code de la carte IHM avant les bugs et avant le travail effectué avec Melchior

Dependencies:   mbed SerialHalfDuplex SDFileSystem liaison_Bluetooth ident_crac DISCO-F469NI_portrait

Strategie/Strategie.cpp

Committer:
goldmas
Date:
2021-05-21
Revision:
35:2a745eeb7922
Parent:
33:c54841d11156
Child:
36:c37dbe2be916

File content as of revision 35:2a745eeb7922:

#include "global.h"


#define M_PI 3.14159265358979323846

E_stratGameEtat gameEtat = ETAT_CHECK_CARTES;
T_etat strat_etat_s = INIT;

int waitingAckID_FIN;
int waitingAckFrom_FIN;

Ticker ticker;


Ticker chrono;
Timeout AffTime;
Timer timer;
Timer cartesCheker;//Le timer pour le timeout de la vérification des cartes
Timer gameTimer;
Timer debugetatTimer;
Timer timeoutWarning;
Timer timeoutWarningWaitEnd;
Timeout chronoEnd;//permet d'envoyer la trame CAN pour la fin

unsigned char screenChecktry = 0;
unsigned char test[32] = {32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32};

char counter = 0;
char check;
char Jack = 1;
short SCORE_GLOBAL=0;
short SCORE_GR=0;
short SCORE_PR=0;
unsigned short distance_recalage;
unsigned short distance_revenir;

unsigned short x;
unsigned short y;
unsigned char isStopEnable = 1;//Permet de savoir si il faut autoriser le stop via les balises
unsigned short flag_check_carte = 0, flag_strat = 0, flag_timer;
int flagReceptionTelemetres = 0, flagNonRepriseErrorMot = 0;


signed char FIFO_lecture=0;//Position du fifo de lecture des messages CAN

signed short x_robot,y_robot,theta_robot;//La position du robot
signed short target_x_robot, target_y_robot, target_theta_robot;
E_InstructionType actionPrecedente;
//unsigned char FIFO_ecriture=0; //Position du fifo pour la reception CAN
int flagSendCan=1;
unsigned char Cote = 0; //0 -> JAUNE | 1 -> VIOLET
unsigned short angleRecalage = 0;
unsigned char checkCurrent = 0;
unsigned char countAliveCard = 0;
unsigned char ligne=0;
int Fevitement=0;
int EvitEtat= 0;
int stop_evitement=0;
signed char nbStrat = 0; //N° de la strategie (1-10)
unsigned char ModeDemo = 0; // Si à 1, indique que l'on est dans le mode demo
unsigned char countRobotNear = 0;//Le nombre de robot à proximité
unsigned char ingnorBaliseOnce = 0;//une fois détecté réinitialise
unsigned char ingnorBalise = 0;//0:balise ignore 1:on ecoute la balise
short direction;

unsigned char ingnorInversionOnce = 0;//Pour ignorer l'inversion des instruction une fois

struct S_Instruction instruction;
struct S_Dodge_queue dodgeq;

char couleur1, couleur2, couleur3;
float cptf;
int cpt,cpt1;



E_stratGameEtat     memGameEtat= gameEtat;
E_stratGameEtat     lastEtat  = ETAT_CHECK_CARTES;
E_Stratposdebut etat_pos=RECALAGE_1;

void SendRawId (unsigned short id);
void can2Rx_ISR(void);

signed char blocage_balise;
void print_segment(int nombre, int decalage);
void affichage_compteur (int nombre);
void effacer_segment(long couleur);
unsigned char doAction(unsigned char id, unsigned short arg1, short arg2);
unsigned short telemetreDistance=0;
unsigned short telemetreDistance_avant_gauche=0;
unsigned short telemetreDistance_avant_droite=0;
unsigned short telemetreDistance_arriere_gauche=0;
unsigned short telemetreDistance_arriere_droite=0;

unsigned char DT_AVD_interrupt=0;
unsigned char DT_AVG_interrupt=0;
unsigned char DT_ARD_interrupt=0;
unsigned char DT_ARG_interrupt=0;



unsigned short id_check[NOMBRE_CARTES]= {CHECK_MOTEUR,CHECK_BALISE};
unsigned short id_alive[NOMBRE_CARTES]= {ALIVE_MOTEUR,ALIVE_BALISE};
InterruptIn jack(PG_11); //  entrée numerique en interruption pour le jack (JackB1 sur la carte esclave)






/****************************************************************************************/
/* FUNCTION NAME: chronometre_ISR                                                       */
/* DESCRIPTION  : Interruption à la fin des 90s du match                                */
/****************************************************************************************/
void chronometre_ISR (void)
{
    SendRawId(ASSERVISSEMENT_STOP);//On stope les moteurs
    SendRawId(GLOBAL_GAME_END);//Indication fin de match
    strat_etat_s=FIN;
    gameTimer.stop();//Arret du timer

    while(1);//On bloque la programme dans l'interruption
}



/****************************************************************************************/
/* FUNCTION NAME: jack_ISR                                                              */
/* DESCRIPTION  : Interruption en changement d'état sur le Jack                         */
/****************************************************************************************/
void jack_ISR (void)
{
    if(gameEtat == ETAT_GAME_WAIT_FOR_JACK) {
        gameEtat = ETAT_GAME_START;//On débute le match
        //strat_etat_s=COMPTEUR;
        blocage_balise=1;
    }
}



/****************************************************************************************/
/* FUNCTION NAME: Strategie                                                             */
/* DESCRIPTION  : Automate de gestion de la stratégie du robot                          */
/****************************************************************************************/
void Strategie(void)
{
    static unsigned char AX12_enchainement = 0;
    static unsigned char MV_enchainement = 0;
    signed char localData1 = 0;
    signed short localData2 = 0;
    unsigned short localData3 = 0;
    //signed short localData4 = 0;
    unsigned char localData5 = 0;


    if(gameTimer.read_ms() >= 99000) {//Fin du match (On autorise 2s pour déposer des éléments
        gameTimer.stop();
        gameTimer.reset();
        gameEtat = ETAT_END;//Fin du temps
        strat_etat_s=FIN;
    }

    if(lastEtat != gameEtat || debugetatTimer.read_ms() >= 1000) {
        lastEtat = gameEtat;
        debugetatTimer.reset();
        sendStratEtat((unsigned char)gameEtat, (unsigned char)actual_instruction);
    }

    
    
    switch(gameEtat) {

        case ETAT_CHECK_CARTES:
            /*
            Il faut faire une boucle pour verifier toutes les cartes les une apres les autres
            */
            waitingAckFrom = id_alive[checkCurrent];//On indique que l'on attend un ack de la carte IHM
            SendRawId(id_check[checkCurrent]);//On demande à la carte d'indiquer ça présence

            screenChecktry++;//On incrèment le conteur de tentative de 1
            cartesCheker.reset();//On reset le timeOut
            cartesCheker.start();//On lance le timer pour le timeout
            gameEtat = ETAT_CHECK_CARTES_WAIT_ACK;
            break;

        case ETAT_CHECK_CARTES_WAIT_ACK:
            /*
            On attend l'ack de la carte en cours de vérification
            */
            //printf("cartesCheker = %d waitingAckFrom = %d\n",cartesCheker.read_ms(), waitingAckFrom);
            if(waitingAckFrom == 0) {//C'est bon la carte est en ligne
                cartesCheker.stop();
                screenChecktry = 0;
                countAliveCard++;
                checkCurrent++;
                if(checkCurrent >= NOMBRE_CARTES) {
                    printf("all card check, missing %d cards\n",(NOMBRE_CARTES-countAliveCard));
                    if(countAliveCard >= NOMBRE_CARTES) {
                        gameEtat = ETAT_CONFIG;
                        SendRawId(ECRAN_ALL_CHECK);
                        flag_check_carte=1;

                        //tactile_printf("Selection couleur et strategie");
                    } else {
                        gameEtat = ETAT_WAIT_FORCE;//Passage en attente de forçage du lancement
                        waitingAckFrom = ECRAN_ALL_CHECK;
                    }
                } else
                    gameEtat = ETAT_CHECK_CARTES;
            } else if(cartesCheker.read_ms () > 100) {
                cartesCheker.stop();
                if(screenChecktry >=3) {
                    //printf("missing card %d\n",id_check[checkCurrent]);
                    screenChecktry = 0;
                    checkCurrent++;

                    if(checkCurrent >= NOMBRE_CARTES) {
                        if(countAliveCard == NOMBRE_CARTES) {
                            gameEtat = ETAT_CONFIG;
                            flag_check_carte=1;
                        } else {
                            gameEtat = ETAT_WAIT_FORCE;
                            waitingAckFrom = ECRAN_ALL_CHECK;
                        }
                    } else
                        gameEtat = ETAT_CHECK_CARTES;

                } else
                    gameEtat = ETAT_CHECK_CARTES;

            }
            break;
        case ETAT_WAIT_FORCE:
            /*
            Attente du forçage de la part de la carte IHM
            */
            if(waitingAckFrom == 0) {
                gameEtat = ETAT_CONFIG;
            }
            break;
        case ETAT_CONFIG:
            /*
            Attente de l'odre de choix de mode,
            Il est possible de modifier la couleur et l'id de la stratégie
            Il est aussi possible d'envoyer les ordres de debug
            */
            modeTelemetre = 0;
            break;
        case ETAT_GAME_INIT:
            //On charge la liste des instructions

            loadAllInstruction(nbStrat);//Mise en cache de toute les instructions
            led3=1;

            SendRawId(GLOBAL_START);

            gameEtat = ETAT_GAME_WAIT_FOR_JACK;
            Debug_Audio(3,7);
            if (strat_etat_s == TEST_MOTEUR|| strat_etat_s ==TEST_VENTOUSE || strat_etat_s == TEST_COULEUR || strat_etat_s ==TEST_SERVO_BRAS) {
                SendRawId(DEBUG_FAKE_JAKE);
            } else {
                strat_etat_s = AFF_WAIT_JACK;
            }
            //tactile_printf("Attente du JACK.");
            setAsservissementEtat(1);//On réactive l'asservissement
            jack.mode(PullDown); // désactivation de la résistance interne du jack
            jack.fall(&jack_ISR); // création de l'interrupt attachée au changement d'état (front descendant) sur le jack

            localData2 = POSITION_DEBUT_T;
            localData3 = POSITION_DEBUT_Y;
            if(InversStrat == 1) {
                localData2 = -localData2;//Inversion theta
                localData3 = 3000 - POSITION_DEBUT_Y;//Inversion du Y
            }
            SetOdometrie(ODOMETRIE_SMALL_POSITION, POSITION_DEBUT_X,1800,localData2);

            instruction = strat_instructions[actual_instruction];
            //On effectue le traitement de l'instruction

            break;
        case ETAT_GAME_WAIT_FOR_JACK:
            if(instruction.order==POSITION_DEBUT) {
                switch(etat_pos) {      // AUTOMATE PERMETTANT AU ROBOT DE SE POSITIONNER TOUT SEUL AU DEBUT DE LA PARTIE (Ne PAS RETIRER LE JACK PENDANT CE TEMPS !!!)
                    case RECALAGE_1:
                        SendRawId(RECALAGE_START);
                        waitingAckID = ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                        GoStraight(3000, 1, MOITIEE_ROBOT, 0);  //on se recale contre le mur donc il faut donner la valeur du centre du robot (les -5 qui trainent sont dus au tables pourraves sur place)
                        while(waitingAckID !=0 && waitingAckFrom !=0)
                            canProcessRx();
                        waitingAckID_FIN=ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom_FIN= INSTRUCTION_END_MOTEUR;
                        while(waitingAckID_FIN!=0 && waitingAckFrom_FIN !=0)
                            canProcessRx();
                        etat_pos=RECULER_1;
                        break;

                    case RECULER_1:
                        waitingAckID = ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                        GoStraight(-100, 0, 0, 0);//-450
                        while(waitingAckID !=0 && waitingAckFrom !=0)
                            canProcessRx();
                        waitingAckID_FIN=ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                        while(waitingAckID_FIN!=0 && waitingAckFrom_FIN !=0)
                            canProcessRx();
                        etat_pos=TOURNER;
                        break;

                    case TOURNER:
                        waitingAckID = ASSERVISSEMENT_ROTATION;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                        if(Cote==0) {
                            localData2 = 900;
                        } else {
                            localData2=-900;
                        }
                        Rotate(localData2);
                        while(waitingAckID !=0 && waitingAckFrom !=0)
                            canProcessRx();
                        waitingAckID_FIN=ASSERVISSEMENT_ROTATION;
                        waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                        while(waitingAckID_FIN!=0 && waitingAckFrom_FIN !=0)
                            canProcessRx();
                        etat_pos=RECALAGE_2;
                        break;

                    case RECALAGE_2:
                        waitingAckID = ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                        if(Cote==1) {
                            localData3=3000-(MOITIEE_ROBOT);
                        } else {
                            localData3=MOITIEE_ROBOT;
                        }
                        GoStraight(3000, 2,localData3, 0);  //on se recale contre le mur donc il faut donner la valeur du centre du robot
                        while(waitingAckID !=0 && waitingAckFrom !=0)
                            canProcessRx();
                        waitingAckID_FIN=ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                        while(waitingAckID_FIN!=0 && waitingAckFrom_FIN !=0)
                            canProcessRx();
                        etat_pos=RECULER_2;
                        break;

                    case RECULER_2:
                        waitingAckID = ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                        GoStraight(-100, 0, 0, 0);
                        while(waitingAckID !=0 && waitingAckFrom !=0)
                            canProcessRx();
                        waitingAckID_FIN=ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                        while(waitingAckID_FIN!=0 && waitingAckFrom_FIN !=0)
                            canProcessRx();
                        etat_pos=GOTOPOS;
                        break;

                    case GOTOPOS:
                        localData1 = -1;

                        if(InversStrat == 1 && ingnorInversionOnce == 0) {
                            localData2 = -instruction.arg3;
                            localData3 = 3000 - instruction.arg2;//Inversion du Y
                        } else {
                            localData3 = instruction.arg2;
                            localData2 = instruction.arg3;
                        }

                        GoToPosition(instruction.arg1,localData3,localData2,localData1);
                        waitingAckID = ASSERVISSEMENT_XYT;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;

                        while(waitingAckID !=0 && waitingAckFrom !=0)
                            canProcessRx();
                        waitingAckID_FIN=ASSERVISSEMENT_XYT;
                        waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                        while(waitingAckID_FIN!=0 && waitingAckFrom_FIN !=0)
                            canProcessRx();
                        etat_pos=FIN_POS;
                        break;
                    case FIN_POS:
                        actual_instruction = instruction.nextLineOK;
                        break;
                }
            }


            break;
        case ETAT_GAME_START:
            Debug_Audio(3,3);
            gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;

            if (ModeDemo == 0) {
                chronoEnd.attach(&chronometre_ISR,100);//On lance le chrono de 90s
                gameTimer.start();
            }
            gameTimer.reset();
            jack.fall(NULL);//On désactive l'interruption du jack
            //SendRawId(GLOBAL_START);
            Jack=0;                                          //à envoyer sur le CAN et en direct pour l'automate de l'ihm ou sur CANV
            //tactile_printf("Start");//Pas vraiment utile mais bon
            break;
        case ETAT_GAME_LOAD_NEXT_INSTRUCTION:
            flagNonRepriseErrorMot = 0;
            /*
            Chargement de l'instruction suivante ou arret du robot si il n'y a plus d'instruction
            */
            //printf("load next instruction\n");
            if(dodgeq.nb > 0){//dodge q
                instruction.order=dodgeq.inst[dodgeq.nb-1].order;
                instruction.arg1=dodgeq.inst[dodgeq.nb-1].arg1;
                instruction.arg2=dodgeq.inst[dodgeq.nb-1].arg2;
                instruction.arg3=dodgeq.inst[dodgeq.nb-1].arg3;
                gameEtat=ETAT_GAME_PROCESS_INSTRUCTION;
                dodgeq.nb--;
            }//end dodge q
            else{// no dodge q
            if(actual_instruction >= nb_instructions || actual_instruction == 255) {
                gameEtat = ETAT_END;
                //Il n'y a plus d'instruction, fin du jeu
            } else {
                instruction = strat_instructions[actual_instruction];
                //On effectue le traitement de l'instruction
                gameEtat = ETAT_GAME_PROCESS_INSTRUCTION;
            }
            }//end no dodge q
            screenChecktry = 0;
            ingnorInversionOnce = 0;
            break;
        case ETAT_GAME_PROCESS_INSTRUCTION:
            /*
            Traitement de l'instruction, envoie de la trame CAN
            */
            //debug_Instruction(instruction);

            actionPrecedente = instruction.order;
            switch(instruction.order) {
                case MV_COURBURE://C'est un rayon de courbure
                    Debug_Audio(3,6);
                    float alpha=0, theta=0;
                    unsigned short alph=0;
                    actionPrecedente = MV_COURBURE;
                    waitingAckID = ASSERVISSEMENT_COURBURE;
                    waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                    if(instruction.nextActionType == ENCHAINEMENT) {
                        MV_enchainement++;
                        localData5 = 1;
                    } else {
                        if(MV_enchainement > 0) {
                            localData5 = 2;
                            MV_enchainement = 0;
                        } else {
                            localData5 = 0;
                        }
                    }
                    if(InversStrat == 1 && ingnorInversionOnce == 0) {
                        if(instruction.direction == LEFT) instruction.direction = RIGHT;
                        else instruction.direction = LEFT;
                    }

                    localData1 = ((instruction.direction == LEFT)?1:-1);
                    localData2 =  instruction.arg3;
                    /*if(InversStrat == 1 && ingnorInversionOnce == 0) {
                        localData1 = -localData1;//Inversion de la direction
                    }*/

                    BendRadius(instruction.arg1, localData2, localData1, localData5);
                    if(localData2>0) {
                        direction=1;
                    } else {
                        direction=-1;
                    }
                    if(localData2>0)alph=localData2;
                    else alph=-localData2;
                    alpha = localData2*M_PI/1800.0f;
                    theta = theta_robot*M_PI/1800.0f;
                    
                    if(instruction.direction == LEFT) {  //-------------LEFT
                        if(alph<450){ // 1 XYT
                            dodgeq.inst[0].order = MV_XYT;
                            dodgeq.inst[0].arg1 = x_robot + instruction.arg1*(sin(alpha+theta)-sin(theta));// X
                            dodgeq.inst[0].arg2 = y_robot + instruction.arg1*(cos(theta)-cos(alpha+theta));// Y
                            dodgeq.inst[0].arg3 = theta_robot + alph;// T
                        }
                        else if(alph<900){
                            for(int c=0;c<2;c++){ // 2 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha+theta)-sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(theta)-cos(alpha+theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot + alph;// T
                                alpha-=alpha/2.0f;
                                alph-=alph/2;
                            }
                        }
                        else if(alph<1350){
                            for(int c=0;c<3;c++){ // 3 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha+theta)-sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(theta)-cos(alpha+theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot + alph;// T
                                alpha-=alpha/3.0f;
                                alph-=alph/3;
                            }
                        }
                        else if(alph<1800){
                            for(int c=0;c<4;c++){ // 4 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha+theta)-sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(theta)-cos(alpha+theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot + alph;// T
                                alpha-=alpha/4.0f;
                                alph-=alph/4;
                            }
                        }
                        else if(alph<2250){
                            for(int c=0;c<5;c++){ // 5 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha+theta)-sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(theta)-cos(alpha+theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot + alph;// T
                                alpha-=alpha/5.0f;
                                alph-=alph/5;
                            }
                        }
                        else {
                            for(int c=0;c<6;c++){ // 6 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha+theta)-sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(theta)-cos(alpha+theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot + alph;// T
                                alpha-=alpha/6.0f;
                                alph-=alph/6;
                            }
                        }
                    } else { //-----------------------------------------RIGHT
                        if(alph<450){ // 1 XYT
                            dodgeq.inst[0].order = MV_XYT;
                            dodgeq.inst[0].arg1 = x_robot + instruction.arg1*(sin(alpha-theta)+sin(theta));// X
                            dodgeq.inst[0].arg2 = y_robot + instruction.arg1*(cos(alpha-theta)-cos(theta));// Y
                            dodgeq.inst[0].arg3 = theta_robot - alph;// T
                        }
                        else if(alph<900){
                            for(int c=0;c<2;c++){ // 2 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha-theta)+sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(alpha-theta)-cos(theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot - alph;// T
                                alpha-=alpha/2.0f;
                            }
                        }
                        else if(alph<1350){
                            for(int c=0;c<3;c++){ // 3 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha-theta)+sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(alpha-theta)-cos(theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot - alph;// T
                                alpha-=alpha/3.0f;
                            }
                        }
                        else if(alph<1800){
                            for(int c=0;c<4;c++){ // 4 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha-theta)+sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(alpha-theta)-cos(theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot - alph;// T
                                alpha-=alpha/4.0f;
                            }
                        }
                        else if(alph<2250){
                            for(int c=0;c<5;c++){ // 5 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha-theta)+sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(alpha-theta)-cos(theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot - alph;// T
                                alpha-=alpha/5.0f;
                            }
                        }
                        else {
                            for(int c=0;c<6;c++){ // 6 points de passages
                                dodgeq.inst[c].order = MV_XYT;
                                dodgeq.inst[c].arg1 = x_robot + instruction.arg1*(sin(alpha-theta)+sin(theta));// X
                                dodgeq.inst[c].arg2 = y_robot + instruction.arg1*(cos(alpha-theta)-cos(theta));// Y
                                dodgeq.inst[c].arg3 = theta_robot - alph;// T
                                alpha-=alpha/6.0f;
                            }
                        }
                    }
                    break;



                case MV_LINE://Ligne droite
                    Debug_Audio(3,8);
                    waitingAckID = ASSERVISSEMENT_RECALAGE;
                    waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                    if(instruction.nextActionType == ENCHAINEMENT) {
                        MV_enchainement++;
                        localData5 = 1;
                    } else {
                        if(MV_enchainement > 0) {//Utilisé en cas d'enchainement,
                            localData5 = 2;
                            MV_enchainement = 0;
                        } else {
                            localData5 = 0;
                        }
                    }
                    localData2 = (((instruction.direction == FORWARD)?1:-1)*instruction.arg1);
                    GoStraight(localData2, 0, 0, localData5);

                    target_x_robot = x_robot + localData2*cos((double)theta_robot*M_PI/1800);
                    target_y_robot = y_robot + localData2*sin((double)theta_robot*M_PI/1800);
                    target_theta_robot = theta_robot;

                    break;
                case MV_TURN: //Rotation sur place
                    Debug_Audio(3,9);
                    target_x_robot = x_robot;
                    target_y_robot = y_robot;
                    target_theta_robot = theta_robot + localData2;
                    localData2 = instruction.arg3;

                    if(InversStrat == 1 && ingnorInversionOnce == 0) {
                        localData2 = -localData2;
                    }


                    if(instruction.direction == ABSOLUTE) {
                        //C'est un rotation absolu, il faut la convertir en relative

                        localData2 = (localData2 - theta_robot)%3600;
                        if(localData2 > 1800) localData2 = localData2-3600;

                        else if(localData2 <-1800) localData2 = localData2+3600;
                    }


                    waitingAckID = ASSERVISSEMENT_ROTATION;
                    waitingAckFrom = ACKNOWLEDGE_MOTEUR;
                    Rotate(localData2);

                    break;
                case MV_XYT:
                    Debug_Audio(3,10);
                    if(instruction.direction == BACKWARD) {
                        localData1 = -1;
                    } else {
                        localData1 = 1;
                    }

                    if(InversStrat == 1 && ingnorInversionOnce == 0) {
                        localData2 = -instruction.arg3;
                        localData3 = 3000 - instruction.arg2;//Inversion du Y
                    } else {
                        localData3 = instruction.arg2;
                        localData2 = instruction.arg3;
                    }

                    GoToPosition(instruction.arg1,localData3,localData2,localData1);
                    waitingAckID = ASSERVISSEMENT_XYT;
                    waitingAckFrom = ACKNOWLEDGE_MOTEUR;

                    target_x_robot = instruction.arg1;
                    target_y_robot = localData3;
                    target_theta_robot = localData2;

                    break;
                case MV_RECALAGE:
                    if(instruction.nextActionType == MECANIQUE) {
                        instruction.nextActionType = WAIT;

                        waitingAckID = ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;

                        localData2 = (((instruction.direction == FORWARD)?1:-1)*3000);//On indique une distance de 3000 pour etre sur que le robot va ce recaler

                        if(instruction.precision == RECALAGE_Y) {
                            localData5 = 2;
                            if(InversStrat == 1 && ingnorInversionOnce == 0) {
                                localData3 = 3000 - instruction.arg1;//Inversion du Y
                            } else {
                                localData3 = instruction.arg1;
                            }
                        } else {
                            localData5 = 1;
                            localData3 = instruction.arg1;
                        }
                        GoStraight(localData2, localData5, localData3, 0);
                    } else { //CAPTEUR
                        SendRawId(DATA_RECALAGE);
                        waitingAckID = RECEPTION_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_TELEMETRE;

                        // On attend que les variables soient actualisé
                        while(!(waitingAckID == 0 && waitingAckFrom == 0))
                            canProcessRx();
                        while(!(waitingAckID_FIN==0 && waitingAckFrom_FIN==0))
                            canProcessRx();

                        if(instruction.precision == RECALAGE_Y) {  // ((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))  (theta_robot < 900 && theta_robot > -900)
                            SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, recalageDistanceY(), theta_robot);
                        } else if(instruction.precision == RECALAGE_X) {
                            SetOdometrie(ODOMETRIE_SMALL_POSITION, recalageDistanceX(), y_robot, theta_robot);
                        } else if(instruction.precision == RECALAGE_T) {
                            SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, y_robot, recalageAngulaireCapteur() );
                        }
                    }
                    break;

                case ACTION:
                
                    waitingAckID_FIN = 0;
                    waitingAckFrom_FIN = 0;
                    int tempo = 0;
                    waitingAckID= ACK_ACTION;       //On veut un ack de type action
                    waitingAckFrom = ACKNOWLEDGE_HERKULEX; //de la part des herkulex
                    tempo = doAction(instruction.arg1,instruction.arg2,instruction.arg3);
                    //  unsigned char test=(unsigned char) tempo;
                    // SendMsgCan(0x5BD, &test,1);
                    if(tempo == 1) {
                        //L'action est spécifique
                        if((waitingAckFrom == 0 && waitingAckID == 0) && instruction.nextActionType == ENCHAINEMENT) {
                            actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante
                            gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;
                        } else {
                            gameEtat = ETAT_GAME_WAIT_ACK;
                        }
                        return;
                    } else if (tempo == 2) {
                        // on est dans le cas de l'avance selon le telemetre
                        waitingAckID = ASSERVISSEMENT_RECALAGE;
                        waitingAckFrom = ACKNOWLEDGE_MOTEUR;

                        localData2 = (((instruction.direction == FORWARD)?1:-1)*instruction.arg1);
                        GoStraight(telemetreDistance, 0, 0, 0);
                        // on reset la distance du telemetre à 0
                        telemetreDistance = 5000;
                    } else {
                        //C'est un AX12 qu'il faut bouger
                        //AX12_setGoal(instruction.arg1,instruction.arg3/10,instruction.arg2);
                        //AX12_enchainement++;

                    }
                    break;
                default:
                    //Instruction inconnue, on l'ignore
                    break;
            }

            if(instruction.nextActionType == JUMP || instruction.nextActionType == WAIT) {
                gameEtat = ETAT_GAME_WAIT_ACK;//Il faut attendre que la carte est bien reçu l'acknowledge
                screenChecktry++;//On incrèment le conteur de tentative de 1
                cartesCheker.reset();//On reset le timeOut
                cartesCheker.start();
                if(AX12_enchainement > 0) {
                    //AX12_processChange();//Il faut lancer le déplacement des AX12
                    //AX12_enchainement = 0;
                }
            } else { //C'est un enchainement
                if(instruction.order == MV_LINE) {
                    gameEtat =  ETAT_GAME_WAIT_ACK;
                } else {
                    actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante
                    gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//C'est un enchainement, on charge directement l'instruction suivante
                }
            }

            break;
        case ETAT_GAME_WAIT_ACK:
            canProcessRx();
            //SendSpeed(200);//--------------------------------------------------MODE RALENTI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
            if(waitingAckID == 0 && waitingAckFrom == 0) {//Les ack ont été reset, c'est bon on continue
                //if(true) {
                cartesCheker.stop();
                if(instruction.nextActionType == JUMP) {
                    if(instruction.jumpAction == JUMP_POSITION) {
                        gameEtat = ETAT_GAME_JUMP_POSITION;
                    } else { //Pour eviter les erreurs, on dit que c'est par défaut un jump time
                        gameEtat = ETAT_GAME_JUMP_TIME;
                        cartesCheker.reset();//On reset le timeOut
                        cartesCheker.start();
                    }
                } else if(instruction.nextActionType == WAIT) { ///Actualisation des waiting ack afin d'attendre la fin des actions
                    /*wait_ms(200);
                    #ifdef ROBOT_BIG
                        SetOdometrie(ODOMETRIE_BIG_POSITION, x_robot, y_robot, theta_robot);
                    #else
                        SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, y_robot, theta_robot);
                    #endif
                    wait_ms(200);*/

                    gameEtat = ETAT_GAME_WAIT_END_INSTRUCTION;
                    switch(instruction.order) {
                        case MV_BEZIER:
                            waitingAckID_FIN = ASSERVISSEMENT_BEZIER;
                            waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                            break;
                        case MV_COURBURE:
                            waitingAckID_FIN = ASSERVISSEMENT_COURBURE;
                            waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                            break;
                        case MV_LINE:
                            waitingAckID_FIN = ASSERVISSEMENT_RECALAGE;
                            waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                            break;
                        case MV_TURN:
                            waitingAckID_FIN = ASSERVISSEMENT_ROTATION;
                            waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                            break;
                        case MV_XYT:
                            waitingAckID_FIN = ASSERVISSEMENT_XYT;
                            waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                            break;
                        case MV_RECALAGE:
                            waitingAckID_FIN = ASSERVISSEMENT_RECALAGE;
                            waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                            break;
                        case ACTION:

                            if (modeTelemetre == 0) {
                                if (telemetreDistance == 0) {
                                    waitingAckID_FIN = ACK_FIN_ACTION;// ack de type action
                                    waitingAckFrom_FIN = ACKNOWLEDGE_HERKULEX; //de la part des herkulex/actionneurs
                                } else if(telemetreDistance == 5000) {
                                    // on est dans le cas ou l'on fait une ligne suivant la distance du telemetre
                                    //waitingAckID_FIN = ASSERVISSEMENT_RECALAGE;
                                    //waitingAckFrom_FIN = INSTRUCTION_END_MOTEUR;
                                    telemetreDistance = 0;
                                }
                            } else { // si on attend la reponse du telemetre
                                //modeTelemetre = 1;
                                waitingAckID_FIN = OBJET_SUR_TABLE;
                                waitingAckFrom_FIN = 0;
                            }
                            break;
                        default:
                            break;
                    }
                } else {
                    gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;
                    actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante
                }
            } else if(cartesCheker.read_ms () > 1000) {
                cartesCheker.stop();
                if(screenChecktry >=2) {//La carte n'a pas reçus l'information, on passe à l'instruction d'erreur
                    actual_instruction = instruction.nextLineError;
                    gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;
                } else {
                    gameEtat = ETAT_GAME_PROCESS_INSTRUCTION;//On retourne dans l'strat_etat_s d'envois de l'instruction
                }
            }
            break;

        case ETAT_GAME_JUMP_TIME:
            if(cartesCheker.read_ms () >= instruction.JumpTimeOrX) {
                cartesCheker.stop();//On arrete le timer
                actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante
                gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//On charge l'instruction suivante
            }
            break;

        case ETAT_GAME_JUMP_CONFIG:
            signed int depasX = 1, depasY = 1;  // servent à indiquer le sens de dépassement des coordonnées
            //  1 si l'instruction est plus grande que la position du robot
            // -1 si l'instruction est plus petite que la position du robot
            //  0 si l'instruction et position du robot sont proche de moins de 1cm
            if (abs(x_robot-instruction.JumpTimeOrX)<10) {
                depasX = 0;
            } else if(x_robot > instruction.JumpTimeOrX) {
                depasX = -1;
            }

            if(abs(y_robot-instruction.JumpY)<10) {
                depasY = 0;
            } else if(y_robot > instruction.JumpY) {
                depasY = -1;
            }

            gameEtat = ETAT_GAME_JUMP_POSITION;
            break;
        case ETAT_GAME_JUMP_POSITION:
            bool Xok = false, Yok = false;

            if (depasX == 0) {
                Xok = true;
            } else if ((instruction.JumpTimeOrX - x_robot)*depasX < -5) {
                Xok = true;
            }

            if (depasY == 0) {
                Yok = true;
            } else if ((instruction.JumpY - y_robot)*depasY < -5) {
                Yok = true;
            }

            // on teste si les deux coordonnées ont été dépassées, si oui on lance l'instruction suivante
            if (Xok && Yok) {
                actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante
                gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//On charge l'instruction suivante
            }

            break;
        case ETAT_GAME_WAIT_END_INSTRUCTION:
            canProcessRx();
            if(waitingAckID_FIN == 0 && waitingAckFrom_FIN ==0) {//On attend que la carte nous indique que l'instruction est terminée
                actual_instruction = instruction.nextLineOK;//On indique que l'on va charger l'instruction suivante
                gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;//On charge l'instruction suivante
            }

            break;
        
        case ETAT_END:
            Debug_Audio(3,4);
            if (ModeDemo) {
                gameEtat = ETAT_CHECK_CARTE_SCREEN;
                ModeDemo = 1;
            } else {
                gameEtat = ETAT_END_LOOP;
            }
            break;
        case ETAT_END_LOOP:
            //Rien, on tourne en rond

            break;
        default:

            break;
    }
}





/****************************************************************************************/
/* FUNCTION NAME: canProcessRx                                                          */
/* DESCRIPTION  : Fait évoluer l'automate de l'IHM en fonction des receptions sur le CAN*/
/****************************************************************************************/
void canProcessRx(void)
{
    static signed char FIFO_occupation=0,FIFO_max_occupation=0;
    char message[10]="toto";
    char message1[10]="toto";
    char message2[10]="toto";
    char message3[10]="toto";
    char message4[10]="toto";
    FIFO_occupation=FIFO_ecriture-FIFO_lecture;

    if(FIFO_occupation<0)
        FIFO_occupation=FIFO_occupation+SIZE_FIFO;

    if(FIFO_max_occupation<FIFO_occupation) {
        FIFO_max_occupation=FIFO_occupation;
        //SendRawId(
    }

    if(FIFO_occupation!=0) {
        int identifiant=msgRxBuffer[FIFO_lecture].id;

        if (waitingId == identifiant) waitingId = 0;
        switch(identifiant) {

            case ALIVE_MOTEUR:
                if (strat_etat_s == ATT) {
                    DrawCheck(30,30,50,350,1);
                }
                break;

            case ALIVE_BALISE:
                if (strat_etat_s == ATT) {
                    DrawCheck(30,30,50,400,1);
                }
                break;

            case RESET_IHM:
                strat_etat_s = CHOIX;
                break;

            case DEBUG_FAKE_JAKE://Permet de lancer le match à distance
            case GLOBAL_JACK:
                if(gameEtat == ETAT_GAME_WAIT_FOR_JACK) {
                    gameEtat = ETAT_GAME_START;
                    SendRawId(ACKNOWLEDGE_JACK);
                }
                break;

            case ALIVE_ACTIONNEURS_AVANT:    //pas de break donc passe directement dans ECRAN_ALL_CHECK mais conserve l'ident initial
            case ALIVE_ACTIONNEURS_ARRIERE:
            case ALIVE_HERKULEX:
            case ECRAN_ALL_CHECK:
                if(waitingAckFrom == msgRxBuffer[FIFO_lecture].id) {
                    waitingAckFrom = 0;//C'est la bonne carte qui indique qu'elle est en ligne
                }
                flag_check_carte=1;
                break;

            case ASSERVISSEMENT_ERROR_MOTEUR://erreur asservissement
            {
                
                unsigned short recieveAckID;// = (unsigned short)msgRxBuffer[FIFO_lecture].data[0]  | ( ((unsigned short)msgRxBuffer[FIFO_lecture].data[1]) <<8);
                memcpy(&recieveAckID, msgRxBuffer[FIFO_lecture].data, 2);
                if(recieveAckID == waitingAckID_FIN && waitingAckFrom_FIN == INSTRUCTION_END_MOTEUR)
                { 
                    if(flagNonRepriseErrorMot) {
                        actual_instruction = instruction.nextLineError;
                        gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;
                        flagNonRepriseErrorMot = 0;
                    } else {
                        flagNonRepriseErrorMot = 1;
                        timeoutWarningWaitEnd.reset();
                        timeoutWarningWaitEnd.start();
                        //gameEtat = ETAT_WARING_END_BALISE_WAIT;
                    }
                }
                /*
                if(flagNonRepriseErrorMot) {
                    actual_instruction = instruction.nextLineError;
                    gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;
                    flagNonRepriseErrorMot = 0;
                } else {
                    flagNonRepriseErrorMot = 1;
                    gameEtat = ETAT_WARNING_END_LAST_INSTRUCTION;
                }*/
               } break;

            /////////////////////////////////////Acknowledges de Reception de la demande d'action////////////////////////////////////////
            case ACKNOWLEDGE_HERKULEX:
            case ACKNOWLEDGE_BALISE:    //pas de break donc passe directement dans ACK_FIN_ACTION mais conserve l'ident initial

            case ACKNOWLEDGE_TELEMETRE:
            /////////////////////////////////////////////Acknowledges de la fin d'action/////////////////////////////////////////////////
            case ACKNOWLEDGE_MOTEUR:
            case INSTRUCTION_END_BALISE:
            case ACK_FIN_ACTION:
            case INSTRUCTION_END_MOTEUR:
                unsigned short recieveAckID;// = (unsigned short)msgRxBuffer[FIFO_lecture].data[0]  | ( ((unsigned short)msgRxBuffer[FIFO_lecture].data[1]) <<8);
                memcpy(&recieveAckID, msgRxBuffer[FIFO_lecture].data, 2);
                /*
//on desactive la balise dans les rotations XYT
                if(msgRxBuffer[FIFO_lecture].id==ACKNOWLEDGE_MOTEUR && ASSERVISSEMENT_XYT==recieveAckID)ingnorBalise=1;
                if(msgRxBuffer[FIFO_lecture].id==INSTRUCTION_END_MOTEUR && ASSERVISSEMENT_XYT_ROTATE==recieveAckID)ingnorBalise=0;

//on desactive la balise dans les rotations
                if(msgRxBuffer[FIFO_lecture].id==ACKNOWLEDGE_MOTEUR && ASSERVISSEMENT_ROTATION==recieveAckID)ingnorBalise=1;
                if(msgRxBuffer[FIFO_lecture].id==INSTRUCTION_END_MOTEUR && ASSERVISSEMENT_ROTATION==recieveAckID)ingnorBalise=0;
                */

                // SendMsgCan(0x666,&ingnorBalise,1);

                if( waitingAckFrom == msgRxBuffer[FIFO_lecture].id && recieveAckID == waitingAckID ) {
                    waitingAckFrom = 0;
                    waitingAckID = 0;
                }
                if( waitingAckFrom_FIN == msgRxBuffer[FIFO_lecture].id && recieveAckID == waitingAckID_FIN ) {
                    waitingAckFrom_FIN = 0;
                    waitingAckID_FIN = 0;
                }

                /*
                               if((waitingAckFrom == msgRxBuffer[FIFO_lecture].id) &&
                               ((unsigned short)msgRxBuffer[FIFO_lecture].data[0]  |  (((unsigned short)msgRxBuffer[FIFO_lecture].data[1])<<8) == waitingAckID)  )
                               {
                                   waitingAckFrom = 0;
                                   waitingAckID = 0;
                               }
                               if(waitingAckFrom_FIN == msgRxBuffer[FIFO_lecture].id && ((unsigned short)msgRxBuffer[FIFO_lecture].data[0]
                               |(((unsigned short)msgRxBuffer[FIFO_lecture].data[1])<<8) == waitingAckID_FIN))
                               {
                                   waitingAckFrom_FIN = 0;
                                   waitingAckID_FIN = 0;
                               }
                     */
                break;
            case ODOMETRIE_BIG_POSITION:
                x_robot=msgRxBuffer[FIFO_lecture].data[0]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[1])<<8);
                y_robot=msgRxBuffer[FIFO_lecture].data[2]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[3])<<8);
                theta_robot=msgRxBuffer[FIFO_lecture].data[4]|((signed short)(msgRxBuffer[FIFO_lecture].data[5])<<8);
                break;
            case ODOMETRIE_SMALL_POSITION:

                x_robot=msgRxBuffer[FIFO_lecture].data[0]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[1])<<8);
                y_robot=msgRxBuffer[FIFO_lecture].data[2]|((unsigned short)(msgRxBuffer[FIFO_lecture].data[3])<<8);
                theta_robot=msgRxBuffer[FIFO_lecture].data[4]|((signed short)(msgRxBuffer[FIFO_lecture].data[5])<<8);
                break;

            case ACK_ACTION:
                if(waitingAckID == msgRxBuffer[FIFO_lecture].id) {
                    waitingAckFrom = 0;
                    waitingAckID = 0;
                }
                break;

            case BALISE_DANGER :
                SendAck(ACKNOWLEDGE_BALISE, BALISE_END_DANGER);
                balise_danger();
                break;

            case BALISE_STOP:
                SendAck(ACKNOWLEDGE_BALISE, BALISE_STOP);       
                balise_stop(FIFO_lecture);
                break;

            case BALISE_END_DANGER:
                SendAck(ACKNOWLEDGE_BALISE, BALISE_END_DANGER);
                balise_end_danger(&instruction,&dodgeq,target_x_robot,target_y_robot,target_theta_robot, theta_robot,x_robot,y_robot);
            break;

            case RECEPTION_DATA:
                telemetreDistance=char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[0], msgRxBuffer[FIFO_lecture].data[1]);
                telemetreDistance= (float)telemetreDistance*100.0f*35.5f+50.0f;
                waitingAckFrom = 0;
                waitingAckID = 0;
                break;

            case RECEPTION_RECALAGE:
                wait_us(150);
                flagReceptionTelemetres = 1;
                // telemetreDistance_avant_droite = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[0], msgRxBuffer[FIFO_lecture].data[1]); //on récupère la distance traité par l'autre micro
                memcpy(&telemetreDistance_avant_droite,msgRxBuffer[FIFO_lecture].data,2);
                telemetreDistance_avant_gauche   = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[2], msgRxBuffer[FIFO_lecture].data[3]);
                telemetreDistance_arriere_gauche = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[4], msgRxBuffer[FIFO_lecture].data[5]);
                telemetreDistance_arriere_droite   = char_to_short_transformation(msgRxBuffer[FIFO_lecture].data[6], msgRxBuffer[FIFO_lecture].data[7]);


                if(ModeDemo==1) {
                    sprintf(message,"%04dmm L:%d",telemetreDistance_avant_droite,DT_AVD_interrupt);
                    lcd.SetBackColor(LCD_COLOR_WHITE);
                    lcd.DisplayStringAt(0, LINE(8),(unsigned char *)"LASER AVD : ",LEFT_MODE);
                    lcd.DisplayStringAt(200, LINE(8),(unsigned char *)message, LEFT_MODE);

                    sprintf(message1,"%04dmm L:%d",telemetreDistance_avant_gauche,DT_AVG_interrupt);
                    lcd.SetBackColor(LCD_COLOR_WHITE);
                    lcd.DisplayStringAt(0, LINE(10),(unsigned char *)"LASER AVG : ",LEFT_MODE);
                    lcd.DisplayStringAt(200, LINE(10),(unsigned char *)message1, LEFT_MODE);


                    sprintf(message4,"%04d",theta_robot);
                    lcd.SetBackColor(LCD_COLOR_WHITE);
                    lcd.DisplayStringAt(0, LINE(13),(unsigned char *)"THETA: ",LEFT_MODE);
                    lcd.DisplayStringAt(200, LINE(13),(unsigned char *)message4, LEFT_MODE);


                    sprintf(message2,"%04dmm L:%d",telemetreDistance_arriere_gauche,DT_ARG_interrupt);
                    lcd.SetBackColor(LCD_COLOR_WHITE);
                    lcd.DisplayStringAt(0, LINE(16),(unsigned char *)"LASER ARG : ",LEFT_MODE);
                    lcd.DisplayStringAt(200, LINE(16),(unsigned char *)message2, LEFT_MODE);

                    sprintf(message3,"%04dmm L:%d",telemetreDistance_arriere_droite,DT_ARD_interrupt);
                    lcd.SetBackColor(LCD_COLOR_WHITE);
                    lcd.DisplayStringAt(0, LINE(18),(unsigned char *)"LASER ARD : ",LEFT_MODE);
                    lcd.DisplayStringAt(200, LINE(18),(unsigned char *)message3, LEFT_MODE);
                }
                break;
            case RECEPTION_TELEMETRE_LOGIQUE:

                DT_AVD_interrupt=msgRxBuffer[FIFO_lecture].data[0];
                DT_AVG_interrupt=msgRxBuffer[FIFO_lecture].data[1];
                DT_ARG_interrupt=msgRxBuffer[FIFO_lecture].data[2];
                DT_ARD_interrupt=msgRxBuffer[FIFO_lecture].data[3];

                break;
            case RECEPTION_COULEUR:
                if (blocage_balise==0) {
                    couleur1=msgRxBuffer[FIFO_lecture].data[0];
                    couleur2=msgRxBuffer[FIFO_lecture].data[1];
                    couleur3=msgRxBuffer[FIFO_lecture].data[2];

                    /*lcd.DisplayStringAt(0,LINE(16),(unsigned char *)couleur1+'0',LEFT_MODE);
                    lcd.DisplayStringAt(0,LINE(16+1),(unsigned char *)couleur2+'0',LEFT_MODE);
                    lcd.DisplayStringAt(0,LINE(16+2),(unsigned char *)couleur3+'0',LEFT_MODE);*/
                }

                break;
                default:
                break;
                /*
                            case NO_BLOC: //il n'y a pas de bloc, on saute les étapes liées à l'attrape bloc
                                actual_instruction = instruction.nextLineError;
                                gameEtat = ETAT_GAME_LOAD_NEXT_INSTRUCTION;
                               // waitingAckID_FIN=0;
                               // waitingAckFrom_FIN=0;
                                SendRawId(0x40);
                                break;*/
        }
        FIFO_lecture=(FIFO_lecture+1)%SIZE_FIFO;
    }
}







void affichage_compteur (int nombre)
{
    int dizaine=0,unite=0,centaine=0;
    centaine = nombre/100;
    dizaine = nombre/10;
    unite = nombre-(10*dizaine);
    print_segment(unite,-50);
    print_segment(dizaine,100);
    if(centaine!=0) {
        print_segment(centaine,350);
    }

}


//****print_segment***
//Dessine en 7 segment le nombre en parametre
//        A
//      =====
//     |     |
//   B |  G  | E
//     |=====|
//   C |     | F
//     |     |
//      =====
//        D
/*
position pour le chiffre des unites
lcd.FillRect(460,75,120,25);//    A
lcd.FillRect(435,100,25,120);//   B
lcd.FillRect(435,245,25,120);//   C
lcd.FillRect(460,365,120,25);//   D
lcd.FillRect(580,100,25,120);//   E
lcd.FillRect(580,245,25,120);//   F
lcd.FillRect(460,220,120,25);//   G

position pour le chiffre des dizaines
lcd.FillRect(260,75,120,25);//    A
lcd.FillRect(235,100,25,120);//   B
lcd.FillRect(235,245,25,120);//   C
lcd.FillRect(260,365,120,25);//   D
lcd.FillRect(380,100,25,120);//   E
lcd.FillRect(380,245,25,120);//   F
lcd.FillRect(260,220,120,25);//   G
*/

void print_segment(int nombre, int decalage)
{

    switch(nombre) {
        case 0:
            lcd.FillRect(240-decalage,75,120,25);
            lcd.FillRect(215-decalage,100,25,120);
            lcd.FillRect(215-decalage,245,25,120);
            lcd.FillRect(360-decalage,245,25,120);
            lcd.FillRect(360-decalage,100,25,120);
            lcd.FillRect(240-decalage,365,120,25);
            break;

        case 1:
            lcd.FillRect(360-decalage,100,25,120);//   E
            lcd.FillRect(360-decalage,245,25,120);//   F
            break;

        case 2:
            lcd.FillRect(240-decalage,75,120,25);//    A
            lcd.FillRect(215-decalage,245,25,120);//   C
            lcd.FillRect(240-decalage,365,120,25);//   D
            lcd.FillRect(360-decalage,100,25,120);//   E
            lcd.FillRect(240-decalage,220,120,25);//   G
            break;

        case 3:
            lcd.FillRect(240-decalage,75,120,25);//    A
            lcd.FillRect(360-decalage,100,25,120);//   E
            lcd.FillRect(240-decalage,220,120,25);//   G
            lcd.FillRect(240-decalage,365,120,25);//   D
            lcd.FillRect(360-decalage,245,25,120);//   F
            break;

        case 4:
            lcd.FillRect(215-decalage,100,25,120);//   B
            lcd.FillRect(360-decalage,100,25,120);//   E
            lcd.FillRect(360-decalage,245,25,120);//   F
            lcd.FillRect(240-decalage,220,120,25);//   G
            break;

        case 5:
            lcd.FillRect(240-decalage,75,120,25);//    A
            lcd.FillRect(215-decalage,100,25,120);//   B
            lcd.FillRect(240-decalage,220,120,25);//   G
            lcd.FillRect(240-decalage,365,120,25);//   D
            lcd.FillRect(360-decalage,245,25,120);//   F
            break;

        case 6:
            lcd.FillRect(240-decalage,75,120,25);//    A
            lcd.FillRect(215-decalage,100,25,120);//   B
            lcd.FillRect(215-decalage,245,25,120);//   C
            lcd.FillRect(240-decalage,365,120,25);//   D
            lcd.FillRect(360-decalage,245,25,120);//   F
            lcd.FillRect(240-decalage,220,120,25);//   G
            break;

        case 7:
            lcd.FillRect(240-decalage,75,120,25);//    A
            lcd.FillRect(360-decalage,100,25,120);//   E
            lcd.FillRect(360-decalage,245,25,120);//   F
            break;

        case 8:
            lcd.FillRect(240-decalage,75,120,25); //    A
            lcd.FillRect(215-decalage,100,25,120);
            lcd.FillRect(215-decalage,245,25,120);
            lcd.FillRect(360-decalage,245,25,120);//...
            lcd.FillRect(360-decalage,100,25,120);
            lcd.FillRect(240-decalage,365,120,25);
            lcd.FillRect(240-decalage,220,120,25);//   G
            break;

        case 9:
            lcd.FillRect(240-decalage,75,120,25);//    A
            lcd.FillRect(215-decalage,100,25,120);//   B
            lcd.FillRect(240-decalage,365,120,25);//   D
            lcd.FillRect(360-decalage,100,25,120);//   E
            lcd.FillRect(360-decalage,245,25,120);//   F
            lcd.FillRect(240-decalage,220,120,25);//   G
            break;
    }
}

void effacer_segment(long couleur)
{
    lcd.SetTextColor(couleur);
    lcd.FillRect(240-200,75,120,25); //    A
    lcd.FillRect(215-200,100,25,120);
    lcd.FillRect(215-200,245,25,120);
    lcd.FillRect(360-200,245,25,120);//...
    lcd.FillRect(360-200,100,25,120);
    lcd.FillRect(240-200,365,120,25);
    lcd.FillRect(240-200,220,120,25);//   G

    lcd.FillRect(240,75,120,25); //    A
    lcd.FillRect(215,100,25,120);
    lcd.FillRect(215,245,25,120);
    lcd.FillRect(360,245,25,120);//...
    lcd.FillRect(360,100,25,120);
    lcd.FillRect(240,365,120,25);
    lcd.FillRect(240,220,120,25);//   G
}

short recalageAngulaireCapteur(void)
{
    unsigned char nombresDeMesuresAuxTelemetresQuiSontCoherentes         = 0;
    unsigned int  moyennageTelemetre                                    = 0;
    unsigned short angleAvant = 0;
    unsigned short angleArriere = 0;
    unsigned short orientationArrondie = 0;

    unsigned short position_avant_gauche=0;
    unsigned short position_avant_droite=0;
    unsigned short position_arriere_gauche=0;
    unsigned short position_arriere_droite=0;

    unsigned short tempo= telemetreDistance_arriere_gauche;
    telemetreDistance_arriere_gauche=telemetreDistance_arriere_droite;
    telemetreDistance_arriere_droite=tempo;



    if(theta_robot >= 450 && theta_robot <= 1350)
        orientationArrondie = 90;
    else if(theta_robot <= -450 && theta_robot >= -1350)
        orientationArrondie = 270;
    else if(theta_robot <= 450 && theta_robot >= -450)
        orientationArrondie = 0;
    else if(theta_robot >= 1350 && theta_robot <= -1350)
        orientationArrondie = 180;

    // Calcul de position pour faire la vérification de cohérence
    if(orientationArrondie == 90 || orientationArrondie == 270) {
        position_avant_gauche   = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_gauche;
        position_avant_droite   = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_droite;
        position_arriere_gauche = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_gauche;
        position_arriere_droite = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_droite;

    } else if(orientationArrondie == 0 || orientationArrondie == 180) {
        position_avant_gauche   = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_gauche;
        position_avant_droite   = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_droite;
        position_arriere_gauche = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_gauche;
        position_arriere_droite = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_droite;
    }


    if(orientationArrondie == 90 || orientationArrondie == 270) { // Si il est en axe Y
        if(position_arriere_droite >= y_robot-instruction.arg1 && position_arriere_droite <= y_robot+instruction.arg1) { // Et que les mesures sont cohérentes
            if(position_arriere_gauche >= y_robot-instruction.arg1 && position_arriere_gauche <= y_robot+instruction.arg1) {
                if(telemetreDistance_arriere_droite > telemetreDistance_arriere_gauche)
                    angleArriere =900+(1800 * atan2((double)(telemetreDistance_arriere_droite-telemetreDistance_arriere_gauche), (double)ESPACE_INTER_TELEMETRE ))/M_PI;
                else
                    angleArriere =(1800 * atan2( (double) ESPACE_INTER_TELEMETRE,(double) (telemetreDistance_arriere_gauche-telemetreDistance_arriere_droite) ))/M_PI;

                nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
                moyennageTelemetre += angleArriere;
            }
        }
    } else if(orientationArrondie == 0 || orientationArrondie == 180) { // Si il est en axe X
        if(position_arriere_droite >= x_robot-instruction.arg1 && position_arriere_droite <= x_robot+instruction.arg1) { // Et que les mesures sont cohérentes
            if(position_arriere_gauche >= x_robot-instruction.arg1 && position_arriere_gauche <= x_robot+instruction.arg1) {
                if(telemetreDistance_arriere_droite > telemetreDistance_arriere_gauche)
                    angleArriere =900+(1800 * atan2( (double) (telemetreDistance_arriere_droite-telemetreDistance_arriere_gauche), (double) ESPACE_INTER_TELEMETRE ))/M_PI;
                else
                    angleArriere =(1800 * atan2( (double) ESPACE_INTER_TELEMETRE,(double) (telemetreDistance_arriere_gauche-telemetreDistance_arriere_droite) ))/M_PI;

                nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
                moyennageTelemetre += angleArriere;
            }
        }
    }

    if(orientationArrondie == 90 || orientationArrondie == 270) { // Si il est en axe Y
        if(position_avant_droite >= y_robot-instruction.arg1 && position_avant_droite <= y_robot+instruction.arg1) { // Et que les mesures sont cohérentes
            if(position_avant_gauche >= y_robot-instruction.arg1 && position_avant_gauche <= y_robot+instruction.arg1) {
                if(telemetreDistance_avant_droite > telemetreDistance_avant_gauche)
                    angleAvant = (1800 * atan2( (double) ESPACE_INTER_TELEMETRE,(double) (telemetreDistance_avant_droite-telemetreDistance_avant_gauche) ))/M_PI;
                else
                    angleAvant = 900 + (1800 * atan2( (double)( telemetreDistance_avant_gauche-telemetreDistance_avant_droite),(double) ESPACE_INTER_TELEMETRE ))/M_PI;

                nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
                moyennageTelemetre += angleAvant;
            }
        }
    } else if(orientationArrondie == 0 || orientationArrondie == 180) { // Si il est en axe X
        if(position_avant_droite >= x_robot-instruction.arg1 && position_avant_droite <= x_robot+instruction.arg1) { // Et que les mesures sont cohérentes
            if(position_avant_gauche >= x_robot-instruction.arg1 && position_avant_gauche <= x_robot+instruction.arg1) {
                if(telemetreDistance_avant_droite > telemetreDistance_avant_gauche)
                    angleAvant = (1800 * atan2((double) ESPACE_INTER_TELEMETRE, (double) (telemetreDistance_avant_droite-telemetreDistance_avant_gauche) ))/M_PI;
                else
                    angleAvant = 900 + (1800 * atan2( (double) (telemetreDistance_avant_gauche-telemetreDistance_avant_droite),(double) ESPACE_INTER_TELEMETRE ))/M_PI;

                nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
                moyennageTelemetre += angleAvant;
            }
        }
    }

    angleRecalage = moyennageTelemetre/nombresDeMesuresAuxTelemetresQuiSontCoherentes;

    if(nombresDeMesuresAuxTelemetresQuiSontCoherentes) {
        if(orientationArrondie == 0) {
            angleRecalage -= 900;

            /*if(telemetreDistance_avant_droite > telemetreDistance_avant_gauche)
                distanceRecalage = *);
            else
                distanceRecalage = 900 + (1800 * atan( (double)( (telemetreDistance_avant_droite-telemetreDistance_avant_gauche) / ESPACE_INTER_TELEMETRE )))/M_PI;*/
        } else if(orientationArrondie == 90) {
            angleRecalage += 0;
        } else if(orientationArrondie == 180) {
            angleRecalage += 900;
        } else if(orientationArrondie == 270) {
            angleRecalage += 1800;
        }
    }

    return (nombresDeMesuresAuxTelemetresQuiSontCoherentes && (angleAvant-angleArriere<80 && angleAvant-angleArriere>-80)) ? angleRecalage : theta_robot;
}

short recalageDistanceX(void)
{
    unsigned char nombresDeMesuresAuxTelemetresQuiSontCoherentes         = 0;
    unsigned int  moyennageTelemetre                                    = 0;

    unsigned short tempo= telemetreDistance_arriere_gauche;
    telemetreDistance_arriere_gauche=telemetreDistance_arriere_droite;
    telemetreDistance_arriere_droite=tempo;

    telemetreDistance_avant_gauche   = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_gauche;
    telemetreDistance_avant_droite   = ((theta_robot < 900 && theta_robot > -900)?2000:0) + ((theta_robot < 900 && theta_robot > -900)?-1:1)*telemetreDistance_avant_droite;
    telemetreDistance_arriere_gauche = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_gauche;
    telemetreDistance_arriere_droite = ((theta_robot < 900 && theta_robot > -900)?0:2000) + ((theta_robot < 900 && theta_robot > -900)?1:-1)*telemetreDistance_arriere_droite;

    if(telemetreDistance_avant_gauche >= x_robot-instruction.arg1 && telemetreDistance_avant_gauche <= x_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_avant_gauche;
    }
    if(telemetreDistance_avant_droite >= x_robot-instruction.arg1 && telemetreDistance_avant_droite <= x_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_avant_droite;
    }
    if(telemetreDistance_arriere_gauche >= x_robot-instruction.arg1 && telemetreDistance_arriere_gauche <= x_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_arriere_gauche;
    }
    if(telemetreDistance_arriere_droite >= x_robot-instruction.arg1 && telemetreDistance_arriere_droite <= x_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_arriere_droite;
    }

    moyennageTelemetre /= nombresDeMesuresAuxTelemetresQuiSontCoherentes;

    return (nombresDeMesuresAuxTelemetresQuiSontCoherentes)? moyennageTelemetre : x_robot; //SetOdometrie(ODOMETRIE_SMALL_POSITION, moyennageTelemetre, y_robot, theta_robot);
}

short recalageDistanceY(void)
{
    unsigned char   nombresDeMesuresAuxTelemetresQuiSontCoherentes        = 0;
    unsigned int    moyennageTelemetre                                    = 0;

    unsigned short tempo= telemetreDistance_arriere_gauche;
    telemetreDistance_arriere_gauche=telemetreDistance_arriere_droite;
    telemetreDistance_arriere_droite=tempo;

    telemetreDistance_avant_gauche   = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_gauche;
    telemetreDistance_avant_droite   = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?3000:0) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?-1:1)*telemetreDistance_avant_droite;
    telemetreDistance_arriere_gauche = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_gauche;
    telemetreDistance_arriere_droite = (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?0:3000) + (((theta_robot < 1800 && theta_robot > 0) || (theta_robot < -1800 && theta_robot > -3600))?1:-1)*telemetreDistance_arriere_droite;

    if(telemetreDistance_avant_gauche >= y_robot-instruction.arg1 && telemetreDistance_avant_gauche <= y_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_avant_gauche;
    }
    if(telemetreDistance_avant_droite >= y_robot-instruction.arg1 && telemetreDistance_avant_droite <= y_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_avant_droite;
    }
    if(telemetreDistance_arriere_gauche >= y_robot-instruction.arg1 && telemetreDistance_arriere_gauche <= y_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_arriere_gauche;
    }
    if(telemetreDistance_arriere_droite >= y_robot-instruction.arg1 && telemetreDistance_arriere_droite <= y_robot+instruction.arg1) {
        nombresDeMesuresAuxTelemetresQuiSontCoherentes++;
        moyennageTelemetre += telemetreDistance_arriere_droite;
    }

    moyennageTelemetre /= nombresDeMesuresAuxTelemetresQuiSontCoherentes;

    return (nombresDeMesuresAuxTelemetresQuiSontCoherentes)? moyennageTelemetre : y_robot ; // SetOdometrie(ODOMETRIE_SMALL_POSITION, x_robot, moyennageTelemetre, theta_robot);
}

/*************************************************************************************************/
/* FUNCTION NAME: doAction                                                                       */
/* DESCRIPTION  : Effectuer une action specifique correspondant au numéro dans le fichier strat  */
/*************************************************************************************************/

unsigned char doAction(unsigned char id, unsigned short arg1, short arg2)
{
    int retour = 1;
    CANMessage msgTx=CANMessage();
    msgTx.format=CANStandard;
    msgTx.type=CANData;
    switch(id) 
    {    
        case 120:
            wait_ms(500);
            break;

        case 121:
            //SendRawId(ACCELERATEUR_INSERTION_ARRIERE_GAUCHE);
            break;

        case 150:
            SCORE_PR+=arg1;
            waitingAckFrom = 0;
            waitingAckID = 0;
            break;

        case 200 :
            SendRawId(DATA_TELEMETRE);
            /*telemetreDistance = dataTelemetre();
            wait_ms(1);
            telemetreDistance = dataTelemetre();
            telemetreDistance = telemetreDistance - 170;*/
            break;

        case 201 :
            SendRawId(0x99);//
            retour = 2;
            break;


        case 11://0 Désactiver le stop,1 Activer le stop saut de strat,2 Activer le stop avec evitement
            isStopEnable =(unsigned char) arg1;
            // SendMsgCan(0x5BC, &isStopEnable,1);
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 19: // CHANGER LA VITESSE + DECELERATION
            //SendSpeedDecel(arg1,(unsigned short) arg2);
            wait_us(200);
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 20://Désactiver l'asservissement
            setAsservissementEtat(0);
            break;

        case 21://Activer l'asservissement
            setAsservissementEtat(1);
            break;

        case 22://Changer la vitesse du robot
            SendSpeed(arg1);//,(unsigned short)arg2, (unsigned short)arg2);
            wait_us(200);
            waitingAckFrom = 0;
            waitingAckID = 0;
            break;
            
        case 23:
            SendAccel(arg1,(unsigned short)arg2);//,(unsigned short)arg2, (unsigned short)arg2);
            wait_us(200);
            waitingAckFrom = 0;
            waitingAckID = 0;
            break;
      
        case 151:
            unsigned char argu_at_bras = arg1;
            if(arg1 == 543) argu_at_bras = 66;
            SendMsgCan(BRAS_AT, &argu_at_bras,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 152:
            unsigned char argu_re_bras = arg1;
            if(arg1 == 543) argu_re_bras = 66;
            SendMsgCan(BRAS_RE, &argu_re_bras,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
/*
        case 153:
            unsigned char argu_at_2_bras = arg1;
            SendMsgCan(BRAS_AT_2, &argu_at_2_bras,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
      
        case 154:
            unsigned char argu_re_2_bras = arg1;
            SendMsgCan(BRAS_RE_2, &argu_re_2_bras,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;

        case 155:
            unsigned char argu_at_3_bras = arg1;
            SendMsgCan(BRAS_AT_3, &argu_at_3_bras,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 156:
            unsigned char argu_re_3_bras = arg1;
            SendMsgCan(BRAS_RE_3, &argu_re_3_bras,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
*/
        case 153:
            unsigned char argu_at_vent = arg1;
            if(arg1 == 543) argu_at_vent = 66;
            SendMsgCan(VENT_AT, &argu_at_vent,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 154:
            unsigned char argu_re_vent = arg1;
            if(arg1 == 543) argu_re_vent = 66;
            SendMsgCan(VENT_RE, &argu_re_vent,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 157:
            unsigned char argu_manche_bas = arg1;
            SendMsgCan(AUTOMATE_MANCHE_BAS, &argu_manche_bas,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        case 158:
            unsigned char argu_manche_haut = arg1;
            SendMsgCan(AUTOMATE_MANCHE_HAUT, &argu_manche_haut,sizeof(arg1));
            waitingAckFrom = 0;
            waitingAckID =0;
            break;
            
        default:
            retour = 0;//L'action n'existe pas, il faut utiliser le CAN
            break;
    }
    return retour;//L'action est spécifique.

}