MARMEX_VB test application program. This application works on "mbed NXP LPC1768" only. This application expects to have the MARMEX_VB module on a "MAPLE mini type-B (MARM03-BASE)" baseboard (slot2) with MARMEX_OB module (on slot1)
Dependencies: MARMEX_VB NokiaLCD mbed
This is the library test program.
The program can test features of the library (refer to MARMEX-VB's API document) and can save captured data into BMP file.
Warning!
This test program can run on "mbed NXP LPC1768" only.
Picture : sample of test program operation
The modules of MARMEX-VB and MARMEX-OB are set on the "MAPLE mini type-B (MARM03-BASE)" baseboard.
The image data from camera is mirrored and alpha graphics added by software.
main.cpp
- Committer:
- nxpfan
- Date:
- 2014-06-06
- Revision:
- 0:343c01965543
- Child:
- 1:dbe2dc31542d
File content as of revision 0:343c01965543:
/** Test program for MARMEX_VB Camera control library * * @version 0.1 * @date 10-Jun-2014 * * Released under the Apache License, Version 2.0 : http://mbed.org/handbook/Apache-Licence * * Test program for MARMEX_VB Camera control library * * ** This program runs on mbed_NXP_LPC1768 only ** */ #include "mbed.h" #include "MARMEX_OB_oled.h" #include "MARMEX_VB.h" #include "bmp_handler.h" MARMEX_OB_oled oled1( p5, p7, p20, p16, p15 ); // mosi, sclk, cs, rst, power_control -- maple-mini-type-b-board-slot1 MARMEX_VB camera( p5, p6, p7, p22, p26, p28, p27 ); // mosi, miso, sclk, cs, reset, sda, scl -- maple-mini-type-b-board-slot2 BusOut led( LED4, LED3, LED2, LED1 ); Timer timer; void test_camera( void ); void test_camera_resolution_change( void ); void copy_image_from_camera_to_oled( void ); void copy_image_from_camera_to_oled_interlaced( void ); void line_mirroring( short *buf ); void save_still_image( char *file_name ); void oled_test_screen( void ); void capture_to_bmp( void ); //#define SAVE_EACH_SIZES_OF_STILL_IMAGE alpha_param ap; int main() { printf( "\r\n\r\nMARY-CAMERA test program\r\n\r\n" ); read_alpha_BMP( "alpha.bmp", &ap ); led = 0x3; oled1.cls(); oled_test_screen(); #ifdef SAVE_EACH_SIZES_OF_STILL_IMAGE led = 0x1; camera.resolution( MARMEX_VB::QCIF ); save_still_image( "i_qcif.bmp" ); led = 0x2; camera.resolution( MARMEX_VB::QQVGA ); save_still_image( "i_qqvga.bmp" ); led = 0x4; camera.resolution( MARMEX_VB::QVGA ); save_still_image( "i_qvga.bmp" ); led = 0x8; camera.resolution( MARMEX_VB::VGA ); save_still_image( "i_vga.bmp" ); camera.resolution( MARMEX_VB::QCIF ); #endif printf( " camera operation started\r\n" ); printf( " hit key [c] for saving data into BMP (for blue-mbed only)\r\n" ); printf( " hit key [o] to change data reading order\r\n" ); printf( " hit key [i] to toggle interlace mode\r\n" ); printf( " hit key [1], [2], [3] or [4] to change resolution QCIF, QQVGA, QVGA, VGA\r\n" ); timer.start(); // timer for measureing frame rate test_camera(); // this function doesn't return } #if defined( TARGET_MBED_LPC1768 ) || defined( TARGET_LPC11U24_401 ) Serial pc(USBTX, USBRX); // tx, rx #endif void test_camera( void ) { int interlace = 0; int frame_count = 0; while ( 1 ) { if ( pc.readable() ) { switch ( pc.getc() ) { case 'c' : capture_to_bmp(); printf( " [c] : capture started\r\n" ); break; case 'o' : printf( " [o] read order change : %s\r\n", camera.read_order_change() ? "ENABLED" : "DISABLED" ); break; case 'i' : interlace = !interlace; printf( " [i] : interlace setting : %s\r\n", interlace ? "ENABLED" : "DISABLED" ); /* FALL THROUGH */ case 'f' : if ( frame_count ) { timer.stop(); float t = timer.read(); printf( " [f] : %s rate : %5.3f\r\n", interlace ? "field" : "frame", (float)frame_count / t ); frame_count = 0; timer.reset(); timer.start(); } else { printf( " [f] : no frame drawn yet. try again later\r\n" ); } break; case '1' : printf( " [1] resolution change : QCIF\r\n" ); camera.init( MARMEX_VB::QCIF ); break; case '2' : printf( " [2] resolution change : QQVGA\r\n" ); camera.init( MARMEX_VB::QQVGA ); break; case '3' : printf( " [3] resolution change : QVGA\r\n" ); camera.init( MARMEX_VB::QVGA ); break; case '4' : printf( " [4] resolution change : VGA\r\n" ); camera.init( MARMEX_VB::VGA ); break; } } led = 0x1; if ( interlace ) copy_image_from_camera_to_oled_interlaced(); else copy_image_from_camera_to_oled(); // camera.colorbar( ((count++ >> 2) & 0x1) ? MARMEX_VB::ON : MARMEX_VB::OFF ); led = 0x2; frame_count++; } } void test_camera_resolution_change( void ) { int count = (3 << 3); int setting; while ( 1 ) { if ( !(count & 0x7) ) { setting = (count >> 3) & 0x3; camera.init( (MARMEX_VB::CameraResolution)(setting + 1) ); led = 0x1 << setting; } count++; copy_image_from_camera_to_oled(); } } void alpha( int line_num, short *bf, int offset_x, int offset_y, alpha_param *app ) { short r, g, b; int y_pos; if ( (line_num < offset_y) || (offset_y + app->v) <= line_num || (app->buffer == NULL) ) return; bf += offset_x; y_pos = ((app->v - (line_num - offset_y + 1)) * (app->h * app->byte_per_pixel)); for ( int i = 0; i < 60; i++ ) { r = ((*bf >> 1) & 0x0F) + (*(app->buffer + i * 3 + 0 + y_pos ) >> 4); g = ((*bf >> 6) & 0x1F) + (*(app->buffer + i * 3 + 1 + y_pos ) >> 3); b = ((*bf >> 12) & 0x0F) + (*(app->buffer + i * 3 + 2 + y_pos ) >> 4); *bf++ = (b << 11) | (g << 5) | (r << 0); } } void copy_image_from_camera_to_oled( void ) { short buf[ MARMEX_OB_oled::WIDTH ]; static int count = 0; camera.open_transfer(); for ( int line = 0; line < MARMEX_OB_oled::HEIGHT; line++ ) { camera.read_a_line( buf, line + (camera.get_vertical_size() - (int)MARMEX_OB_oled::HEIGHT) / 2, (camera.get_horizontal_size() - (int)MARMEX_OB_oled::WIDTH ) / 2, MARMEX_OB_oled::WIDTH ); line_mirroring( buf ); alpha( line, buf, ((count >> 4) & 1) ? 60 : 8, ((count >> 4) & 1) ^ ((count >> 3) & 1) ? ((int)MARMEX_OB_oled::HEIGHT - (ap.v + 4)) : 4, &ap ); oled1.blit565( 0, line, MARMEX_OB_oled::WIDTH, 1, buf ); } count++; camera.close_transfer(); } void copy_image_from_camera_to_oled_interlaced( void ) { short buf[ MARMEX_OB_oled::WIDTH ]; static int count = 0; camera.open_transfer(); for ( int line = (count++) & 1; line < MARMEX_OB_oled::HEIGHT; line += 2 ) { camera.read_a_line( buf, line + (camera.get_vertical_size() - (int)MARMEX_OB_oled::HEIGHT) / 2, (camera.get_horizontal_size() - (int)MARMEX_OB_oled::WIDTH ) / 2, MARMEX_OB_oled::WIDTH ); line_mirroring( buf ); alpha( line, buf, ((count >> 4) & 1) ? 60 : 8, ((count >> 4) & 1) ^ ((count >> 3) & 1) ? ((int)MARMEX_OB_oled::HEIGHT - (ap.v + 4)) : 4, &ap ); oled1.blit565( 0, line, MARMEX_OB_oled::WIDTH, 1, buf ); } camera.close_transfer(); } void line_mirroring( short *buf ) { short tmp; for ( int i = 0; i < (MARMEX_OB_oled::WIDTH / 2); i++ ) { tmp = buf[ i ]; buf[ i ] = buf[ (MARMEX_OB_oled::WIDTH - 1) - i ]; buf[ (MARMEX_OB_oled::WIDTH - 1) - i ] = tmp; } } void oled_test_screen( void ) { oled1.background( 0x000000 ); oled1.cls(); int colorbar_width = MARMEX_OB_oled::WIDTH / 8; for ( int i = 0; i < 8; i++ ) oled1.fill( colorbar_width * i, 0, colorbar_width, MARMEX_OB_oled::HEIGHT, ((i & 0x4) ? 0xFF0000 : 0x000000) | ((i & 0x2) ? 0x00FF00 : 0x000000) | ((i & 0x1) ? 0x0000FF : 0x000000) ); oled1.fill( 50, 50, 64, 64, 0xCCCCCC );; oled1.locate( 0, 2 ); oled1.printf( "MaryCemara test" ); oled1.locate( 0, 3 ); oled1.printf( "%s", (MARMEX_VB::NO_ERROR == camera.ready()) ? "Camera is ready" : "No Camera found" ); oled1.locate( 0, 4 ); oled1.printf( "%s", "saving into BMP" ); oled1.locate( 0, 5 ); oled1.printf( "%d", camera.get_horizontal_size() ); oled1.locate( 0, 6 ); oled1.printf( "%d", camera.get_vertical_size() ); for (int i = 0; i < MARMEX_OB_oled::WIDTH; i++ ) oled1.pixel( i, 80 + sin( (float)i / 5.0 ) * 10, 0x000000 ); } #include "bmp_handler.h" void save_still_image( char *file_name ) { short buf[ camera.get_horizontal_size() ]; if ( open_BMP( file_name, camera.get_horizontal_size(), camera.get_vertical_size() ) ) return; camera.open_transfer(); for ( int line = (camera.get_vertical_size() - 1); 0 <= line; line-- ) { camera.read_a_line( buf, line, 0, camera.get_horizontal_size() ); write_BMP( buf, camera.get_horizontal_size() ); } camera.close_transfer(); close_BMP(); } void capture_to_bmp( void ) { short buf[ camera.get_horizontal_size() ]; camera.open_transfer(); if ( open_BMP( "RGB.bmp", camera.get_horizontal_size(), camera.get_vertical_size() ) ) return; for ( int line = (camera.get_vertical_size() - 1); 0 <= line; line-- ) { camera.read_a_line( buf, line, 0, camera.get_horizontal_size() ); // write_BMP( buf, camera.get_horizontal_size(), 0x7 ); write_BMP( buf, camera.get_horizontal_size() ); } close_BMP(); #if 0 if ( open_BMP( "R.bmp", camera.get_horizontal_size(), camera.get_vertical_size() ) ) return; for ( int line = (camera.get_vertical_size() - 1); 0 <= line; line-- ) { camera.read_a_line( buf, line, 0, camera.get_horizontal_size() ); write_BMP( buf, camera.get_horizontal_size(), 0x4 ); } close_BMP(); if ( open_BMP( "G.bmp", camera.get_horizontal_size(), camera.get_vertical_size() ) ) return; for ( int line = (camera.get_vertical_size() - 1); 0 <= line; line-- ) { camera.read_a_line( buf, line, 0, camera.get_horizontal_size() ); write_BMP( buf, camera.get_horizontal_size(), 0x2 ); } close_BMP(); if ( open_BMP( "B.bmp", camera.get_horizontal_size(), camera.get_vertical_size() ) ) return; for ( int line = (camera.get_vertical_size() - 1); 0 <= line; line-- ) { camera.read_a_line( buf, line, 0, camera.get_horizontal_size() ); write_BMP( buf, camera.get_horizontal_size(), 0x1 ); } close_BMP(); #endif camera.close_transfer(); }