16/10/15

Dependencies:   mbed

main.cpp

Committer:
ABentley
Date:
2015-10-16
Revision:
0:d2ec2e0bf935

File content as of revision 0:d2ec2e0bf935:

#include "mbed.h" //for use in mbed

#define wheelc 0.1759292
#define pi 3.141592654
#define degreel 0.021988888
//Status LED
DigitalOut led(LED1);

//Motor PWM (speed)
PwmOut PWMA(PA_8);
PwmOut PWMB(PB_4);

//Motor Direction
DigitalOut DIRA(PA_9);
DigitalOut DIRB(PB_10);

//Hall-Effect Sensor Inputs
InterruptIn HEA1(PB_2);
DigitalIn HEA2(PB_1);
InterruptIn HEB1(PB_15);
DigitalIn HEB2(PB_14);

//On board switch
DigitalIn SW1(USER_BUTTON);

//Use the serial object so we can use higher speeds
Serial terminal(USBTX, USBRX);

//Timer used for measuring speeds
Timer timer;

//Enumerated types
enum DIRECTION   {FORWARD=0, REVERSE};
enum PULSE           {NOPULSE=0, PULSE};
enum SWITCHSTATE {PRESSED=0, RELEASED};

//Debug GPIO
DigitalOut probe(D10);

//Duty cycles
float dutyA = 1.00f; //100%
float dutyB = 1.00f; //100%

//distance measurement
float distanceA ;
float distanceB ;
float speedA ;
float speedB ;
float pretimerA;
float afttimerA;
float pretimerB;
float afttimerB;
float wheel_spacing = 0.128;

//Completed Loop
int loop=0;

int turn();
void ResetDistanceTimeSpeed()
{
    distanceA=0;
    distanceB=0;
    speedA=0;
    speedB=0;
    pretimerA=0;
    pretimerB=0;
    afttimerA=0;
    afttimerB=0;
    timer.reset();
    timer.start();
}

void stopmotors()
{
    PWMA.write(0.0f);       //0% duty cycle
    PWMB.write(0.0f);       //0% duty cycle
}

int forward(float distance, float speed)
{
    //add forward to input with switch for scalability
    // Set motor direction forward
    DIRA = FORWARD;
    DIRB = FORWARD;

    //reset distance
    ResetDistanceTimeSpeed();

    // Set motor speed to input speed
    PWMA.write(speed);          //Set duty cycle (%)
    PWMB.write(speed);          //Set duty cycle (%)


    //wait for run to complete
    while (((distanceA+distanceB)/2) < distance) {

        if (speedA<speed) {

            dutyA += (float)0.0051;
            PWMA.write(speed);
        }
        if( speedA>speed) {
            dutyA -= (float)0.0051;
            PWMA.write(speed);
        }

        if (speedB<speed) {

            dutyB += (float)0.0051;
            PWMB.write(speed);
        }
        if( speedB>speed) {
            dutyB -= (float)0.0051;
            PWMB.write(speed);
        }

    }
    return 1;
}

int turn(float degrees, float duty, int direction) // (Degrees of Turn, Speed, (Anti/Clock)wise)

{
    // Calculate Turn Distance
    float distance=0;
    distance=((float)degreel*degrees);
    //Set Initial Motor Direction
    DIRA = FORWARD;
    DIRB = FORWARD;

    // Set Motor Speed for Outside Wheel
    PWMA.write(duty);          //Set duty cycle (%)
    PWMB.write(0.0f);          //Set duty cycle (%)

    // Test for Loop Completion to Enter Victory Spin
    if(direction==REVERSE) {
        DIRA = REVERSE;
        DIRB = REVERSE;
        PWMB.write(duty);          //Set duty cycle (%)
    }



    // Reset Distance Travelled
    ResetDistanceTimeSpeed();
    // Wait for Turn to Complete
    while (distanceA < distance) {
    }
    return 1;
}

void set_distanceA()
{
    float time = 0;

    afttimerA = timer.read();                      //set latest timer to equal timer
    distanceA += (wheelc/6);                //set distance travelled for this instruction i.e forward/turn etc
    time = afttimerA - pretimerA;             //work out time taken for last 6th of a rotation
    speedA = (dutyA/time);              //distance/time = average speed for last 6th rotation
    pretimerA = afttimerA;                  //update pretimer for next calculation of time
    terminal.printf("speedA %f\n\r", speedA);
}

void set_distanceB()
{
    float time = 0;

    afttimerB = timer.read();
    distanceB += (wheelc/6);
    time = afttimerB - pretimerB;
    speedB = (dutyB/time);
    pretimerB = afttimerB;
    terminal.printf("speedB %f\n\r", speedB);
}


int main()
{
    //Configure the terminal to high speed
    terminal.baud(115200);

    HEA1.rise(set_distanceA);
    HEB1.rise(set_distanceB);
    //Set initial motor speed to stop
    stopmotors();
    PWMA.period_ms(10);
    PWMB.period_ms(10);
    while(1) {
        //wait for switch press
        while (SW1 == PRESSED) {
            wait(0.01);
            while(SW1 == RELEASED) {

                //navigate course
                for (int i = 0; i<2; i++) {
                    forward(12,0.75);
                    //terminal.printf("turn\n\r");
                    turn(100,1,0);
                    //terminal.printf("forward\n\r");
                    forward(7,0.75);
                    //terminal.printf("turn\n\r");
                    turn(100,1,0);
                }

                stopmotors();

                wait(0.5);

                //victory spin
                turn(365,1,1);

                stopmotors();
                break;
            }
        }
    }

}