Cell voltages fork (SoC)

Dependencies:   CUER_CAN CUER_DS1820 LTC2943 LTC6804 mbed PowerControl

Committer:
DasSidG
Date:
Sat Aug 19 18:57:18 2017 +0000
Revision:
54:f18d3af300ba
Parent:
52:63e84c6a9cfd
Child:
55:41c18d898d97
Removed all LTC2943 functionality as no longer working. Replaced it with the equivalent functionality from the IVT-A. Preliminary tests seem to suggests that it all works fine, including robustmess to weird power conditions

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lcockerton62 0:0a5f554d2a16 1 #include "mbed.h"
lcockerton62 0:0a5f554d2a16 2 #include "CANParserBMU.h"
lcockerton62 0:0a5f554d2a16 3 #include "Data_Types_BMU.h"
lcockerton62 0:0a5f554d2a16 4 #include "CAN_Data.h"
lcockerton62 0:0a5f554d2a16 5 #include "CAN_IDs.h"
lcockerton62 1:51477fe4851b 6 #include "EEPROM_I2C.h"
lcockerton62 1:51477fe4851b 7 #include "Temperature.h"
DasSidG 54:f18d3af300ba 8 //#include "LTC2943_Read.h"
maxv008 10:1079f8e52d65 9 #include "Cell_Voltage.h"
maxv008 25:1fe8a42f8a6d 10 #include "LTC2943.h"
DasSidG 54:f18d3af300ba 11 #include "IVTA.h"
DasSidG 41:9183c5616281 12 #include "PowerControl/PowerControl.h"
DasSidG 41:9183c5616281 13 #include "PowerControl/EthernetPowerControl.h"
lcockerton62 0:0a5f554d2a16 14
DasSidG 54:f18d3af300ba 15 #define DEBUG 1
DasSidG 54:f18d3af300ba 16 #define TEMPERATURE_DEBUG 0
DasSidG 52:63e84c6a9cfd 17 #define TRANSMIT_MODE 1 //Useful to allow testing CAN read on BCU. Leave as 1 for BMS (and CAN write) 0 for BCU read-mode
DasSidG 52:63e84c6a9cfd 18 #define TEMPERATURE_READING_ON 0 //enable/disable temperature measurements
DasSidG 51:95a55958904d 19 #define CAN_TIMEOUT_MS 100
msharma97 9:82ba050a7e13 20
lcockerton62 0:0a5f554d2a16 21 using namespace CAN_IDs;
lcockerton62 0:0a5f554d2a16 22
lcockerton62 0:0a5f554d2a16 23 // Function definitions
lcockerton62 1:51477fe4851b 24 void transmit_data(BMU_data measurements,uint32_t status);
lcockerton62 1:51477fe4851b 25 void read_temperature_sensors(BMU_data &measurements);
lcockerton62 0:0a5f554d2a16 26 void update_SOC();
lcockerton62 0:0a5f554d2a16 27 void init();
maxv008 14:e0e88a009f4c 28 void interruptHandler();
maxv008 14:e0e88a009f4c 29 void CANDataSentCallback();
DasSidG 51:95a55958904d 30 bool can_send(CANMessage msg);
lcockerton62 1:51477fe4851b 31 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address);
lcockerton62 1:51477fe4851b 32 uint16_t read_EEPROM_startup(BMU_data &measurements);
maxv008 32:5b82679b2e6f 33 void reset_EEPROM(float init_SOC, float init_SOC_Percent);
lcockerton62 1:51477fe4851b 34 uint32_t check_measurements(BMU_data &measurements);
maxv008 23:a1af4439c1fc 35 uint32_t take_measurements(BMU_data &measurements);
maxv008 14:e0e88a009f4c 36 void test_read_CAN_buffer();
DasSidG 12:fa9b1a459e47 37 bool test_read_voltage_CAN(uint16_t readings[], int can_ids[]);
maxv008 10:1079f8e52d65 38 void test_CAN_send();
maxv008 10:1079f8e52d65 39 void test_CAN_read();
maxv008 35:be07fef5db72 40 bool check_EEPROM_PEC(char start_address_array[], char SOC_out[]);
DasSidG 54:f18d3af300ba 41
DasSidG 52:63e84c6a9cfd 42 void read_temperatures_from_CAN();
maxv008 45:c288d7cbdb4a 43 //IVTA stuff (sorry for the mess)
DasSidG 54:f18d3af300ba 44
maxv008 45:c288d7cbdb4a 45 Serial pc(USBTX, USBRX);
DasSidG 54:f18d3af300ba 46
lcockerton62 0:0a5f554d2a16 47
lcockerton62 0:0a5f554d2a16 48 CAN can(CAN_READ_PIN, CAN_WRITE_PIN); //Create a CAN object to handle CAN comms
maxv008 14:e0e88a009f4c 49 CANMessage buffer[CAN_BUFFER_SIZE]; //CAN receive buffer
maxv008 14:e0e88a009f4c 50 bool safe_to_write[CAN_BUFFER_SIZE]; //Semaphore bit indicating that it's safe to write to the software buffer
maxv008 14:e0e88a009f4c 51 bool CAN_data_sent = false;
maxv008 14:e0e88a009f4c 52
maxv008 20:a1a1bfc938da 53 //Global array to store most recently obtained voltage and temp measurement:
maxv008 17:94dd9a0d3870 54 CMU_voltage voltage_readings[NO_CMUS];
maxv008 20:a1a1bfc938da 55 individual_temperature templist[NO_TEMPERATURE_SENSORS];
maxv008 28:f1f882bd1653 56 uint32_t status;
DasSidG 38:b1f5bfe38d70 57 int temperature_counter = TEMPERATURE_MEASUREMENT_FREQ;
DasSidG 38:b1f5bfe38d70 58
maxv008 17:94dd9a0d3870 59
maxv008 48:5c3f42c44036 60 uint16_t eeprom_start_address; //the current address where we store/read SoC values
lcockerton62 0:0a5f554d2a16 61
lcockerton62 1:51477fe4851b 62 Timeout loop_delay;
lcockerton62 1:51477fe4851b 63 bool delay_finished = false;
lcockerton62 2:94716229ecc3 64
DasSidG 39:34be1b8f46be 65 void loop_delay_callback(void) {
DasSidG 39:34be1b8f46be 66 delay_finished = true;
DasSidG 39:34be1b8f46be 67 }
DasSidG 39:34be1b8f46be 68
DasSidG 54:f18d3af300ba 69 float initial_pack_SOC; //The SOC value in Ah read at startup
DasSidG 54:f18d3af300ba 70
maxv008 28:f1f882bd1653 71 float packSOC;
maxv008 28:f1f882bd1653 72 float packSOCPercentage;
maxv008 28:f1f882bd1653 73 pack_voltage_extremes minVolt;
maxv008 28:f1f882bd1653 74 pack_voltage_extremes maxVolt;
maxv008 28:f1f882bd1653 75 pack_temperature_extremes minTemp;
maxv008 28:f1f882bd1653 76 pack_temperature_extremes maxTemp;
DasSidG 54:f18d3af300ba 77 float batteryCurrent;
DasSidG 54:f18d3af300ba 78 uint32_t batteryVoltage;
maxv008 14:e0e88a009f4c 79
DasSidG 52:63e84c6a9cfd 80 Timer temp_measurements_timer;
DasSidG 52:63e84c6a9cfd 81 bool temperature_measurements_received = false;
DasSidG 52:63e84c6a9cfd 82
DasSidG 52:63e84c6a9cfd 83
maxv008 48:5c3f42c44036 84 BMU_data measurements; //Put as global variable so interrupt can see it, otherwise treated like it is local to main
DasSidG 52:63e84c6a9cfd 85
DasSidG 52:63e84c6a9cfd 86
lcockerton62 0:0a5f554d2a16 87 int main()
maxv008 48:5c3f42c44036 88 {
DasSidG 46:ac7065d52d6e 89 //uint16_t volt_readings[36];
DasSidG 46:ac7065d52d6e 90 //int can_ids[9];
maxv008 10:1079f8e52d65 91
DasSidG 54:f18d3af300ba 92 //reset_EEPROM(20, 33);
DasSidG 54:f18d3af300ba 93
lcockerton62 0:0a5f554d2a16 94 init();
maxv008 10:1079f8e52d65 95
DasSidG 52:63e84c6a9cfd 96 temp_measurements_timer.start();
DasSidG 52:63e84c6a9cfd 97
maxv008 48:5c3f42c44036 98 //eeprom_start_address = 0x0040; //reset has no way of setting the current address for rest of code.
maxv008 35:be07fef5db72 99 //reset_EEPROM(1,100); //Used to completely initialize EEPROM as if it has never been touched
DasSidG 54:f18d3af300ba 100
DasSidG 54:f18d3af300ba 101
DasSidG 54:f18d3af300ba 102 //ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge
DasSidG 4:9050c5d6925e 103
lcockerton62 1:51477fe4851b 104 while (true) {
DasSidG 11:cf2db05cfa56 105
DasSidG 54:f18d3af300ba 106 if (DEBUG) printf("Current EEPROM Address %d \r\n", eeprom_start_address);
DasSidG 54:f18d3af300ba 107 if (DEBUG) printf("SOC is %f and SOC Percentage is %f \r\n", measurements.SOC, measurements.percentage_SOC);
DasSidG 54:f18d3af300ba 108
maxv008 35:be07fef5db72 109 Timer t;
maxv008 35:be07fef5db72 110 t.start();
maxv008 35:be07fef5db72 111
maxv008 45:c288d7cbdb4a 112 if(TRANSMIT_MODE) status = take_measurements(measurements);
maxv008 35:be07fef5db72 113 // Dont want to read the temperature sensors during each iteration of the loop
lcockerton62 0:0a5f554d2a16 114
lcockerton62 1:51477fe4851b 115 //Store data in the eeprom
maxv008 48:5c3f42c44036 116 if(TRANSMIT_MODE) write_SOC_EEPROM(measurements, eeprom_start_address);
maxv008 35:be07fef5db72 117
lcockerton62 5:793afeef45dc 118 // CAN bus
maxv008 14:e0e88a009f4c 119 //while(!CAN_data_sent); in order to ensure sending completes
DasSidG 52:63e84c6a9cfd 120 if(TRANSMIT_MODE) {
maxv008 45:c288d7cbdb4a 121 transmit_data(measurements,status);
DasSidG 52:63e84c6a9cfd 122 read_temperatures_from_CAN();
DasSidG 52:63e84c6a9cfd 123 }
maxv008 45:c288d7cbdb4a 124 else
maxv008 45:c288d7cbdb4a 125 test_read_CAN_buffer();
DasSidG 11:cf2db05cfa56 126
DasSidG 39:34be1b8f46be 127
lcockerton62 0:0a5f554d2a16 128 // Conserve power - enter a low powered mode
lcockerton62 2:94716229ecc3 129 delay_finished = false;
lcockerton62 1:51477fe4851b 130 loop_delay.attach(loop_delay_callback, LOOP_DELAY_S);
DasSidG 40:0753cbb8bc6a 131 //while (!delay_finished) sleep();
DasSidG 39:34be1b8f46be 132
DasSidG 40:0753cbb8bc6a 133 wait(1);
DasSidG 54:f18d3af300ba 134 printf("Loop time is %d \r\n", t.read_ms());
maxv008 10:1079f8e52d65 135 }
lcockerton62 0:0a5f554d2a16 136 }
lcockerton62 0:0a5f554d2a16 137
lcockerton62 1:51477fe4851b 138 void transmit_data(BMU_data measurements, uint32_t status)
lcockerton62 0:0a5f554d2a16 139 {
msharma97 9:82ba050a7e13 140 CANMessage msg;
lcockerton62 0:0a5f554d2a16 141 /*
lcockerton62 0:0a5f554d2a16 142 Place all of the collected data onto the CAN bus
lcockerton62 0:0a5f554d2a16 143 */
maxv008 48:5c3f42c44036 144 //Send cell voltages
maxv008 13:7b42af989cd1 145 //voltages sent in sets of 4 + one cmu data set
msharma97 9:82ba050a7e13 146 int repeating_unit_length = NO_READINGS_PER_CMU /4 + 1;
maxv008 10:1079f8e52d65 147 for(uint16_t i= 0; i < NO_CMUS; i++) {
msharma97 9:82ba050a7e13 148 //input id is offset, data structure is info, voltage, voltage, ......
maxv008 10:1079f8e52d65 149 //This is a slightly modified version of the Tritium BMS datasheet, to add an extra voltage reading set.
maxv008 10:1079f8e52d65 150 msg = createVoltageTelemetry(repeating_unit_length*i+2, measurements.cell_voltages[i].voltages);
DasSidG 51:95a55958904d 151 can_send(msg);
DasSidG 36:1b23c0692f54 152 if (DEBUG) printf("Voltage Message id: %d \r\n", msg.id);
maxv008 17:94dd9a0d3870 153 //+4 - 4 cell voltages sent per measurement, simple pointer arithmetic
maxv008 10:1079f8e52d65 154 msg = createVoltageTelemetry(repeating_unit_length*i+3, measurements.cell_voltages[i].voltages + 4);
DasSidG 51:95a55958904d 155 can_send(msg);
DasSidG 36:1b23c0692f54 156 if (DEBUG) printf("Voltage Message id: %d \r\n", msg.id);
maxv008 10:1079f8e52d65 157 msg = createVoltageTelemetry(repeating_unit_length*i+4, measurements.cell_voltages[i].voltages + 8);
DasSidG 51:95a55958904d 158 can_send(msg);
DasSidG 36:1b23c0692f54 159 if (DEBUG) printf("Voltage Message id: %d \r\n", msg.id);
lcockerton62 1:51477fe4851b 160 }
maxv008 13:7b42af989cd1 161
maxv008 13:7b42af989cd1 162 //Transmitting all of the individual probes:
DasSidG 38:b1f5bfe38d70 163
DasSidG 52:63e84c6a9cfd 164 if (temperature_counter == TEMPERATURE_MEASUREMENT_FREQ && TEMPERATURE_READING_ON) { //TODO: uncomment this if we want temperature measurement
DasSidG 38:b1f5bfe38d70 165 for(uint8_t i = 0; i < devices_found; i++)
DasSidG 38:b1f5bfe38d70 166 {
DasSidG 38:b1f5bfe38d70 167 individual_temperature tempreading = measurements.temperature_measurements[i];
DasSidG 38:b1f5bfe38d70 168 msg = createTemperatureTelemetry(i, &tempreading.ROMID[0], tempreading.measurement);
DasSidG 51:95a55958904d 169 if(can_send(msg)) {
DasSidG 51:95a55958904d 170 }
DasSidG 38:b1f5bfe38d70 171 else
DasSidG 38:b1f5bfe38d70 172 if (DEBUG) printf("Sending Temperature Failed for some reason \r\n");
DasSidG 38:b1f5bfe38d70 173 }
maxv008 13:7b42af989cd1 174 }
lcockerton62 1:51477fe4851b 175
lcockerton62 1:51477fe4851b 176 // Create SOC CAN message
maxv008 23:a1af4439c1fc 177 msg = createPackSOC(measurements.SOC, measurements.percentage_SOC);
DasSidG 51:95a55958904d 178 can_send(msg);
DasSidG 36:1b23c0692f54 179 if (DEBUG) printf("SOC is %f and percentage SOC is %f and id is %d \r\n", measurements.SOC, measurements.percentage_SOC, msg.id);
maxv008 23:a1af4439c1fc 180
lcockerton62 1:51477fe4851b 181 // Min/max cell voltages
maxv008 23:a1af4439c1fc 182 msg = createCellVoltageMAXMIN(measurements.max_cell_voltage, measurements.min_cell_voltage);
DasSidG 51:95a55958904d 183 can_send(msg);
maxv008 23:a1af4439c1fc 184
maxv008 23:a1af4439c1fc 185 // Min/Max cell temperatures
DasSidG 52:63e84c6a9cfd 186
DasSidG 52:63e84c6a9cfd 187 if (TEMPERATURE_READING_ON) {
DasSidG 52:63e84c6a9cfd 188 msg = createCellTemperatureMAXMIN(measurements.min_cell_temp, true);
DasSidG 52:63e84c6a9cfd 189 can_send(msg);
DasSidG 52:63e84c6a9cfd 190 msg = createCellTemperatureMAXMIN(measurements.max_cell_temp, false);
DasSidG 52:63e84c6a9cfd 191 can_send(msg);
DasSidG 52:63e84c6a9cfd 192 // Battery voltage and current
DasSidG 52:63e84c6a9cfd 193 }
DasSidG 52:63e84c6a9cfd 194
maxv008 23:a1af4439c1fc 195 msg = createBatteryVI(measurements.battery_voltage,measurements.battery_current);
DasSidG 51:95a55958904d 196 can_send(msg);
DasSidG 36:1b23c0692f54 197 if (DEBUG) printf("Sent Battery voltage %d and current %f with id %d \r\n",decodeBatteryVoltage(msg),decodeBatteryCurrent(msg),msg.id);
maxv008 23:a1af4439c1fc 198
lcockerton62 1:51477fe4851b 199 //Extended battery pack status
maxv008 23:a1af4439c1fc 200 msg = createExtendedBatteryPackStatus(status);
DasSidG 51:95a55958904d 201 can_send(msg);
DasSidG 36:1b23c0692f54 202 if (DEBUG) printf("Sent battery pack status with value %d \r\n", status);
DasSidG 36:1b23c0692f54 203
maxv008 31:888b2602aab2 204 msg = createBMSHeartbeat(0, 0);
DasSidG 51:95a55958904d 205 can_send(msg);
DasSidG 54:f18d3af300ba 206 //msg = createIVTACurrent(measurements.ivta_current);
DasSidG 54:f18d3af300ba 207 //can_send(msg);
lcockerton62 0:0a5f554d2a16 208 }
lcockerton62 0:0a5f554d2a16 209
maxv008 10:1079f8e52d65 210
lcockerton62 1:51477fe4851b 211 uint16_t read_EEPROM_startup(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 212 {
lcockerton62 1:51477fe4851b 213 /* The first page of the EEPROM, specifically the first 2 addresses store a
lcockerton62 1:51477fe4851b 214 pointer of the first memory location of measurement data. The EEPROM only has a finite number of
lcockerton62 1:51477fe4851b 215 read/write cycles which is why we aren't writing to the same location throughout
lcockerton62 1:51477fe4851b 216 */
lcockerton62 30:d90895e96226 217 uint16_t start_address1;
lcockerton62 30:d90895e96226 218 uint16_t start_address2;
maxv008 35:be07fef5db72 219 char start_address_array1[4];
maxv008 35:be07fef5db72 220 char start_address_array2[4];
lcockerton62 22:2df45c818786 221 char SOC_out[10]; // 4 bytes for the 2 floats one is SOC and the other % charge
lcockerton62 30:d90895e96226 222 bool is_first_read_true = 0;
lcockerton62 30:d90895e96226 223 bool is_second_read_true = 0;
maxv008 35:be07fef5db72 224
maxv008 35:be07fef5db72 225 union float2bytes { float f; char b[sizeof(float)]; };
maxv008 35:be07fef5db72 226 float2bytes SOC_union;
maxv008 35:be07fef5db72 227 float2bytes SOC_Percent_union;
lcockerton62 30:d90895e96226 228
lcockerton62 30:d90895e96226 229 // Get a pointer to the start address for the data stored in the eeprom
maxv008 35:be07fef5db72 230 i2c_page_read(0x0000, 4, start_address_array1);
DasSidG 36:1b23c0692f54 231 if (DEBUG) printf("\r\n\ Start address (%d,%d) \r\n \r\n", start_address_array1[0], start_address_array1[1]);
DasSidG 54:f18d3af300ba 232 wait_ms(10);
maxv008 35:be07fef5db72 233 i2c_page_read(0x0004, 4, start_address_array2);
lcockerton62 30:d90895e96226 234
maxv008 35:be07fef5db72 235 is_first_read_true = check_EEPROM_PEC(start_address_array1, SOC_out);
lcockerton62 30:d90895e96226 236
lcockerton62 30:d90895e96226 237 if(is_first_read_true){
maxv008 35:be07fef5db72 238 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 239 SOC_union.b[i] = SOC_out[i];
maxv008 35:be07fef5db72 240 }
maxv008 35:be07fef5db72 241
maxv008 35:be07fef5db72 242 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 243 SOC_Percent_union.b[i] = SOC_out[i + sizeof(float)];
maxv008 35:be07fef5db72 244 }
maxv008 35:be07fef5db72 245 measurements.SOC = SOC_union.f;
maxv008 35:be07fef5db72 246 measurements.percentage_SOC = SOC_Percent_union.f;
lcockerton62 30:d90895e96226 247 }
lcockerton62 30:d90895e96226 248 else{
maxv008 35:be07fef5db72 249 is_second_read_true = check_EEPROM_PEC(start_address_array2, SOC_out);
lcockerton62 30:d90895e96226 250
lcockerton62 30:d90895e96226 251 if(is_second_read_true){
maxv008 35:be07fef5db72 252 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 253 SOC_union.b[i] = SOC_out[i];
maxv008 35:be07fef5db72 254 }
maxv008 35:be07fef5db72 255
maxv008 35:be07fef5db72 256 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 257 SOC_Percent_union.b[i] = SOC_out[i + sizeof(float)];
maxv008 35:be07fef5db72 258 }
maxv008 35:be07fef5db72 259 measurements.SOC = SOC_union.f;
maxv008 35:be07fef5db72 260 measurements.percentage_SOC = SOC_Percent_union.f;
lcockerton62 30:d90895e96226 261 }
lcockerton62 30:d90895e96226 262 }
lcockerton62 30:d90895e96226 263
lcockerton62 30:d90895e96226 264 if(is_second_read_true || is_first_read_true){
lcockerton62 30:d90895e96226 265 // Select the next address to write to
maxv008 35:be07fef5db72 266 start_address1 = (start_address_array1[1] << 8) | (start_address_array1[0]);
maxv008 35:be07fef5db72 267 start_address2 = (start_address_array2[1] << 8) | (start_address_array2[0]);
maxv008 35:be07fef5db72 268 start_address1 += 0x0040;
maxv008 32:5b82679b2e6f 269 start_address2 += 0x0040; //Also each SOC is taking 0xA space, so 0x15 should be sufficient offset
maxv008 35:be07fef5db72 270 if(start_address2 > MAX_WRITE_ADDRESS) { //Check second start address since it is the larger value.
DasSidG 36:1b23c0692f54 271 if (DEBUG) printf("Resetting start_address \r\n");
lcockerton62 30:d90895e96226 272 start_address1 = START_WRITE_ADDRESS; // Loop to the start of the eeprom
lcockerton62 30:d90895e96226 273 start_address2 = START_WRITE_ADDRESS + SECOND_ADDRESS_OFFSET; // Write this data SECOND_ADDRESS_OFFSET memory locations later than the first set // (this was chosen since only 10 bytes are written to memory
lcockerton62 30:d90895e96226 274 }
maxv008 35:be07fef5db72 275 start_address_array1[0] = start_address1 & 0x00FF;
maxv008 35:be07fef5db72 276 start_address_array1[1] = start_address1 >> 8;
maxv008 35:be07fef5db72 277 start_address_array2[0] = start_address2 & 0x00FF;
maxv008 32:5b82679b2e6f 278 start_address_array2[1] = start_address2 >> 8;
maxv008 35:be07fef5db72 279 //PEC for new address
maxv008 35:be07fef5db72 280 uint16_t pec_address1 = pec15_calc(2, (uint8_t*)start_address_array1);
maxv008 35:be07fef5db72 281 uint16_t pec_address2 = pec15_calc(2, (uint8_t*)start_address_array2);
maxv008 35:be07fef5db72 282 start_address_array1[2] = (char) (pec_address1 >> 8);
maxv008 35:be07fef5db72 283 start_address_array1[3] = (char) (pec_address1);
maxv008 35:be07fef5db72 284 start_address_array2[2] = (char) (pec_address2 >> 8);
maxv008 35:be07fef5db72 285 start_address_array2[3] = (char) (pec_address2);
lcockerton62 30:d90895e96226 286
lcockerton62 30:d90895e96226 287 // Write the new location of the address to memory
maxv008 35:be07fef5db72 288 wait_ms(10);
maxv008 35:be07fef5db72 289 i2c_page_write(0x0000, 4, start_address_array1);
maxv008 33:44b241c7b2c1 290 wait_ms(10);
maxv008 35:be07fef5db72 291 i2c_page_write(0x0004, 4, start_address_array2);
lcockerton62 30:d90895e96226 292
maxv008 35:be07fef5db72 293 write_SOC_EEPROM(measurements, start_address1); //Initializes new memory location to avoid PEC if reset without taking measurements.
lcockerton62 30:d90895e96226 294 return start_address1;
lcockerton62 30:d90895e96226 295 }
lcockerton62 30:d90895e96226 296 else{
DasSidG 46:ac7065d52d6e 297 if (DEBUG) printf("EEPROM PEC error \r\n"); //@TODO an error flag should be raised since both values have failed
maxv008 32:5b82679b2e6f 298
lcockerton62 30:d90895e96226 299 }
maxv008 32:5b82679b2e6f 300 return -1; //Will end up as maximum integer, just indicating an error.
maxv008 32:5b82679b2e6f 301 }
maxv008 32:5b82679b2e6f 302
maxv008 32:5b82679b2e6f 303 void reset_EEPROM(float init_SOC, float init_SOC_Percent)
maxv008 32:5b82679b2e6f 304 {
maxv008 32:5b82679b2e6f 305 char start_address_array1[2]; //Purely for testing
DasSidG 34:65fd6a72106f 306 char start_address_array2[2]; //Purely for testing
maxv008 33:44b241c7b2c1 307 char test_float_array[10];
maxv008 32:5b82679b2e6f 308 //Very first addresses to use
maxv008 35:be07fef5db72 309 char first_address[4] = {0x40,0,0,0}; //Address 0x0040, PEC section left blank to start
maxv008 35:be07fef5db72 310 char second_address[4] = {first_address[0] + SECOND_ADDRESS_OFFSET,0,0,0};
maxv008 32:5b82679b2e6f 311 uint16_t address1 = (first_address[1] << 8) | first_address[0];
maxv008 32:5b82679b2e6f 312 uint16_t address2 = (second_address[1] << 8) | second_address[0];
maxv008 35:be07fef5db72 313
maxv008 35:be07fef5db72 314 //PEC stuff for the addresses
maxv008 35:be07fef5db72 315 uint16_t pec_address1 = pec15_calc(2, (uint8_t*)first_address);
maxv008 35:be07fef5db72 316 uint16_t pec_address2 = pec15_calc(2, (uint8_t*)second_address);
maxv008 35:be07fef5db72 317 first_address[2] = (char) (pec_address1 >> 8);
maxv008 35:be07fef5db72 318 first_address[3] = (char) (pec_address1);
maxv008 35:be07fef5db72 319 second_address[2] = (char) (pec_address2 >> 8);
maxv008 35:be07fef5db72 320 second_address[3] = (char) (pec_address2);
maxv008 32:5b82679b2e6f 321
maxv008 48:5c3f42c44036 322 wait_ms(10);
maxv008 35:be07fef5db72 323 i2c_page_write(0x0000, 4, first_address);
maxv008 33:44b241c7b2c1 324 wait_ms(10);
maxv008 35:be07fef5db72 325 i2c_page_write(0x0004, 4, second_address); //This initializes addresses
maxv008 32:5b82679b2e6f 326 //Next segment is for putting initial SOC in:
maxv008 33:44b241c7b2c1 327 wait_ms(10);
maxv008 32:5b82679b2e6f 328
maxv008 32:5b82679b2e6f 329 char data_out[10];
maxv008 32:5b82679b2e6f 330 uint16_t data_pec;
DasSidG 34:65fd6a72106f 331
DasSidG 34:65fd6a72106f 332 union float2bytes { float f; char b[sizeof(float)]; };
DasSidG 34:65fd6a72106f 333
DasSidG 34:65fd6a72106f 334 float2bytes init_SOC_union;
DasSidG 34:65fd6a72106f 335 float2bytes init_SOC_Percent_union;
DasSidG 34:65fd6a72106f 336
DasSidG 34:65fd6a72106f 337 init_SOC_union.f = init_SOC;
DasSidG 34:65fd6a72106f 338 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 339 data_out[i] = init_SOC_union.b[i];
DasSidG 34:65fd6a72106f 340 }
DasSidG 34:65fd6a72106f 341
DasSidG 34:65fd6a72106f 342 init_SOC_Percent_union.f = init_SOC_Percent;
DasSidG 34:65fd6a72106f 343 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 344 data_out[i+sizeof(float)] = init_SOC_Percent_union.b[i];
DasSidG 34:65fd6a72106f 345 }
maxv008 32:5b82679b2e6f 346
maxv008 32:5b82679b2e6f 347 data_pec = pec15_calc(8, ((uint8_t*)data_out)); // Calculate the pec and then write it to memory
maxv008 32:5b82679b2e6f 348 data_out[8] = (char)(data_pec >> 8);
maxv008 32:5b82679b2e6f 349 data_out[9] = (char)(data_pec);
DasSidG 34:65fd6a72106f 350
maxv008 32:5b82679b2e6f 351 i2c_page_write(address1, 10,data_out);
maxv008 33:44b241c7b2c1 352 wait_ms(10);
maxv008 32:5b82679b2e6f 353 i2c_page_write(address2, 10,data_out);
DasSidG 34:65fd6a72106f 354 wait_ms(10);
maxv008 35:be07fef5db72 355 i2c_page_read(0x0000,4,start_address_array1);
DasSidG 34:65fd6a72106f 356 wait_ms(10);
maxv008 35:be07fef5db72 357 i2c_page_read(0x0004,4,start_address_array2);
DasSidG 36:1b23c0692f54 358 if (DEBUG) printf("Start address 1 is (%x,%x) \r\n \r\n", start_address_array1[0], start_address_array1[1]);
DasSidG 36:1b23c0692f54 359 if (DEBUG) printf("Start address 2 is (%x,%x) \r\n \r\n", start_address_array2[0], start_address_array2[1]);
maxv008 33:44b241c7b2c1 360 wait_ms(10);
maxv008 48:5c3f42c44036 361 //TODO: Figure out of this can be removed, unecessary reading for testing purposes. (Hide behind if(DEBUG)?)
DasSidG 34:65fd6a72106f 362 i2c_page_read(address1,10,test_float_array);
maxv008 35:be07fef5db72 363 /*for (int i = 0; i < 10; ++i) {
DasSidG 34:65fd6a72106f 364 printf("test_float array %d is %d \r\n", i, test_float_array[i]);
maxv008 35:be07fef5db72 365 }*/
DasSidG 34:65fd6a72106f 366
DasSidG 34:65fd6a72106f 367 float2bytes rec_init_SOC_union;
DasSidG 34:65fd6a72106f 368 float2bytes rec_init_SOC_Percentage_union;
DasSidG 34:65fd6a72106f 369
DasSidG 34:65fd6a72106f 370
DasSidG 34:65fd6a72106f 371 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 372 rec_init_SOC_union.b[i] = test_float_array[i];
DasSidG 34:65fd6a72106f 373 }
DasSidG 34:65fd6a72106f 374 float rec_init_SOC = rec_init_SOC_union.f;
DasSidG 34:65fd6a72106f 375
DasSidG 34:65fd6a72106f 376 for ( int i=0; i < sizeof(float); i++ ) {
DasSidG 34:65fd6a72106f 377 rec_init_SOC_Percentage_union.b[i] = test_float_array[i+4];
DasSidG 34:65fd6a72106f 378 }
DasSidG 34:65fd6a72106f 379 float rec_init_SOC_Percentage = rec_init_SOC_Percentage_union.f;
DasSidG 34:65fd6a72106f 380
DasSidG 36:1b23c0692f54 381 if (DEBUG) printf("init SOC %f \r\n \r\n", rec_init_SOC);
DasSidG 36:1b23c0692f54 382 if (DEBUG) printf("percentage SOC %f \r\n \r\n", rec_init_SOC_Percentage);
lcockerton62 30:d90895e96226 383 }
lcockerton62 30:d90895e96226 384
maxv008 35:be07fef5db72 385 bool check_EEPROM_PEC(char start_address_array[], char SOC_out[]){
lcockerton62 30:d90895e96226 386 // Helper method to check the PEC, returns 0 if the pec is wrong and 1 if the pec is correct
maxv008 35:be07fef5db72 387 uint16_t adr_recieved_pec;
maxv008 35:be07fef5db72 388 uint16_t adr_data_pec;
lcockerton62 22:2df45c818786 389 uint16_t received_pec;
lcockerton62 22:2df45c818786 390 uint16_t data_pec;
lcockerton62 30:d90895e96226 391
maxv008 35:be07fef5db72 392 //Check the PEC of the address itself
maxv008 35:be07fef5db72 393 adr_recieved_pec = (uint16_t)(start_address_array[2] << 8) + (uint16_t)start_address_array[3];
maxv008 35:be07fef5db72 394 adr_data_pec = pec15_calc(2, (uint8_t*)start_address_array);
maxv008 35:be07fef5db72 395 if(adr_recieved_pec != adr_data_pec){
DasSidG 36:1b23c0692f54 396 if (DEBUG) printf("PEC Error in address \r\n");
maxv008 35:be07fef5db72 397 return 0; //If they are equal, continue on to checking the data
maxv008 35:be07fef5db72 398 }
maxv008 35:be07fef5db72 399
lcockerton62 1:51477fe4851b 400 // Read the data from this address
maxv008 35:be07fef5db72 401 uint16_t start_address = (start_address_array[1]<< 8) | start_address_array[0]; // mbed little endian follow this convention
lcockerton62 22:2df45c818786 402 i2c_page_read(start_address, 10,SOC_out); // Reading will aquire 2 floats and a PEC for the data
lcockerton62 0:0a5f554d2a16 403
lcockerton62 22:2df45c818786 404 // Convert the SOC_out values back into floats and deal with the pec
lcockerton62 22:2df45c818786 405 received_pec = (uint16_t)(SOC_out[8]<<8) + (uint16_t)SOC_out[9];
lcockerton62 22:2df45c818786 406 data_pec = pec15_calc(8, (uint8_t*)SOC_out);
lcockerton62 22:2df45c818786 407 if(received_pec != data_pec) {
lcockerton62 30:d90895e96226 408 return 0;
lcockerton62 22:2df45c818786 409 }
lcockerton62 30:d90895e96226 410 else
lcockerton62 30:d90895e96226 411 return 1;
lcockerton62 0:0a5f554d2a16 412 }
lcockerton62 0:0a5f554d2a16 413
maxv008 35:be07fef5db72 414 //Note, this function does not check PEC of address, assumes correctness!
lcockerton62 1:51477fe4851b 415 void write_SOC_EEPROM(BMU_data &measurements,uint16_t start_address)
lcockerton62 0:0a5f554d2a16 416 {
lcockerton62 22:2df45c818786 417 char data_out[10];
maxv008 35:be07fef5db72 418 //float *fp1,*fp2;
lcockerton62 22:2df45c818786 419 uint16_t data_pec;
maxv008 35:be07fef5db72 420 union float2bytes { float f; char b[sizeof(float)]; };
maxv008 35:be07fef5db72 421 float2bytes SOC_union;
maxv008 35:be07fef5db72 422 float2bytes SOC_Percent_union;
lcockerton62 0:0a5f554d2a16 423
maxv008 35:be07fef5db72 424
maxv008 35:be07fef5db72 425 SOC_union.f = measurements.SOC;
maxv008 35:be07fef5db72 426 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 427 data_out[i] = SOC_union.b[i];
lcockerton62 1:51477fe4851b 428 }
maxv008 35:be07fef5db72 429
maxv008 35:be07fef5db72 430 SOC_Percent_union.f = measurements.percentage_SOC;
maxv008 35:be07fef5db72 431 for ( int i=0; i < sizeof(float); i++ ) {
maxv008 35:be07fef5db72 432 data_out[i+sizeof(float)] = SOC_Percent_union.b[i];
lcockerton62 1:51477fe4851b 433 }
maxv008 35:be07fef5db72 434
lcockerton62 22:2df45c818786 435 data_pec = pec15_calc(8, ((uint8_t*)data_out)); // Calculate the pec and then write it to memory
lcockerton62 22:2df45c818786 436 data_out[8] = (char)(data_pec >> 8);
lcockerton62 22:2df45c818786 437 data_out[9] = (char)(data_pec);
maxv008 35:be07fef5db72 438 wait_ms(10); //Just in case function calling it doesnt put a wait before hand
lcockerton62 30:d90895e96226 439 i2c_page_write(start_address, 10,data_out);
maxv008 35:be07fef5db72 440 wait_ms(10);
lcockerton62 30:d90895e96226 441 i2c_page_write((start_address+SECOND_ADDRESS_OFFSET), 10,data_out); // Write the data to the backup memory location, SECOND_ADDRESS_OFFSET memory locations later
lcockerton62 0:0a5f554d2a16 442 }
lcockerton62 0:0a5f554d2a16 443
maxv008 45:c288d7cbdb4a 444
maxv008 45:c288d7cbdb4a 445
maxv008 45:c288d7cbdb4a 446
lcockerton62 1:51477fe4851b 447 void read_temperature_sensors(BMU_data &measurements)
lcockerton62 0:0a5f554d2a16 448 {
lcockerton62 1:51477fe4851b 449 float min_temperature;
maxv008 23:a1af4439c1fc 450 char min_id[8];
lcockerton62 1:51477fe4851b 451 float max_temperature;
maxv008 23:a1af4439c1fc 452 char max_id[8];
DasSidG 21:d461d58e70fc 453 isotherm_12V_pin = 1;
lcockerton62 1:51477fe4851b 454 probe[0]->convert_temperature(DS1820::all_devices);
DasSidG 21:d461d58e70fc 455
lcockerton62 1:51477fe4851b 456 min_temperature = probe[0]->temperature('C');
maxv008 23:a1af4439c1fc 457 std::memcpy(min_id, probe[0]->ROM, sizeof(char)*8); //invalid shallow copy: min_id = probe[0]->ROM;
lcockerton62 1:51477fe4851b 458 max_temperature = min_temperature; // Initially set the max and min temperature equal
maxv008 23:a1af4439c1fc 459 std::memcpy(max_id, probe[0]->ROM, sizeof(char)*8);
DasSidG 16:b2ef68c9a4fd 460 for (int i=0; i<devices_found; i++) {
maxv008 14:e0e88a009f4c 461 for(int j = 0; j < 7; j++)
maxv008 14:e0e88a009f4c 462 measurements.temperature_measurements[i].ROMID[j] = probe[i]->ROM[j];
lcockerton62 1:51477fe4851b 463 measurements.temperature_measurements[i].measurement = probe[i] ->temperature('C');
maxv008 14:e0e88a009f4c 464
lcockerton62 1:51477fe4851b 465 if(measurements.temperature_measurements[i].measurement > max_temperature) {
lcockerton62 1:51477fe4851b 466 max_temperature = measurements.temperature_measurements[i].measurement;
maxv008 23:a1af4439c1fc 467 std::memcpy(max_id, measurements.temperature_measurements[i].ROMID, sizeof(char)*8);
lcockerton62 2:94716229ecc3 468 } else if (measurements.temperature_measurements[i].measurement < min_temperature) {
lcockerton62 1:51477fe4851b 469 min_temperature = measurements.temperature_measurements[i].measurement;
maxv008 23:a1af4439c1fc 470 std::memcpy(min_id, measurements.temperature_measurements[i].ROMID, sizeof(char)*8);
lcockerton62 1:51477fe4851b 471 }
DasSidG 12:fa9b1a459e47 472
maxv008 18:521ffdd724f3 473 //printf("Device %d temperature is %3.3f degrees Celcius.\r\n",i+1 ,probe[i]->temperature('C'));
lcockerton62 1:51477fe4851b 474 }
DasSidG 21:d461d58e70fc 475 isotherm_12V_pin = 0;
maxv008 13:7b42af989cd1 476 //There is also a CMU # component of this struct, currently unfilled, perhaps not needed at all.
lcockerton62 1:51477fe4851b 477 measurements.max_cell_temp.temperature = max_temperature;
maxv008 23:a1af4439c1fc 478 std::memcpy(measurements.max_cell_temp.ROMID, max_id, sizeof(char)*8);
lcockerton62 1:51477fe4851b 479 measurements.min_cell_temp.temperature = min_temperature;
maxv008 28:f1f882bd1653 480 std::memcpy(measurements.min_cell_temp.ROMID, min_id, sizeof(char)*8);
maxv008 28:f1f882bd1653 481 delete max_id;
maxv008 28:f1f882bd1653 482 delete min_id;
lcockerton62 0:0a5f554d2a16 483 }
lcockerton62 0:0a5f554d2a16 484
DasSidG 54:f18d3af300ba 485 /*
lcockerton62 0:0a5f554d2a16 486 void update_SOC()
lcockerton62 0:0a5f554d2a16 487 {
lcockerton62 1:51477fe4851b 488 // Update the SOC value
maxv008 25:1fe8a42f8a6d 489 ltc2943.readAll();
DasSidG 54:f18d3af300ba 490 }*/
lcockerton62 0:0a5f554d2a16 491
lcockerton62 0:0a5f554d2a16 492
lcockerton62 1:51477fe4851b 493 uint32_t check_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 494 {
DasSidG 52:63e84c6a9cfd 495 const int initial_temperature_delay = 5; // in seconds, delay to allow the first temperature measurements to come in
DasSidG 52:63e84c6a9cfd 496
DasSidG 46:ac7065d52d6e 497 uint32_t status = 0;
lcockerton62 2:94716229ecc3 498
lcockerton62 2:94716229ecc3 499 if(measurements.max_cell_voltage.voltage > MAX_CELL_VOLTAGE) {
lcockerton62 2:94716229ecc3 500 status = status | CELL_OVER_VOLTAGE;
DasSidG 52:63e84c6a9cfd 501 }
DasSidG 52:63e84c6a9cfd 502 if (measurements.min_cell_voltage.voltage < MIN_CELL_VOLTAGE) {
lcockerton62 1:51477fe4851b 503 status = status | CELL_UNDER_VOLTAGE;
DasSidG 52:63e84c6a9cfd 504 }
DasSidG 52:63e84c6a9cfd 505 if (maxTemp.temperature > MAX_CELL_CHARGE_TEMPERATURE && (temp_measurements_timer.read() > initial_temperature_delay || temperature_measurements_received)) {
DasSidG 52:63e84c6a9cfd 506 status = status | CELL_OVER_CHARGE_TEMPERATURE;
DasSidG 52:63e84c6a9cfd 507 }
DasSidG 52:63e84c6a9cfd 508 if (maxTemp.temperature > MAX_CELL_DISCHARGE_TEMPERATURE && (temp_measurements_timer.read() > initial_temperature_delay || temperature_measurements_received)) {
DasSidG 52:63e84c6a9cfd 509 status = status | CELL_OVER_DISCHARGE_TEMPERATURE;
DasSidG 52:63e84c6a9cfd 510 }
DasSidG 52:63e84c6a9cfd 511 if (minTemp.temperature < MIN_CELL_CHARGE_TEMPERATURE && (temp_measurements_timer.read() > initial_temperature_delay || temperature_measurements_received)) {
DasSidG 52:63e84c6a9cfd 512 status = status | CELL_UNDER_CHARGE_TEMPERATURE;
DasSidG 52:63e84c6a9cfd 513 }
DasSidG 52:63e84c6a9cfd 514 if (minTemp.temperature < MIN_CELL_DISCHARGE_TEMPERATURE && (temp_measurements_timer.read() > initial_temperature_delay || temperature_measurements_received)) {
DasSidG 52:63e84c6a9cfd 515 status = status | CELL_UNDER_DISCHARGE_TEMPERATURE;
lcockerton62 1:51477fe4851b 516 }
lcockerton62 2:94716229ecc3 517
lcockerton62 1:51477fe4851b 518 /*
lcockerton62 1:51477fe4851b 519 @TODO also include errors for:
lcockerton62 1:51477fe4851b 520 *untrusted measurement
lcockerton62 1:51477fe4851b 521 *CMU timeout
lcockerton62 1:51477fe4851b 522 *SOC not valid
lcockerton62 1:51477fe4851b 523 */
lcockerton62 1:51477fe4851b 524 return status;
lcockerton62 1:51477fe4851b 525 }
lcockerton62 1:51477fe4851b 526
maxv008 23:a1af4439c1fc 527 //Returns the status variable
maxv008 23:a1af4439c1fc 528 uint32_t take_measurements(BMU_data &measurements)
lcockerton62 1:51477fe4851b 529 {
maxv008 6:b567fcb604aa 530 uint16_t cellvoltages[NO_CMUS][12];
DasSidG 16:b2ef68c9a4fd 531 //Use LTC6804_acquireVoltage to fill this array, and then properly format
maxv008 6:b567fcb604aa 532 //it to be sent over CAN
maxv008 6:b567fcb604aa 533
DasSidG 46:ac7065d52d6e 534 LTC6804_acquireVoltage(cellvoltages);
maxv008 23:a1af4439c1fc 535 pack_voltage_extremes min_voltage;
DasSidG 37:fae62a2773a1 536 pack_voltage_extremes max_voltage;
maxv008 23:a1af4439c1fc 537 min_voltage.voltage = 65535; //largest 16 bit unsigned int
maxv008 23:a1af4439c1fc 538 max_voltage.voltage = 0;
maxv008 23:a1af4439c1fc 539
DasSidG 37:fae62a2773a1 540 bool last_CMU = false;
maxv008 23:a1af4439c1fc 541 //Sets voltage readings as well as max/min voltage values.
maxv008 10:1079f8e52d65 542 for(int i=0; i<NO_CMUS; i++){
DasSidG 37:fae62a2773a1 543 if (i == (NO_CMUS - 1)) last_CMU = true;
maxv008 17:94dd9a0d3870 544 for(int j=0; j < NO_READINGS_PER_CMU; j++){
DasSidG 16:b2ef68c9a4fd 545 measurements.cell_voltages[i].voltages[j] = cellvoltages[i][j]/ 10; //To get units of mV
maxv008 17:94dd9a0d3870 546 measurements.cell_voltages[i].CMU_number = i;
DasSidG 37:fae62a2773a1 547
DasSidG 37:fae62a2773a1 548 if(!(last_CMU && j >(NO_READINGS_PER_CMU - (NUM_MISSING_CELLS + 1))))
DasSidG 37:fae62a2773a1 549 //the condition above is to account for the missing cells (not a complete set of 12) on the top CMU
maxv008 23:a1af4439c1fc 550 {
DasSidG 37:fae62a2773a1 551 if(measurements.cell_voltages[i].voltages[j] < min_voltage.voltage)
DasSidG 37:fae62a2773a1 552 {
DasSidG 37:fae62a2773a1 553 min_voltage.voltage = measurements.cell_voltages[i].voltages[j];
DasSidG 37:fae62a2773a1 554 min_voltage.CMU_number = i;
DasSidG 37:fae62a2773a1 555 min_voltage.cell_number = j;
DasSidG 37:fae62a2773a1 556 }
DasSidG 37:fae62a2773a1 557 else if(measurements.cell_voltages[i].voltages[j] > max_voltage.voltage)
DasSidG 37:fae62a2773a1 558 {
DasSidG 37:fae62a2773a1 559 max_voltage.voltage = measurements.cell_voltages[i].voltages[j];
DasSidG 37:fae62a2773a1 560 max_voltage.CMU_number = i;
DasSidG 37:fae62a2773a1 561 max_voltage.cell_number = j;
DasSidG 37:fae62a2773a1 562 }
DasSidG 37:fae62a2773a1 563 }
maxv008 10:1079f8e52d65 564 }
maxv008 23:a1af4439c1fc 565 }
maxv008 23:a1af4439c1fc 566 measurements.max_cell_voltage = max_voltage;
DasSidG 36:1b23c0692f54 567 if (DEBUG) printf("Max Voltage is %d \r\n", max_voltage.voltage);
maxv008 23:a1af4439c1fc 568 measurements.min_cell_voltage = min_voltage;
DasSidG 36:1b23c0692f54 569 if (DEBUG) printf("Min Voltage is %d \r\n", min_voltage.voltage);
DasSidG 4:9050c5d6925e 570
DasSidG 38:b1f5bfe38d70 571 //Code to take all temperature measurements and add it to measurements struct.
DasSidG 38:b1f5bfe38d70 572 //Don't need to take temperature measurements every loop though
DasSidG 38:b1f5bfe38d70 573
DasSidG 52:63e84c6a9cfd 574 if (temperature_counter ==TEMPERATURE_MEASUREMENT_FREQ && TEMPERATURE_READING_ON) {
DasSidG 38:b1f5bfe38d70 575 read_temperature_sensors(measurements);
DasSidG 38:b1f5bfe38d70 576 temperature_counter = 0;
DasSidG 38:b1f5bfe38d70 577 }
DasSidG 38:b1f5bfe38d70 578 temperature_counter++;
DasSidG 38:b1f5bfe38d70 579
DasSidG 54:f18d3af300ba 580 //update_SOC();
maxv008 31:888b2602aab2 581 measurements.battery_voltage = 0;
maxv008 31:888b2602aab2 582 for(int i = 0; i < NO_CMUS; i++)
maxv008 31:888b2602aab2 583 {
maxv008 31:888b2602aab2 584 for(int j = 0; j < NO_READINGS_PER_CMU; j++)
maxv008 31:888b2602aab2 585 {
maxv008 31:888b2602aab2 586 measurements.battery_voltage += measurements.cell_voltages[i].voltages[j];
maxv008 31:888b2602aab2 587 }
maxv008 31:888b2602aab2 588 }
DasSidG 54:f18d3af300ba 589
DasSidG 54:f18d3af300ba 590 // //The following takes IVT-A measurement
maxv008 23:a1af4439c1fc 591
DasSidG 54:f18d3af300ba 592 //int32_t temp_current;
DasSidG 54:f18d3af300ba 593 //if (ivta_get_current(temp_current)) measurements.ivta_current = temp_current;
DasSidG 54:f18d3af300ba 594
DasSidG 54:f18d3af300ba 595 int32_t temp_current;
DasSidG 54:f18d3af300ba 596 float temp_Ah;
maxv008 45:c288d7cbdb4a 597
DasSidG 54:f18d3af300ba 598 if (ivta_get_current(temp_current)) measurements.battery_current = temp_current;
DasSidG 54:f18d3af300ba 599 if (ivta_read_Ah_meter(temp_Ah)) measurements.SOC = initial_pack_SOC + temp_Ah;
DasSidG 54:f18d3af300ba 600 else { //crc check failed; assume the worst (that the IVT-A turned off and has reset its SoC value) and redo the startup phase
DasSidG 54:f18d3af300ba 601 read_EEPROM_startup(measurements);
DasSidG 54:f18d3af300ba 602 initial_pack_SOC = measurements.SOC;
DasSidG 54:f18d3af300ba 603 ivta_reset_Ah_meter();
DasSidG 54:f18d3af300ba 604 }
DasSidG 54:f18d3af300ba 605
DasSidG 54:f18d3af300ba 606 measurements.percentage_SOC = (measurements.SOC/BATTERY_CAPACITY) * 100;
DasSidG 54:f18d3af300ba 607 //measurements.battery_current =ltc2943.current() * 1000; //*1000 to convert to mA
DasSidG 54:f18d3af300ba 608 //measurements.percentage_SOC = ltc2943.accumulatedCharge();
DasSidG 54:f18d3af300ba 609 //measurements.SOC = (measurements.percentage_SOC /100) * BATTERY_CAPACITY;
maxv008 45:c288d7cbdb4a 610
DasSidG 54:f18d3af300ba 611
DasSidG 54:f18d3af300ba 612
maxv008 23:a1af4439c1fc 613 // Check data for errors
maxv008 23:a1af4439c1fc 614 return check_measurements(measurements);
lcockerton62 1:51477fe4851b 615 }
lcockerton62 1:51477fe4851b 616
lcockerton62 0:0a5f554d2a16 617 void init()
lcockerton62 0:0a5f554d2a16 618 {
DasSidG 41:9183c5616281 619 PHY_PowerDown();
DasSidG 41:9183c5616281 620
maxv008 45:c288d7cbdb4a 621 if(TRANSMIT_MODE)
maxv008 45:c288d7cbdb4a 622 {
DasSidG 52:63e84c6a9cfd 623 if (TEMPERATURE_READING_ON) temperature_init(); // Initialise the temperature sensors
DasSidG 54:f18d3af300ba 624 //LTC2943_initialise(); //Initialises the fixed parameters of the LTC2943
DasSidG 54:f18d3af300ba 625 //LTC6804_init(MD_FAST, DCP_DISABLED, CELL_CH_ALL, AUX_CH_VREF2); //Initialises the LTC6804s
maxv008 31:888b2602aab2 626
maxv008 45:c288d7cbdb4a 627 ivta_init();
DasSidG 54:f18d3af300ba 628 eeprom_start_address = read_EEPROM_startup(measurements); // Read from the eeprom at startup to fill in the values of SoC
DasSidG 54:f18d3af300ba 629 initial_pack_SOC = measurements.SOC;
DasSidG 54:f18d3af300ba 630 ivta_reset_Ah_meter(); //just in case somehow the IVT-A remained on whilst the BMU reset
maxv008 45:c288d7cbdb4a 631 }
maxv008 14:e0e88a009f4c 632 for(int i=0; i<CAN_BUFFER_SIZE; i++)
maxv008 14:e0e88a009f4c 633 {
maxv008 14:e0e88a009f4c 634 buffer[i].id = BLANK_ID;
maxv008 14:e0e88a009f4c 635 safe_to_write[i]= true;
maxv008 14:e0e88a009f4c 636 }
maxv008 14:e0e88a009f4c 637
maxv008 14:e0e88a009f4c 638 //Initialise CAN stuff, attach CAN interrupt handlers
maxv008 14:e0e88a009f4c 639 can.frequency(CAN_BIT_RATE); //set transmission rate to agreed bit rate (ELEC-006)
maxv008 14:e0e88a009f4c 640 can.reset(); // (FUNC-018)
maxv008 14:e0e88a009f4c 641 can.attach(&interruptHandler, CAN::RxIrq); //receive interrupt handler
maxv008 14:e0e88a009f4c 642 can.attach(&CANDataSentCallback, CAN::TxIrq); //send interrupt handler
maxv008 17:94dd9a0d3870 643
maxv008 17:94dd9a0d3870 644 //Initialize voltage array
maxv008 17:94dd9a0d3870 645 for(int i = 0; i < NO_CMUS; i++)
maxv008 17:94dd9a0d3870 646 {
maxv008 17:94dd9a0d3870 647 for(int j = 0; j < NO_READINGS_PER_CMU; j++)
maxv008 17:94dd9a0d3870 648 {
maxv008 17:94dd9a0d3870 649 voltage_readings[i].voltages[j] = 0;
maxv008 17:94dd9a0d3870 650 }
maxv008 17:94dd9a0d3870 651 }
DasSidG 52:63e84c6a9cfd 652
DasSidG 52:63e84c6a9cfd 653
maxv008 20:a1a1bfc938da 654 //Initialize Temperature Array
maxv008 20:a1a1bfc938da 655 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
maxv008 20:a1a1bfc938da 656 {
maxv008 28:f1f882bd1653 657 templist[i].measurement = INFINITY;
maxv008 20:a1a1bfc938da 658 templist[i].ID = 0;
maxv008 20:a1a1bfc938da 659 }
DasSidG 52:63e84c6a9cfd 660
maxv008 28:f1f882bd1653 661 //initialize stuff used in reading test:
maxv008 28:f1f882bd1653 662 packSOC = INFINITY;
maxv008 28:f1f882bd1653 663 packSOCPercentage = INFINITY;
maxv008 28:f1f882bd1653 664
maxv008 28:f1f882bd1653 665 minVolt.voltage = 0;
maxv008 28:f1f882bd1653 666 maxVolt.voltage = 0;
maxv008 28:f1f882bd1653 667
maxv008 28:f1f882bd1653 668 minTemp.temperature = 0; minTemp.ID = 0;
maxv008 28:f1f882bd1653 669 maxTemp.temperature = 0; maxTemp.ID = 0;
maxv008 31:888b2602aab2 670
maxv008 31:888b2602aab2 671 batteryCurrent = INFINITY; batteryVoltage = 0;
maxv008 14:e0e88a009f4c 672 }
maxv008 14:e0e88a009f4c 673
maxv008 14:e0e88a009f4c 674 void CANDataSentCallback(void) {
maxv008 14:e0e88a009f4c 675 CAN_data_sent = true;
lcockerton62 0:0a5f554d2a16 676 }
lcockerton62 0:0a5f554d2a16 677
maxv008 14:e0e88a009f4c 678 void interruptHandler()
maxv008 14:e0e88a009f4c 679 {
maxv008 14:e0e88a009f4c 680 CANMessage msg;
DasSidG 16:b2ef68c9a4fd 681 can.read(msg);
maxv008 14:e0e88a009f4c 682 for(int i=0; i<CAN_BUFFER_SIZE; i++) {
maxv008 14:e0e88a009f4c 683 if((buffer[i].id == msg.id || buffer[i].id==BLANK_ID) && safe_to_write[i]) {
maxv008 14:e0e88a009f4c 684 //("id %d added to buffer \r\n", msg.id);
maxv008 14:e0e88a009f4c 685 buffer[i] = msg;
maxv008 14:e0e88a009f4c 686 //return required so that only first blank buffer entry is converted to incoming message ID each time new message ID is encountered
maxv008 14:e0e88a009f4c 687 return;
maxv008 14:e0e88a009f4c 688 }
maxv008 14:e0e88a009f4c 689 }
maxv008 48:5c3f42c44036 690 if(TRANSMIT_MODE) //It may be better to do this outside of an interrupt, it is fairly long. Requires a global variable
maxv008 48:5c3f42c44036 691 {
maxv008 48:5c3f42c44036 692 if(msg.id == BMS_BASE_ID + EEPROM_RESET_ID)
maxv008 48:5c3f42c44036 693 {
maxv008 48:5c3f42c44036 694 reset_EEPROM(decodeEEPROMSOC(msg), decodeEEPROMSOCPercentage(msg));
maxv008 48:5c3f42c44036 695 eeprom_start_address = read_EEPROM_startup(measurements); // Read newly written data back from EEPROM (can be done faster but this is more safe)
DasSidG 54:f18d3af300ba 696 //ltc2943.accumulatedCharge(measurements.percentage_SOC); // Initialise the LTC2943 with the current state of charge
DasSidG 54:f18d3af300ba 697 initial_pack_SOC = measurements.SOC;
maxv008 48:5c3f42c44036 698 }
maxv008 48:5c3f42c44036 699 }
maxv008 14:e0e88a009f4c 700 }
maxv008 14:e0e88a009f4c 701
DasSidG 52:63e84c6a9cfd 702 void read_temperatures_from_CAN() {
DasSidG 52:63e84c6a9cfd 703 //Import the data from the buffer into a non-volatile, more usable format
DasSidG 52:63e84c6a9cfd 704 CAN_Data can_data[CAN_BUFFER_SIZE]; //container for all of the raw data
DasSidG 52:63e84c6a9cfd 705 CANMessage msgArray[CAN_BUFFER_SIZE]; //Same as above but some functions take message as their parameter
DasSidG 52:63e84c6a9cfd 706 int received_CAN_IDs[CAN_BUFFER_SIZE]; //needed to keep track of which IDs we've received so far
DasSidG 52:63e84c6a9cfd 707 for (int i = 0; i<CAN_BUFFER_SIZE; ++i)
DasSidG 52:63e84c6a9cfd 708 {
DasSidG 52:63e84c6a9cfd 709 safe_to_write[i] = false;
DasSidG 52:63e84c6a9cfd 710 can_data[i].importCANData(buffer[i]);
DasSidG 52:63e84c6a9cfd 711 received_CAN_IDs[i] = buffer[i].id;
DasSidG 52:63e84c6a9cfd 712 msgArray[i] = buffer[i];
DasSidG 52:63e84c6a9cfd 713 safe_to_write[i] = true;
DasSidG 52:63e84c6a9cfd 714 //printf("Id recieved %d \r\n", buffer[i].id);
DasSidG 52:63e84c6a9cfd 715 }
DasSidG 52:63e84c6a9cfd 716
DasSidG 52:63e84c6a9cfd 717 for(int i = 0; i < CAN_BUFFER_SIZE; i++)
DasSidG 52:63e84c6a9cfd 718 {
DasSidG 52:63e84c6a9cfd 719 //temperature
DasSidG 52:63e84c6a9cfd 720 if(msgArray[i].id >= 0x700)
DasSidG 52:63e84c6a9cfd 721 temperature_measurements_received = true;
DasSidG 52:63e84c6a9cfd 722 {
DasSidG 52:63e84c6a9cfd 723 individual_temperature dataPoint = decodeTemperatureTelemetry(msgArray[i]);
DasSidG 52:63e84c6a9cfd 724 for(int j = 0; j < NO_TEMPERATURE_SENSORS; j++)
DasSidG 52:63e84c6a9cfd 725 {
DasSidG 52:63e84c6a9cfd 726 if(dataPoint.ID == templist[j].ID)
DasSidG 52:63e84c6a9cfd 727 {
DasSidG 52:63e84c6a9cfd 728 templist[j] = dataPoint;
DasSidG 52:63e84c6a9cfd 729 break;
DasSidG 52:63e84c6a9cfd 730 }
DasSidG 52:63e84c6a9cfd 731 else if(templist[j].ID == 0)
DasSidG 52:63e84c6a9cfd 732 {
DasSidG 52:63e84c6a9cfd 733 templist[j] = dataPoint;
DasSidG 52:63e84c6a9cfd 734 break;
DasSidG 52:63e84c6a9cfd 735 }
DasSidG 52:63e84c6a9cfd 736 }
DasSidG 52:63e84c6a9cfd 737
DasSidG 52:63e84c6a9cfd 738 }
DasSidG 52:63e84c6a9cfd 739
DasSidG 52:63e84c6a9cfd 740 if(msgArray[i].id == BMS_BASE_ID + MIN_TEMPERATURE)
DasSidG 52:63e84c6a9cfd 741 minTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
DasSidG 52:63e84c6a9cfd 742 if(msgArray[i].id == BMS_BASE_ID + MAX_TEMPERATURE)
DasSidG 52:63e84c6a9cfd 743 maxTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
DasSidG 52:63e84c6a9cfd 744 }
DasSidG 52:63e84c6a9cfd 745
DasSidG 52:63e84c6a9cfd 746
DasSidG 52:63e84c6a9cfd 747
DasSidG 52:63e84c6a9cfd 748 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
DasSidG 52:63e84c6a9cfd 749 {
DasSidG 54:f18d3af300ba 750 if (TEMPERATURE_DEBUG) printf("Temperature of Sensor with ID %d is %f \r\n", templist[i].ID, templist[i].measurement);
DasSidG 52:63e84c6a9cfd 751 }
DasSidG 52:63e84c6a9cfd 752
DasSidG 52:63e84c6a9cfd 753 if (DEBUG) printf("(Temperature, ID): Minimum = (%d,%d). Maximum = (%d,%d) \r\n",
DasSidG 52:63e84c6a9cfd 754 minTemp.temperature,minTemp.ID,maxTemp.temperature,maxTemp.ID);
DasSidG 52:63e84c6a9cfd 755 }
DasSidG 52:63e84c6a9cfd 756
maxv008 14:e0e88a009f4c 757 void test_read_CAN_buffer()
maxv008 14:e0e88a009f4c 758 {
maxv008 14:e0e88a009f4c 759 //Import the data from the buffer into a non-volatile, more usable format
maxv008 14:e0e88a009f4c 760 CAN_Data can_data[CAN_BUFFER_SIZE]; //container for all of the raw data
maxv008 17:94dd9a0d3870 761 CANMessage msgArray[CAN_BUFFER_SIZE]; //Same as above but some functions take message as their parameter
maxv008 14:e0e88a009f4c 762 int received_CAN_IDs[CAN_BUFFER_SIZE]; //needed to keep track of which IDs we've received so far
maxv008 14:e0e88a009f4c 763 for (int i = 0; i<CAN_BUFFER_SIZE; ++i)
maxv008 14:e0e88a009f4c 764 {
maxv008 14:e0e88a009f4c 765 safe_to_write[i] = false;
maxv008 14:e0e88a009f4c 766 can_data[i].importCANData(buffer[i]);
maxv008 14:e0e88a009f4c 767 received_CAN_IDs[i] = buffer[i].id;
maxv008 17:94dd9a0d3870 768 msgArray[i] = buffer[i];
maxv008 14:e0e88a009f4c 769 safe_to_write[i] = true;
maxv008 31:888b2602aab2 770 //printf("Id recieved %d \r\n", buffer[i].id);
maxv008 14:e0e88a009f4c 771 }
maxv008 17:94dd9a0d3870 772
maxv008 23:a1af4439c1fc 773 //voltage and Temp and SOC readings:
maxv008 18:521ffdd724f3 774 for(int i = 0; i < CAN_BUFFER_SIZE; i++)
maxv008 18:521ffdd724f3 775 {
maxv008 18:521ffdd724f3 776 //voltage
maxv008 28:f1f882bd1653 777 if(decodeVoltageTelemetry(msgArray[i], voltage_readings))
ItsJustZi 29:44924d2b1293 778 continue;
maxv008 28:f1f882bd1653 779 //temperature
maxv008 20:a1a1bfc938da 780 if(msgArray[i].id >= 0x700)
maxv008 18:521ffdd724f3 781 {
maxv008 20:a1a1bfc938da 782 individual_temperature dataPoint = decodeTemperatureTelemetry(msgArray[i]);
maxv008 20:a1a1bfc938da 783 for(int j = 0; j < NO_TEMPERATURE_SENSORS; j++)
maxv008 20:a1a1bfc938da 784 {
maxv008 20:a1a1bfc938da 785 if(dataPoint.ID == templist[j].ID)
maxv008 20:a1a1bfc938da 786 {
maxv008 20:a1a1bfc938da 787 templist[j] = dataPoint;
maxv008 20:a1a1bfc938da 788 break;
maxv008 20:a1a1bfc938da 789 }
maxv008 20:a1a1bfc938da 790 else if(templist[j].ID == 0)
maxv008 20:a1a1bfc938da 791 {
maxv008 20:a1a1bfc938da 792 templist[j] = dataPoint;
maxv008 20:a1a1bfc938da 793 break;
maxv008 20:a1a1bfc938da 794 }
maxv008 20:a1a1bfc938da 795 }
maxv008 20:a1a1bfc938da 796
maxv008 23:a1af4439c1fc 797 }
maxv008 23:a1af4439c1fc 798 //SOC
maxv008 23:a1af4439c1fc 799 if(msgArray[i].id == 0x6F4)
maxv008 23:a1af4439c1fc 800 {
maxv008 23:a1af4439c1fc 801 packSOC = decodePackSOC(msgArray[i]);
maxv008 23:a1af4439c1fc 802 packSOCPercentage = decodePackSOCPercentage(msgArray[i]);
maxv008 28:f1f882bd1653 803 }
maxv008 23:a1af4439c1fc 804
maxv008 23:a1af4439c1fc 805 if(msgArray[i].id == BMS_BASE_ID + MIN_TEMPERATURE)
maxv008 23:a1af4439c1fc 806 minTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
maxv008 23:a1af4439c1fc 807 if(msgArray[i].id == BMS_BASE_ID + MAX_TEMPERATURE)
maxv008 23:a1af4439c1fc 808 maxTemp = decodeCellTemperatureMAXMIN(msgArray[i]);
maxv008 28:f1f882bd1653 809
maxv008 23:a1af4439c1fc 810 if(msgArray[i].id == BMS_BASE_ID + MAX_MIN_VOLTAGE)
maxv008 23:a1af4439c1fc 811 {
maxv008 23:a1af4439c1fc 812 decodeCellVoltageMAXMIN(msgArray[i], minVolt, maxVolt);
maxv008 23:a1af4439c1fc 813 }
maxv008 23:a1af4439c1fc 814
maxv008 31:888b2602aab2 815 if(msgArray[i].id == BMS_BASE_ID + BATTERY_VI_ID)
maxv008 31:888b2602aab2 816 {
maxv008 31:888b2602aab2 817 batteryVoltage = decodeBatteryVoltage(msgArray[i]);
maxv008 31:888b2602aab2 818 batteryCurrent = decodeBatteryCurrent(msgArray[i]);
maxv008 31:888b2602aab2 819 }
maxv008 31:888b2602aab2 820
maxv008 23:a1af4439c1fc 821 if(msgArray[i].id == BMS_BASE_ID + BATTERY_STATUS_ID)
maxv008 28:f1f882bd1653 822 status = decodeExtendedBatteryPackStatus(msgArray[i]);
maxv008 31:888b2602aab2 823
maxv008 31:888b2602aab2 824 if(msgArray[i].id == BMS_BASE_ID)
DasSidG 36:1b23c0692f54 825 if (DEBUG) printf("BMS Heartbeat Recieved \r\n");
maxv008 45:c288d7cbdb4a 826
maxv008 45:c288d7cbdb4a 827 if(msgArray[i].id == BMS_BASE_ID + IVTA_ID)
maxv008 45:c288d7cbdb4a 828 if (DEBUG) printf("IVTA Current is %d \r\n", decodeIVTACurrent(msgArray[i]));
maxv008 28:f1f882bd1653 829 }
maxv008 18:521ffdd724f3 830 //Print obtained Readings:
maxv008 18:521ffdd724f3 831 for(int i = 0; i < NO_CMUS; i++)
maxv008 18:521ffdd724f3 832 for(int j = 0; j < 12; j++)
DasSidG 36:1b23c0692f54 833 if (DEBUG) printf("Voltage number %d for CMU %d is %d \r\n", j, i, voltage_readings[i].voltages[j]);
maxv008 17:94dd9a0d3870 834
maxv008 18:521ffdd724f3 835 for(int i = 0; i < NO_TEMPERATURE_SENSORS; i++)
DasSidG 36:1b23c0692f54 836 if (DEBUG) printf("Temperature of Sensor with ID %d is %f \r\n", templist[i].ID, templist[i].measurement);
maxv008 23:a1af4439c1fc 837
DasSidG 36:1b23c0692f54 838 if (DEBUG) printf("SOC is %f and SOC Percentage is %f \r\n", packSOC, packSOCPercentage);
maxv008 23:a1af4439c1fc 839
DasSidG 36:1b23c0692f54 840 if (DEBUG) printf("Battery Current is %f and Battery Voltage is %d \r\n", batteryCurrent, batteryVoltage);
maxv008 31:888b2602aab2 841
DasSidG 36:1b23c0692f54 842 if (DEBUG) printf("Voltage (Max,Min),(Max_CMU,Max_num) = (%d,%d),(%d,%d) \r\n", maxVolt.voltage, minVolt.voltage, maxVolt.CMU_number, maxVolt.cell_number);
maxv008 23:a1af4439c1fc 843
DasSidG 36:1b23c0692f54 844 if (DEBUG) printf("(Temperature, ID): Minimum = (%d,%d). Maximum = (%d,%d) \r\n",
maxv008 23:a1af4439c1fc 845 minTemp.temperature,minTemp.ID,maxTemp.temperature,maxTemp.ID);
maxv008 23:a1af4439c1fc 846
DasSidG 36:1b23c0692f54 847 if (DEBUG) printf("Status value is: %d \r\n", status);
maxv008 14:e0e88a009f4c 848 }
maxv008 23:a1af4439c1fc 849
maxv008 10:1079f8e52d65 850 void test_CAN_send()
maxv008 10:1079f8e52d65 851 {
maxv008 10:1079f8e52d65 852 CANMessage msg;
DasSidG 11:cf2db05cfa56 853 char value = 142;
maxv008 10:1079f8e52d65 854 msg = CANMessage(1, &value,1);
DasSidG 51:95a55958904d 855 if(can_send(msg))
DasSidG 36:1b23c0692f54 856 if (DEBUG) printf("Succesfully sent %d \r\n", value);
maxv008 10:1079f8e52d65 857 else
DasSidG 36:1b23c0692f54 858 if (DEBUG) printf("Sending Failed \r\n");
maxv008 10:1079f8e52d65 859 }
maxv008 10:1079f8e52d65 860
maxv008 10:1079f8e52d65 861 void test_CAN_read()
maxv008 10:1079f8e52d65 862 {
maxv008 10:1079f8e52d65 863 CANMessage msg;
maxv008 10:1079f8e52d65 864 if(can.read(msg))
DasSidG 36:1b23c0692f54 865 if (DEBUG) printf("Successfully recieved %d \r\n", msg.data[0]);
maxv008 10:1079f8e52d65 866 else
DasSidG 36:1b23c0692f54 867 if (DEBUG) printf("Reading Failed \r\n");
maxv008 10:1079f8e52d65 868 }
DasSidG 51:95a55958904d 869
DasSidG 51:95a55958904d 870 bool can_send(CANMessage msg) {
DasSidG 51:95a55958904d 871 Timer t;
DasSidG 51:95a55958904d 872 CAN_data_sent = false;
DasSidG 51:95a55958904d 873 t.start();
DasSidG 51:95a55958904d 874 can.write(msg);
DasSidG 51:95a55958904d 875 while(!CAN_data_sent && t.read_ms() < CAN_TIMEOUT_MS);
DasSidG 51:95a55958904d 876 if (t.read_ms() > CAN_TIMEOUT_MS) return false;
DasSidG 51:95a55958904d 877 else return true;
DasSidG 51:95a55958904d 878 }
DasSidG 54:f18d3af300ba 879
DasSidG 54:f18d3af300ba 880