Cell voltages fork (SoC)

Dependencies:   CUER_CAN CUER_DS1820 LTC2943 LTC6804 mbed PowerControl

Committer:
maxv008
Date:
Sun Jul 09 12:56:33 2017 +0000
Revision:
23:a1af4439c1fc
Parent:
18:521ffdd724f3
Child:
29:44924d2b1293
Added proper handling for CAN of all BMU data types except batteryVI, sending and recieving;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lcockerton62 0:0a5f554d2a16 1 // Here are the functions to generate the CAN messages
lcockerton62 0:0a5f554d2a16 2 #include "CANParserBMU.h"
lcockerton62 0:0a5f554d2a16 3 #include "mbed.h"
maxv008 13:7b42af989cd1 4 #include "Data_Types_BMU.h"
maxv008 17:94dd9a0d3870 5 #include "CAN_IDs.h"
lcockerton62 0:0a5f554d2a16 6
lcockerton62 1:51477fe4851b 7
lcockerton62 0:0a5f554d2a16 8 using namespace CAN_IDs;
lcockerton62 0:0a5f554d2a16 9
maxv008 13:7b42af989cd1 10 /**
maxv008 13:7b42af989cd1 11 * This function is rewritten to give readings for individual probes rather than
maxv008 13:7b42af989cd1 12 * for specific CMU. As a consequence, 0x800 onwards is being used for these probes,
maxv008 14:e0e88a009f4c 13 * as everything above about 0x700 is unused by the Tritium standard. The ID value
maxv008 14:e0e88a009f4c 14 * for the probe is based on the ROM field of DS1820, entries 1-6 being the unique
maxv008 14:e0e88a009f4c 15 * serial value.
maxv008 13:7b42af989cd1 16 */
maxv008 14:e0e88a009f4c 17 CANMessage createTemperatureTelemetry(uint8_t offset, char ProbeROM[8], float Temperature)
lcockerton62 0:0a5f554d2a16 18 {
lcockerton62 0:0a5f554d2a16 19 CANMessage msg;
lcockerton62 0:0a5f554d2a16 20 msg.len = 8;
maxv008 13:7b42af989cd1 21 msg.id = TEMPERATURE_BASE_ID + offset; // for temp it is 0x800 onwards
lcockerton62 0:0a5f554d2a16 22 CAN_Data data;
lcockerton62 0:0a5f554d2a16 23
maxv008 14:e0e88a009f4c 24 for(int i = 1; i <= 6; i++) //ID portion of ROM array
maxv008 14:e0e88a009f4c 25 {
maxv008 14:e0e88a009f4c 26 data.set_u8(i - 1, ProbeROM[i]);
maxv008 14:e0e88a009f4c 27 }
maxv008 14:e0e88a009f4c 28 //Conversion of float to a short, requires multiplying by 100 to not lose precision
maxv008 14:e0e88a009f4c 29 float temp100 = Temperature * 100;
maxv008 14:e0e88a009f4c 30 short shortTemp = (short) temp100;
maxv008 14:e0e88a009f4c 31 data.set_16(3, shortTemp);//There seems to be an error in the function definition for set_16, (ushort instead of short)
maxv008 14:e0e88a009f4c 32
lcockerton62 0:0a5f554d2a16 33 for (int i = 0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 34 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 35 }
lcockerton62 0:0a5f554d2a16 36
lcockerton62 0:0a5f554d2a16 37 return msg;
lcockerton62 0:0a5f554d2a16 38 }
maxv008 13:7b42af989cd1 39 /**
maxv008 13:7b42af989cd1 40 * Takes a CANMessage with precondition that it stores temperature of an individual
maxv008 13:7b42af989cd1 41 * probe and returns an individual_temperature object containing ID and reading.
maxv008 14:e0e88a009f4c 42 * The ID is stores in ROM array entry 1-6, other entries may be invalid.
maxv008 13:7b42af989cd1 43 */
maxv008 13:7b42af989cd1 44 individual_temperature decodeTemperatureTelemetry(CANMessage msg)
maxv008 13:7b42af989cd1 45 {
maxv008 13:7b42af989cd1 46 individual_temperature probe_reading;
maxv008 13:7b42af989cd1 47 CAN_Data decode;
maxv008 18:521ffdd724f3 48 unsigned long fullID = 0;
maxv008 13:7b42af989cd1 49
maxv008 13:7b42af989cd1 50 decode.importCANData(msg);
maxv008 14:e0e88a009f4c 51 short shortTemp = decode.get_16(3);
maxv008 14:e0e88a009f4c 52 probe_reading.measurement = ((float)shortTemp) / 100;
maxv008 14:e0e88a009f4c 53
maxv008 14:e0e88a009f4c 54 for(int i = 1; i <=6; i++)
maxv008 14:e0e88a009f4c 55 {
maxv008 17:94dd9a0d3870 56 probe_reading.ROMID[i] = decode.get_u8(i-1);
maxv008 17:94dd9a0d3870 57 fullID += (probe_reading.ROMID[i] << (8 * (i-1))); //Bit order not particularly important
maxv008 14:e0e88a009f4c 58 }
maxv008 17:94dd9a0d3870 59 probe_reading.ID = fullID;
maxv008 13:7b42af989cd1 60 return probe_reading;
maxv008 13:7b42af989cd1 61 }
lcockerton62 0:0a5f554d2a16 62
msharma97 9:82ba050a7e13 63 CANMessage createVoltageTelemetry(int offset_id, uint16_t voltage[])
lcockerton62 0:0a5f554d2a16 64 {
lcockerton62 0:0a5f554d2a16 65 CANMessage msg;
lcockerton62 0:0a5f554d2a16 66 msg.len = 8;
msharma97 9:82ba050a7e13 67 msg.id = BMS_BASE_ID + offset_id; // for voltage 0x601 - 0x6EF @TODO
lcockerton62 0:0a5f554d2a16 68 CAN_Data data;
lcockerton62 0:0a5f554d2a16 69
lcockerton62 0:0a5f554d2a16 70 data.set_u16(0, voltage[0]);
lcockerton62 0:0a5f554d2a16 71 data.set_u16(1, voltage[1]);
lcockerton62 0:0a5f554d2a16 72 data.set_u16(2, voltage[2]);
lcockerton62 0:0a5f554d2a16 73 data.set_u16(3, voltage[3]);
lcockerton62 0:0a5f554d2a16 74
lcockerton62 0:0a5f554d2a16 75 for (int i = 0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 76 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 77 }
lcockerton62 0:0a5f554d2a16 78
lcockerton62 0:0a5f554d2a16 79 return msg;
lcockerton62 0:0a5f554d2a16 80 }
maxv008 17:94dd9a0d3870 81 /**
maxv008 17:94dd9a0d3870 82 * This function will properly fill the appropriate entry in an array of voltage
maxv008 17:94dd9a0d3870 83 * readings of the form CMU_voltage voltage[NO_CMUS]. Uses the msg ID and the standard
maxv008 17:94dd9a0d3870 84 * meanings of them as decided in the transmit data function (modified Tritium specs).
maxv008 17:94dd9a0d3870 85 * Function must only be called when the msg has a valid ID for voltage!
maxv008 17:94dd9a0d3870 86 */
maxv008 18:521ffdd724f3 87 bool decodeVoltageTelemetry(CANMessage msg, CMU_voltage readings[NO_CMUS])
maxv008 17:94dd9a0d3870 88 {
maxv008 17:94dd9a0d3870 89 CAN_Data voltData;
maxv008 17:94dd9a0d3870 90 voltData.importCANData(msg);
maxv008 17:94dd9a0d3870 91 int repeating_length = NO_READINGS_PER_CMU /4 + 1;
maxv008 17:94dd9a0d3870 92 int offset = msg.id - BMS_BASE_ID;
maxv008 18:521ffdd724f3 93 if(offset <= 0 || offset >= 0x100 || offset % 4 == 1)
maxv008 18:521ffdd724f3 94 return false;
maxv008 17:94dd9a0d3870 95
maxv008 17:94dd9a0d3870 96 int cellsubset = ((offset-1) % repeating_length) - 1; //Which set of 4 voltages within the CMU
maxv008 17:94dd9a0d3870 97 int CMU_number = (offset-1) / repeating_length;
maxv008 17:94dd9a0d3870 98 for(int i = 0; i < 4; i++)
maxv008 17:94dd9a0d3870 99 {
maxv008 17:94dd9a0d3870 100 readings[CMU_number].voltages[cellsubset*4 + i] = voltData.get_u16(i);
maxv008 17:94dd9a0d3870 101 }
maxv008 18:521ffdd724f3 102 return true;
maxv008 17:94dd9a0d3870 103 }
lcockerton62 0:0a5f554d2a16 104
lcockerton62 0:0a5f554d2a16 105 CANMessage createPackSOC(float SOC, float percentageCharge)
lcockerton62 0:0a5f554d2a16 106 {
lcockerton62 0:0a5f554d2a16 107 CANMessage msg;
lcockerton62 0:0a5f554d2a16 108 msg.len = 8;
maxv008 23:a1af4439c1fc 109 msg.id = BMS_BASE_ID + BATTERY_SOC_ID; //0x6F4
lcockerton62 0:0a5f554d2a16 110 CAN_Data data;
lcockerton62 0:0a5f554d2a16 111 data.setLowerFloat(SOC);
lcockerton62 0:0a5f554d2a16 112 data.setUpperFloat(percentageCharge);
lcockerton62 1:51477fe4851b 113 for(int i=0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 114 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 115 }
lcockerton62 1:51477fe4851b 116
lcockerton62 0:0a5f554d2a16 117 return msg;
lcockerton62 0:0a5f554d2a16 118 }
lcockerton62 0:0a5f554d2a16 119
lcockerton62 0:0a5f554d2a16 120 CANMessage createPackBalanceSOC(float SOC, float percentageCharge)
lcockerton62 0:0a5f554d2a16 121 {
lcockerton62 0:0a5f554d2a16 122 // @TODO - check is this being used?? section 5.4 trituim BMU CAN data sheet
lcockerton62 0:0a5f554d2a16 123 CANMessage msg;
lcockerton62 0:0a5f554d2a16 124 msg.len = 8;
lcockerton62 1:51477fe4851b 125 msg.id = BMS_BASE_ID + BATTERY_SOC_BASE_ID;
lcockerton62 1:51477fe4851b 126
lcockerton62 0:0a5f554d2a16 127 CAN_Data data;
lcockerton62 0:0a5f554d2a16 128 data.setLowerFloat(SOC);
lcockerton62 0:0a5f554d2a16 129 data.setUpperFloat(percentageCharge);
lcockerton62 1:51477fe4851b 130 for(int i=0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 131 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 132 }
lcockerton62 1:51477fe4851b 133
lcockerton62 0:0a5f554d2a16 134 return msg;
lcockerton62 0:0a5f554d2a16 135 }
lcockerton62 0:0a5f554d2a16 136
maxv008 23:a1af4439c1fc 137 /**
maxv008 23:a1af4439c1fc 138 * decodePackSOC and decodePackSOCPercentage can be used with both of the SOC msg types
maxv008 23:a1af4439c1fc 139 */
maxv008 23:a1af4439c1fc 140 float decodePackSOC(CANMessage msg)
maxv008 23:a1af4439c1fc 141 {
maxv008 23:a1af4439c1fc 142 CAN_Data data;
maxv008 23:a1af4439c1fc 143 data.importCANData(msg);
maxv008 23:a1af4439c1fc 144 return data.getLowerFloat();
maxv008 23:a1af4439c1fc 145 }
maxv008 23:a1af4439c1fc 146
maxv008 23:a1af4439c1fc 147 float decodePackSOCPercentage(CANMessage msg)
maxv008 23:a1af4439c1fc 148 {
maxv008 23:a1af4439c1fc 149 CAN_Data data;
maxv008 23:a1af4439c1fc 150 data.importCANData(msg);
maxv008 23:a1af4439c1fc 151 return data.getUpperFloat();
maxv008 23:a1af4439c1fc 152 }
maxv008 23:a1af4439c1fc 153
lcockerton62 1:51477fe4851b 154 CANMessage createCellVoltageMAXMIN(pack_voltage_extremes max_voltage, pack_voltage_extremes min_voltage)
lcockerton62 0:0a5f554d2a16 155 {
lcockerton62 0:0a5f554d2a16 156 CANMessage msg;
lcockerton62 0:0a5f554d2a16 157 msg.len = 8;
lcockerton62 1:51477fe4851b 158 msg.id = BMS_BASE_ID + MAX_MIN_VOLTAGE;
lcockerton62 1:51477fe4851b 159
lcockerton62 0:0a5f554d2a16 160 CAN_Data data;
lcockerton62 1:51477fe4851b 161 data.set_u16(0,min_voltage.voltage); //Min voltage
lcockerton62 1:51477fe4851b 162 data.set_u16(1,max_voltage.voltage); //Max voltage
lcockerton62 1:51477fe4851b 163 data.set_u8(4,min_voltage.CMU_number); //CMU number of lowest cell
lcockerton62 1:51477fe4851b 164 data.set_u8(5,min_voltage.cell_number); //Cell number in CMU with lowest voltage
lcockerton62 1:51477fe4851b 165 data.set_u8(6,min_voltage.CMU_number); //CMU number of maxiumum cell
lcockerton62 1:51477fe4851b 166 data.set_u8(7,min_voltage.cell_number); //Cell number in CMU with highest voltage
lcockerton62 1:51477fe4851b 167
lcockerton62 1:51477fe4851b 168 for(int i=0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 169 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 170 }
lcockerton62 1:51477fe4851b 171
lcockerton62 0:0a5f554d2a16 172 return msg;
lcockerton62 0:0a5f554d2a16 173 }
lcockerton62 0:0a5f554d2a16 174
maxv008 23:a1af4439c1fc 175 void decodeCellVoltageMAXMIN(CANMessage msg, pack_voltage_extremes &min, pack_voltage_extremes &max)
maxv008 23:a1af4439c1fc 176 {
maxv008 23:a1af4439c1fc 177 CAN_Data decode;
maxv008 23:a1af4439c1fc 178 decode.importCANData(msg);
maxv008 23:a1af4439c1fc 179 min.voltage = decode.get_u16(0);
maxv008 23:a1af4439c1fc 180 max.voltage = decode.get_u16(1);
maxv008 23:a1af4439c1fc 181 min.CMU_number = decode.get_u8(4);
maxv008 23:a1af4439c1fc 182 min.cell_number = decode.get_u8(5);
maxv008 23:a1af4439c1fc 183 max.CMU_number = decode.get_u8(6);
maxv008 23:a1af4439c1fc 184 max.cell_number = decode.get_u8(7);
maxv008 23:a1af4439c1fc 185 }
maxv008 23:a1af4439c1fc 186
maxv008 23:a1af4439c1fc 187 //Since each CAN message can only support 1 ID, need to send 2 using this function
maxv008 23:a1af4439c1fc 188 //Use bool isMin to say if its a minimum or maximum
maxv008 23:a1af4439c1fc 189 CANMessage createCellTemperatureMAXMIN(pack_temperature_extremes ex_temperature, bool isMin)
lcockerton62 0:0a5f554d2a16 190 {
lcockerton62 0:0a5f554d2a16 191 CANMessage msg;
lcockerton62 0:0a5f554d2a16 192 msg.len = 8;
maxv008 23:a1af4439c1fc 193 msg.id = BMS_BASE_ID + (isMin ? MIN_TEMPERATURE : MAX_TEMPERATURE) ;
maxv008 23:a1af4439c1fc 194 //TODO, CHANGE CMU NUMBER TO ROMID
lcockerton62 0:0a5f554d2a16 195 CAN_Data data;
maxv008 23:a1af4439c1fc 196 data.set_u16(3,ex_temperature.temperature); //Extreme temperature
maxv008 23:a1af4439c1fc 197
maxv008 23:a1af4439c1fc 198 for(int i = 1; i <= 6; i++) //ID portion of ROM array
maxv008 23:a1af4439c1fc 199 {
maxv008 23:a1af4439c1fc 200 data.set_u8(i - 1, ex_temperature.ROMID[i]);
maxv008 23:a1af4439c1fc 201 }
lcockerton62 1:51477fe4851b 202
lcockerton62 1:51477fe4851b 203 for(int i=0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 204 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 205 }
lcockerton62 1:51477fe4851b 206
lcockerton62 0:0a5f554d2a16 207 return msg;
lcockerton62 0:0a5f554d2a16 208 }
lcockerton62 0:0a5f554d2a16 209
maxv008 23:a1af4439c1fc 210 //It is up to function caller to decide by msg.ID if it is minimum or not
maxv008 23:a1af4439c1fc 211 pack_temperature_extremes decodeCellTemperatureMAXMIN(CANMessage msg)
maxv008 23:a1af4439c1fc 212 {
maxv008 23:a1af4439c1fc 213 pack_temperature_extremes result;
maxv008 23:a1af4439c1fc 214 CAN_Data decode;
maxv008 23:a1af4439c1fc 215 unsigned long fullID = 0;
maxv008 23:a1af4439c1fc 216
maxv008 23:a1af4439c1fc 217 decode.importCANData(msg);
maxv008 23:a1af4439c1fc 218 result.temperature = decode.get_16(3);
maxv008 23:a1af4439c1fc 219
maxv008 23:a1af4439c1fc 220 for(int i = 1; i <=6; i++)
maxv008 23:a1af4439c1fc 221 {
maxv008 23:a1af4439c1fc 222 result.ROMID[i] = decode.get_u8(i-1);
maxv008 23:a1af4439c1fc 223 fullID += (result.ROMID[i] << (8 * (i-1))); //Bit order not particularly important
maxv008 23:a1af4439c1fc 224 }
maxv008 23:a1af4439c1fc 225 result.ID = fullID;
maxv008 23:a1af4439c1fc 226 return result;
maxv008 23:a1af4439c1fc 227 }
maxv008 23:a1af4439c1fc 228
lcockerton62 0:0a5f554d2a16 229 CANMessage createBatteryVI(uint32_t batteryVoltage,uint32_t batteryCurrent)
lcockerton62 0:0a5f554d2a16 230 {
lcockerton62 0:0a5f554d2a16 231 CANMessage msg;
lcockerton62 0:0a5f554d2a16 232 msg.len = 8;
lcockerton62 1:51477fe4851b 233 msg.id = BMS_BASE_ID + BATTERY_VI_ID;
lcockerton62 1:51477fe4851b 234
lcockerton62 0:0a5f554d2a16 235 CAN_Data data;
lcockerton62 3:527790e4965a 236 data.setLower_uLong(batteryVoltage);
lcockerton62 3:527790e4965a 237 data.setHigher_uLong(batteryCurrent);
lcockerton62 1:51477fe4851b 238
lcockerton62 1:51477fe4851b 239 for(int i=0; i<8; i++) {
lcockerton62 0:0a5f554d2a16 240 msg.data[i] = data.get_u8(i);
lcockerton62 0:0a5f554d2a16 241 }
lcockerton62 0:0a5f554d2a16 242 return msg;
lcockerton62 0:0a5f554d2a16 243 }
lcockerton62 0:0a5f554d2a16 244
lcockerton62 0:0a5f554d2a16 245 CANMessage createBatteryPackStatus(uint16_t voltageThreshold[], uint8_t statusFlag,uint8_t BMS_CMU_Count,uint16_t BMS_Firmware_Build)
lcockerton62 0:0a5f554d2a16 246 {
lcockerton62 1:51477fe4851b 247 CANMessage msg;
lcockerton62 1:51477fe4851b 248 msg.len = 8;
lcockerton62 1:51477fe4851b 249 msg.id = BMS_BASE_ID + BATTERY_PACK_STATUS_ID;
lcockerton62 1:51477fe4851b 250
lcockerton62 1:51477fe4851b 251 CAN_Data data;
lcockerton62 1:51477fe4851b 252 data.set_u16(0,voltageThreshold[0]);
lcockerton62 1:51477fe4851b 253 data.set_u16(1,voltageThreshold[1]);
lcockerton62 1:51477fe4851b 254 data.set_16(3,BMS_Firmware_Build);
lcockerton62 1:51477fe4851b 255 data.set_u8(4,statusFlag);
lcockerton62 1:51477fe4851b 256 data.set_u8(5,BMS_CMU_Count);
lcockerton62 1:51477fe4851b 257
lcockerton62 1:51477fe4851b 258 for(int i=0; i<8; i++) {
lcockerton62 1:51477fe4851b 259 msg.data[i] = data.get_u8(i);
lcockerton62 1:51477fe4851b 260 }
lcockerton62 1:51477fe4851b 261 return msg;
lcockerton62 0:0a5f554d2a16 262 }
lcockerton62 0:0a5f554d2a16 263
lcockerton62 0:0a5f554d2a16 264 CANMessage createExtendedBatteryPackStatus(uint32_t status)
lcockerton62 0:0a5f554d2a16 265 {
lcockerton62 1:51477fe4851b 266 CANMessage msg;
lcockerton62 1:51477fe4851b 267 msg.len = 8;
lcockerton62 1:51477fe4851b 268 msg.id = BMS_BASE_ID + BATTERY_STATUS_ID;
lcockerton62 1:51477fe4851b 269
lcockerton62 1:51477fe4851b 270 CAN_Data data;
lcockerton62 1:51477fe4851b 271 data.setLower_uLong(status); //@TODO see the data sheet for this
lcockerton62 1:51477fe4851b 272 data.set_u8(4,0x00);//Hardware version random data @TODO check this
lcockerton62 1:51477fe4851b 273 data.set_u8(5,0x00);//Model ID @TODO check this
lcockerton62 1:51477fe4851b 274 data.set_u16(3,0x00); // Unused
lcockerton62 1:51477fe4851b 275
lcockerton62 1:51477fe4851b 276 for(int i=0; i<8; i++) {
lcockerton62 1:51477fe4851b 277 msg.data[i] = data.get_u8(i);
lcockerton62 1:51477fe4851b 278 }
lcockerton62 1:51477fe4851b 279 return msg;
lcockerton62 0:0a5f554d2a16 280 }
lcockerton62 0:0a5f554d2a16 281
maxv008 23:a1af4439c1fc 282 uint32_t decodeExtendedBatteryPackStatus(CANMessage msg)
maxv008 23:a1af4439c1fc 283 {
maxv008 23:a1af4439c1fc 284 CAN_Data decode;
maxv008 23:a1af4439c1fc 285 decode.importCANData(msg);
maxv008 23:a1af4439c1fc 286 return decode.getLower_uLong();
maxv008 23:a1af4439c1fc 287 }
maxv008 23:a1af4439c1fc 288
lcockerton62 0:0a5f554d2a16 289 void convertFloatFloat(float lower, float upper, CANMessage& msg, bool littleEndian)
lcockerton62 0:0a5f554d2a16 290 {
lcockerton62 0:0a5f554d2a16 291 // Code taken from driver_controls
lcockerton62 0:0a5f554d2a16 292 //two converters for lower and higher float
lcockerton62 0:0a5f554d2a16 293 float2byte convL;
lcockerton62 0:0a5f554d2a16 294 float2byte convH;
lcockerton62 0:0a5f554d2a16 295 convL.f = lower;
lcockerton62 0:0a5f554d2a16 296 convH.f = upper;
lcockerton62 0:0a5f554d2a16 297 if(littleEndian) {
lcockerton62 0:0a5f554d2a16 298 for(int i=0; i<4; i++) {
lcockerton62 0:0a5f554d2a16 299 msg.data[i] = convL.b[i];
lcockerton62 0:0a5f554d2a16 300 //offset for upper float
lcockerton62 0:0a5f554d2a16 301 msg.data[i+4]=convH.b[i];
lcockerton62 0:0a5f554d2a16 302 }
lcockerton62 0:0a5f554d2a16 303 } else {
lcockerton62 0:0a5f554d2a16 304 for(int i=0; i<4; i++) {
lcockerton62 0:0a5f554d2a16 305 /*
lcockerton62 0:0a5f554d2a16 306 * Subtract because output data is Big Endian
lcockerton62 0:0a5f554d2a16 307 * i.e. convL/H is LSB --> MSB
lcockerton62 0:0a5f554d2a16 308 * output is MSB --> LSB
lcockerton62 0:0a5f554d2a16 309 */
lcockerton62 1:51477fe4851b 310
lcockerton62 0:0a5f554d2a16 311 msg.data[4-i] = convL.b[i];
lcockerton62 0:0a5f554d2a16 312 msg.data[7-i] = convH.b[i];
lcockerton62 0:0a5f554d2a16 313 }
lcockerton62 0:0a5f554d2a16 314 }
lcockerton62 0:0a5f554d2a16 315 }
lcockerton62 0:0a5f554d2a16 316