Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: HIDScope MODSERIAL QEI biquadFilter mbed Servo
main.cpp@19:e1e18746d98d, 2018-10-26 (annotated)
- Committer:
- bjonkheer
- Date:
- Fri Oct 26 11:04:30 2018 +0000
- Revision:
- 19:e1e18746d98d
- Parent:
- 18:ea605c49afee
- Child:
- 20:31876566d70f
Updated forward kinematics
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
MaikOvermars | 0:4cb1de41d049 | 1 | #include "mbed.h" |
MaikOvermars | 0:4cb1de41d049 | 2 | #include "MODSERIAL.h" |
MaikOvermars | 0:4cb1de41d049 | 3 | #include "QEI.h" |
MaikOvermars | 0:4cb1de41d049 | 4 | #include "HIDScope.h" |
MaikOvermars | 0:4cb1de41d049 | 5 | #include "BiQuad.h" |
MaikOvermars | 0:4cb1de41d049 | 6 | #include "PID_controller.h" |
MaikOvermars | 0:4cb1de41d049 | 7 | #include "kinematics.h" |
MaikOvermars | 0:4cb1de41d049 | 8 | |
MaikOvermars | 0:4cb1de41d049 | 9 | //Define objects |
MaikOvermars | 0:4cb1de41d049 | 10 | MODSERIAL pc(USBTX, USBRX); |
MaikOvermars | 0:4cb1de41d049 | 11 | HIDScope scope(2); |
MaikOvermars | 0:4cb1de41d049 | 12 | |
MaikOvermars | 10:7339dca7d604 | 13 | // emg inputs |
MaikOvermars | 0:4cb1de41d049 | 14 | AnalogIn emg0( A0 ); |
MaikOvermars | 0:4cb1de41d049 | 15 | AnalogIn emg1( A1 ); |
MaikOvermars | 0:4cb1de41d049 | 16 | |
MaikOvermars | 10:7339dca7d604 | 17 | // motor ouptuts |
MaikOvermars | 0:4cb1de41d049 | 18 | PwmOut motor1_pwm(D5); |
MaikOvermars | 0:4cb1de41d049 | 19 | DigitalOut motor1_dir(D4); |
MaikOvermars | 0:4cb1de41d049 | 20 | PwmOut motor2_pwm(D7); |
MaikOvermars | 0:4cb1de41d049 | 21 | DigitalOut motor2_dir(D6); |
MaikOvermars | 0:4cb1de41d049 | 22 | |
MaikOvermars | 0:4cb1de41d049 | 23 | AnalogIn potmeter1(A2); |
MaikOvermars | 0:4cb1de41d049 | 24 | AnalogIn potmeter2(A3); |
MaikOvermars | 0:4cb1de41d049 | 25 | DigitalIn button(D0); |
MaikOvermars | 0:4cb1de41d049 | 26 | |
MaikOvermars | 0:4cb1de41d049 | 27 | Ticker Sample; |
MaikOvermars | 0:4cb1de41d049 | 28 | Timer state_timer; |
MaikOvermars | 0:4cb1de41d049 | 29 | |
MaikOvermars | 0:4cb1de41d049 | 30 | enum States {failure, waiting, calib_enc, calib_emg, operational, demo}; //All possible robot states |
MaikOvermars | 0:4cb1de41d049 | 31 | |
MaikOvermars | 0:4cb1de41d049 | 32 | //Global variables/objects |
MaikOvermars | 0:4cb1de41d049 | 33 | States current_state; |
MaikOvermars | 0:4cb1de41d049 | 34 | Ticker loop_ticker; //The Ticker object that will ensure perfect timing of our looping code |
bjonkheer | 19:e1e18746d98d | 35 | float e, u1, u2, emg_signal_raw_0, processed_emg_0, emg_signal_raw_1, processed_emg_1, robot_end_point, reference_end_point, motor_angle_1, motor_angle_2, motor_counts, q_ref; //will be set by the motor_controller function |
MaikOvermars | 0:4cb1de41d049 | 36 | int counts_per_rotation = 32; |
MaikOvermars | 0:4cb1de41d049 | 37 | bool state_changed = false; |
MaikOvermars | 10:7339dca7d604 | 38 | double samplingfreq = 1000; |
SvenD97 | 5:0dd66c757f24 | 39 | double x; // Making the position (x,y) of the end effector global |
SvenD97 | 5:0dd66c757f24 | 40 | double y; |
MaikOvermars | 0:4cb1de41d049 | 41 | |
MaikOvermars | 0:4cb1de41d049 | 42 | float processing_chain_emg(int num) { |
MaikOvermars | 0:4cb1de41d049 | 43 | return 6.0; |
MaikOvermars | 0:4cb1de41d049 | 44 | } |
MaikOvermars | 0:4cb1de41d049 | 45 | |
MaikOvermars | 0:4cb1de41d049 | 46 | void measure_all() |
MaikOvermars | 0:4cb1de41d049 | 47 | { |
bjonkheer | 19:e1e18746d98d | 48 | motor_angle_1 = motor_counts_1*2.0f*3.1415926535f/counts_per_rotation; //do this here, and not in the encoder interrupt, to reduce computational load |
bjonkheer | 19:e1e18746d98d | 49 | motor_angle_2 = motor_counts_2*2.0f*3.1415926535f/counts_per_rotation; |
bjonkheer | 19:e1e18746d98d | 50 | robot_end_point = forwardkinematics_function(motor_angle_1,motor_angle_2); //motor_angle is global, this function ne |
MaikOvermars | 0:4cb1de41d049 | 51 | emg_signal_raw_0 = emg0.read(); //sample analog voltages (all sampling theory applies, you might get aliasing etc.) |
MaikOvermars | 0:4cb1de41d049 | 52 | emg_signal_raw_1 = emg1.read(); |
MaikOvermars | 0:4cb1de41d049 | 53 | processed_emg_0 = processing_chain_emg(0); // some function ‘float my_emg_processing_chain()’ that returns a float. The raw emg is global |
MaikOvermars | 0:4cb1de41d049 | 54 | processed_emg_1 = processing_chain_emg(1); |
MaikOvermars | 0:4cb1de41d049 | 55 | } |
MaikOvermars | 0:4cb1de41d049 | 56 | |
MaikOvermars | 0:4cb1de41d049 | 57 | void output_all() { |
MaikOvermars | 0:4cb1de41d049 | 58 | motor1_pwm = fabs(u1); |
bjonkheer | 18:ea605c49afee | 59 | motor1_dir = u1 > 0.0f; |
MaikOvermars | 0:4cb1de41d049 | 60 | motor2_pwm = fabs(u2); |
bjonkheer | 18:ea605c49afee | 61 | motor2_dir = u2 > 0.0f; |
MaikOvermars | 0:4cb1de41d049 | 62 | static int output_counter = 0; |
MaikOvermars | 0:4cb1de41d049 | 63 | output_counter++; |
MaikOvermars | 0:4cb1de41d049 | 64 | if (output_counter == 100) {pc.printf("Something something... %f",u1); output_counter = 0;} //Print to screen at 10 Hz with MODSERIAL |
MaikOvermars | 0:4cb1de41d049 | 65 | } |
MaikOvermars | 0:4cb1de41d049 | 66 | |
MaikOvermars | 0:4cb1de41d049 | 67 | void state_machine() { |
MaikOvermars | 0:4cb1de41d049 | 68 | switch(current_state) { //States can be: failure, wait, calib_enc, calib_emg, operational, demo, |
MaikOvermars | 0:4cb1de41d049 | 69 | case waiting: //Nothing useful here, maybe a blinking LED for fun and communication to the user |
MaikOvermars | 0:4cb1de41d049 | 70 | if (button.read()==true) |
MaikOvermars | 0:4cb1de41d049 | 71 | { |
MaikOvermars | 0:4cb1de41d049 | 72 | current_state = calib_enc; //the NEXT loop we will be in calib_enc state |
MaikOvermars | 0:4cb1de41d049 | 73 | } |
MaikOvermars | 0:4cb1de41d049 | 74 | break; //to avoid falling through to the next state, although this can sometimes be very useful. |
MaikOvermars | 0:4cb1de41d049 | 75 | |
MaikOvermars | 0:4cb1de41d049 | 76 | case calib_enc: |
MaikOvermars | 0:4cb1de41d049 | 77 | if (state_changed==true) |
MaikOvermars | 0:4cb1de41d049 | 78 | { |
MaikOvermars | 0:4cb1de41d049 | 79 | state_timer.reset(); |
MaikOvermars | 0:4cb1de41d049 | 80 | state_timer.start(); |
MaikOvermars | 0:4cb1de41d049 | 81 | state_changed = false; |
MaikOvermars | 0:4cb1de41d049 | 82 | } |
bjonkheer | 18:ea605c49afee | 83 | u1 = 0.55f; //a low PWM value to move the motors slowly (0.0 to 0.45 don’t do much due to friction) |
MaikOvermars | 0:4cb1de41d049 | 84 | // fabs(motor1.velocity()) < 0.1f && |
MaikOvermars | 0:4cb1de41d049 | 85 | if (state_timer.read() > 5.0f) { |
MaikOvermars | 0:4cb1de41d049 | 86 | current_state = calib_emg; //the NEXT loop we will be in calib_emg state |
MaikOvermars | 0:4cb1de41d049 | 87 | state_changed = true; |
MaikOvermars | 0:4cb1de41d049 | 88 | } |
MaikOvermars | 0:4cb1de41d049 | 89 | break; |
MaikOvermars | 0:4cb1de41d049 | 90 | |
MaikOvermars | 0:4cb1de41d049 | 91 | case calib_emg: //calibrate emg-signals |
MaikOvermars | 0:4cb1de41d049 | 92 | |
MaikOvermars | 0:4cb1de41d049 | 93 | break; |
MaikOvermars | 0:4cb1de41d049 | 94 | |
MaikOvermars | 0:4cb1de41d049 | 95 | case operational: //interpreting emg-signals to move the end effector |
MaikOvermars | 0:4cb1de41d049 | 96 | if (state_changed==true) { int x = 5; } |
MaikOvermars | 0:4cb1de41d049 | 97 | // example |
MaikOvermars | 0:4cb1de41d049 | 98 | reference_end_point = robot_end_point + processed_emg_0; |
MaikOvermars | 0:4cb1de41d049 | 99 | if (button.read() == true) { current_state = demo; } |
MaikOvermars | 0:4cb1de41d049 | 100 | |
MaikOvermars | 0:4cb1de41d049 | 101 | break; |
MaikOvermars | 0:4cb1de41d049 | 102 | |
MaikOvermars | 0:4cb1de41d049 | 103 | case demo: //moving according to a specified trajectory |
MaikOvermars | 0:4cb1de41d049 | 104 | |
MaikOvermars | 0:4cb1de41d049 | 105 | if (button.read() == true) { current_state = demo; } |
MaikOvermars | 0:4cb1de41d049 | 106 | |
MaikOvermars | 0:4cb1de41d049 | 107 | break; |
MaikOvermars | 0:4cb1de41d049 | 108 | |
MaikOvermars | 0:4cb1de41d049 | 109 | case failure: //no way to get out |
MaikOvermars | 0:4cb1de41d049 | 110 | u1 = 0.0f; |
MaikOvermars | 0:4cb1de41d049 | 111 | break; |
MaikOvermars | 0:4cb1de41d049 | 112 | } |
MaikOvermars | 0:4cb1de41d049 | 113 | } |
MaikOvermars | 0:4cb1de41d049 | 114 | |
MaikOvermars | 0:4cb1de41d049 | 115 | void motor_controller() |
MaikOvermars | 0:4cb1de41d049 | 116 | { |
MaikOvermars | 0:4cb1de41d049 | 117 | if (current_state >= operational) { // we can (ab)use the fact that an enum is actually an integer, so math/logic rules still apply |
MaikOvermars | 10:7339dca7d604 | 118 | q_ref += inversekinematics_function(reference_end_point)/samplingfreq; //many different states can modify your reference position, so just do the inverse kinematics once, here |
MaikOvermars | 10:7339dca7d604 | 119 | e1 = q_ref - motor_angle; //tracking error (q_ref - q_meas) |
MaikOvermars | 10:7339dca7d604 | 120 | e2 = q_ref - motor_angle; |
MaikOvermars | 10:7339dca7d604 | 121 | PID_controller(e1,e2,u1,u2); //feedback controller or with possibly fancy controller additions...; pass by reference |
MaikOvermars | 0:4cb1de41d049 | 122 | } //otherwise we just don’t mess with the value of control variable ‘u’ that is set somewhere in the state-machine. |
MaikOvermars | 0:4cb1de41d049 | 123 | } |
MaikOvermars | 0:4cb1de41d049 | 124 | |
MaikOvermars | 0:4cb1de41d049 | 125 | |
MaikOvermars | 0:4cb1de41d049 | 126 | void loop_function() { |
MaikOvermars | 0:4cb1de41d049 | 127 | measure_all(); //measure all signals |
MaikOvermars | 0:4cb1de41d049 | 128 | state_machine(); //Do relevant state dependent things |
MaikOvermars | 0:4cb1de41d049 | 129 | motor_controller(); //Do not put different motor controllers in the states, because every state can re-use the same motor-controller! |
MaikOvermars | 0:4cb1de41d049 | 130 | output_all(); //Output relevant signals, messages, screen outputs, LEDs etc. |
MaikOvermars | 0:4cb1de41d049 | 131 | } |
MaikOvermars | 0:4cb1de41d049 | 132 | |
MaikOvermars | 0:4cb1de41d049 | 133 | |
MaikOvermars | 0:4cb1de41d049 | 134 | int main() |
MaikOvermars | 0:4cb1de41d049 | 135 | { |
MaikOvermars | 0:4cb1de41d049 | 136 | pc.baud(115200); |
MaikOvermars | 0:4cb1de41d049 | 137 | motor1_pwm.period_us(60); |
MaikOvermars | 0:4cb1de41d049 | 138 | motor2_pwm.period_us(60); |
MaikOvermars | 0:4cb1de41d049 | 139 | current_state = waiting; //we start in state ‘waiting’ and current_state can be accessed by all functions |
MaikOvermars | 0:4cb1de41d049 | 140 | u1 = 0.0f; //initial output to motors is 0. |
MaikOvermars | 10:7339dca7d604 | 141 | u2 = 0.0f; |
MaikOvermars | 10:7339dca7d604 | 142 | loop_ticker.attach(&loop_function, 1/samplingfreq); //Run the function loop_function 1000 times per second |
MaikOvermars | 0:4cb1de41d049 | 143 | |
MaikOvermars | 0:4cb1de41d049 | 144 | while (true) { } //Do nothing here (timing purposes) |
MaikOvermars | 0:4cb1de41d049 | 145 | } |