helloworld
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed
Fork of Robot-Software by
main.cpp
- Committer:
- MaikOvermars
- Date:
- 2018-10-23
- Revision:
- 10:7339dca7d604
- Parent:
- 5:0dd66c757f24
- Child:
- 11:c8251a1362b7
- Child:
- 13:3482d315877c
File content as of revision 10:7339dca7d604:
#include "mbed.h" #include "MODSERIAL.h" #include "QEI.h" #include "HIDScope.h" #include "BiQuad.h" #include "PID_controller.h" #include "kinematics.h" //Define objects MODSERIAL pc(USBTX, USBRX); HIDScope scope(2); // emg inputs AnalogIn emg0( A0 ); AnalogIn emg1( A1 ); // motor ouptuts PwmOut motor1_pwm(D5); DigitalOut motor1_dir(D4); PwmOut motor2_pwm(D7); DigitalOut motor2_dir(D6); AnalogIn potmeter1(A2); AnalogIn potmeter2(A3); DigitalIn button(D0); Ticker Sample; Timer state_timer; enum States {failure, waiting, calib_enc, calib_emg, operational, demo}; //All possible robot states //Global variables/objects States current_state; Ticker loop_ticker; //The Ticker object that will ensure perfect timing of our looping code float e, u1, u2, emg_signal_raw_0, processed_emg_0, emg_signal_raw_1, processed_emg_1, robot_end_point, reference_end_point, motor_angle, motor_counts, q_ref; //will be set by the motor_controller function int counts_per_rotation = 32; bool state_changed = false; double samplingfreq = 1000; double x; // Making the position (x,y) of the end effector global double y; float processing_chain_emg(int num) { return 6.0; } void measure_all() { motor_angle = motor_counts*2.0f*3.1415926535f/counts_per_rotation; //do this here, and not in the encoder interrupt, to reduce computational load robot_end_point = forwardkinematics_function(motor_angle); //motor_angle is global, this function ne emg_signal_raw_0 = emg0.read(); //sample analog voltages (all sampling theory applies, you might get aliasing etc.) emg_signal_raw_1 = emg1.read(); processed_emg_0 = processing_chain_emg(0); // some function ‘float my_emg_processing_chain()’ that returns a float. The raw emg is global processed_emg_1 = processing_chain_emg(1); } void output_all() { motor1_pwm = fabs(u1); motor1_dir = u1 > 0.5f; motor2_pwm = fabs(u2); motor2_dir = u2 > 0.5f; static int output_counter = 0; output_counter++; if (output_counter == 100) {pc.printf("Something something... %f",u1); output_counter = 0;} //Print to screen at 10 Hz with MODSERIAL } void state_machine() { switch(current_state) { //States can be: failure, wait, calib_enc, calib_emg, operational, demo, case waiting: //Nothing useful here, maybe a blinking LED for fun and communication to the user if (button.read()==true) { current_state = calib_enc; //the NEXT loop we will be in calib_enc state } break; //to avoid falling through to the next state, although this can sometimes be very useful. case calib_enc: if (state_changed==true) { state_timer.reset(); state_timer.start(); state_changed = false; } u1 = 0.6f; //a low PWM value to move the motors slowly (0.0 to 0.45 don’t do much due to friction) // fabs(motor1.velocity()) < 0.1f && if (state_timer.read() > 5.0f) { current_state = calib_emg; //the NEXT loop we will be in calib_emg state state_changed = true; } break; case calib_emg: //calibrate emg-signals break; case operational: //interpreting emg-signals to move the end effector if (state_changed==true) { int x = 5; } // example reference_end_point = robot_end_point + processed_emg_0; if (button.read() == true) { current_state = demo; } break; case demo: //moving according to a specified trajectory if (button.read() == true) { current_state = demo; } break; case failure: //no way to get out u1 = 0.0f; break; } } void motor_controller() { if (current_state >= operational) { // we can (ab)use the fact that an enum is actually an integer, so math/logic rules still apply q_ref += inversekinematics_function(reference_end_point)/samplingfreq; //many different states can modify your reference position, so just do the inverse kinematics once, here e1 = q_ref - motor_angle; //tracking error (q_ref - q_meas) e2 = q_ref - motor_angle; PID_controller(e1,e2,u1,u2); //feedback controller or with possibly fancy controller additions...; pass by reference } //otherwise we just don’t mess with the value of control variable ‘u’ that is set somewhere in the state-machine. } void loop_function() { measure_all(); //measure all signals state_machine(); //Do relevant state dependent things motor_controller(); //Do not put different motor controllers in the states, because every state can re-use the same motor-controller! output_all(); //Output relevant signals, messages, screen outputs, LEDs etc. } int main() { pc.baud(115200); motor1_pwm.period_us(60); motor2_pwm.period_us(60); current_state = waiting; //we start in state ‘waiting’ and current_state can be accessed by all functions u1 = 0.0f; //initial output to motors is 0. u2 = 0.0f; loop_ticker.attach(&loop_function, 1/samplingfreq); //Run the function loop_function 1000 times per second while (true) { } //Do nothing here (timing purposes) }