output = FIR10K_Sample2_q[FIR10K_Position] * lp_10K_coeff[0]; int fir_index; for(int fir_counter = 1; fir_counter < FIR_10K_LENGTH; fir_counter++)//the rest of the convolution { fir_index = FIR10K_Position + fir_counter; if (fir_index >= FIR_10K_LENGTH) { fir_index -= FIR_10K_LENGTH; } FIR10K_Sample1_i_Output += FIR10K_Sample1_i[fir_index] * lp_10K_coeff[fir_counter];//convolving FIR10K_Sample1_q_Output += FIR10K_Sample1_q[fir_index] * lp_10K_coeff[fir_counter]; FIR10K_Sample2_i_Output += FIR10K_Sample2_i[fir_index] * lp_10K_coeff[fir_counter]; FIR10K_Sample2_q_Output += FIR10K_Sample2_q[fir_index] * lp_10K_coeff[fir_counter]; } //float mag1 = sqrt(FIR10K_Sample1_i_Output*FIR10K_Sample1_i_Output+FIR10K_Sample1_q_Output*FIR10K_Sample1_q_Output); //float mag2 = sqrt(FIR10K_Sample2_i_Output*FIR10K_Sample2_i_Output+FIR10K_Sample2_q_Output*FIR10K_Sample2_q_Output); //printf("P1: %d\tV1: %f\tV2: %f\n\r",phase_counter,mag1,mag2); //printf("V1: %f\tV2: %f\n\r",mag1,mag2); filter1K(FIR10K_Sample1_i_Output, FIR10K_Sample1_q_Output, FIR10K_Sample2_i_Output, FIR10K_Sample2_q_Output); } } #define FIR_100K_LENGTH 16 float FIR100K_Sample1_i[FIR_100K_LENGTH]; float FIR100K_Sample1_q[FIR_100K_LENGTH]; float FIR100K_Sample2_i[FIR_100K_LENGTH]; float FIR100K_Sample2_q[FIR_100K_LENGTH]; uint8_t FIR100K_Position = 0; //Fs = 100000, Order = 15, Fpass = 100, Fstop = 9000 static float lp_100K_coeff[FIR_100K_LENGTH] = { 0.0242947345184044, 0.0283599756767857, 0.0416004471421328, 0.0557840684332377, 0.0695867614174704, 0.0816182734401924, 0.0904748943926879, 0.0951919735506062, 0.0951919735506062, 0.0904748943926879, 0.0816182734401924, 0.0695867614174704, 0.0557840684332377, 0.0416004471421328, 0.0283599756767857, 0.0242947345184044 }; void filter100K(int sample1, int sample2) { float current_i_mod = i_mod_pre[phase_counter];//sin and cos to demodulate signature float current_q_mod = q_mod_pre[phase_counter]; phase_counter++;//increment the demodulating sinusoids by 1/Fs if (phase_counter>=pre_compute_length)//wrap around to beginning of sin wave { phase_counter = 0; } FIR100K_Sample1_i[FIR100K_Position] = (sample1 * current_i_mod);//this centers the delta function at f =0 in z space FIR100K_Sample1_q[FIR100K_Position] = (sample1 * current_q_mod);//this centers the delta function at f =0 in z space FIR100K_Sample2_i[FIR100K_Position] = (sample2 * current_i_mod);//this centers the delta function at f =0 in z space FIR100K_Sample2_q[FIR100K_Position] = (sample2 * current_q_mod);//this centers the delta function at f =0 in z space FIR100K_Position++;//increment position of circular buffer if (FIR100K_Position >= FIR_100K_LENGTH)//wrap around at end of buffer { FIR100K_Position = 0; } // Low pass filter of demodulated signal float FIR100K_Sample1_i_Output = FIR100K_Sample1_i[FIR100K_Position] * lp_100K_coeff[0];//first multiply in convolution float FIR100K_Sample1_q_Output = FIR100K_Sample1_q[FIR100K_Position] * lp_100K_coeff[0];//first multiply in convolution float FIR100K_Sample2_i_Output = FIR100K_Sample2_i[FIR100K_Position] * lp_100K_coeff[0];//first multiply in convolution float FIR100K_Sample2_q_Output = FIR100K_Sample2_q[FIR100K_Position] * lp_100K_coeff[0];//first multiply in convolution int fir_index; for(int fir_counter = 1; fir_counter < FIR_100K_LENGTH; fir_counter++)//convolves the filter with the signal { fir_index = FIR100K_Position + fir_counter; if (fir_index >= FIR_100K_LENGTH)//wrap around { fir_index -= FIR_100K_LENGTH; } FIR100K_Sample1_i_Output += FIR100K_Sample1_i[fir_index] * lp_100K_coeff[fir_counter];//convolution FIR100K_Sample1_q_Output += FIR100K_Sample1_q[fir_index] * lp_100K_coeff[fir_counter]; FIR100K_Sample2_i_Output += FIR100K_Sample2_i[fir_index] * lp_100K_coeff[fir_counter]; FIR100K_Sample2_q_Output += FIR100K_Sample2_q[fir_index] * lp_100K_coeff[fir_counter]; } //pass data to next filter //float mag1 = sqrt(FIR100K_Sample1_i_Output*FIR100K_Sample1_i_Output+FIR100K_Sample1_q_Output*FIR100K_Sample1_q_Output); //float mag2 = sqrt(FIR100K_Sample2_i_Output*FIR100K_Sample2_i_Output+FIR100K_Sample2_q_Output*FIR100K_Sample2_q_Output); //printf("V1: %f\tV2: %f\n\r",mag1,mag2); filter10K(FIR100K_Sample1_i_Output, FIR100K_Sample1_q_Output, FIR100K_Sample2_i_Output, FIR100K_Sample2_q_Output); }