Biorobotics / Robot-Software

Dependencies:   HIDScope MODSERIAL QEI biquadFilter mbed Servo

Branch:
bla
Revision:
17:1f93c83e211f
Parent:
16:0280a604cf7e
Child:
22:31065a83d9e8
--- a/main.cpp	Thu Oct 25 17:50:26 2018 +0000
+++ b/main.cpp	Thu Oct 25 22:01:12 2018 +0000
@@ -5,6 +5,7 @@
 #include "BiQuad.h"
 #include "PID_controller.h"
 #include "kinematics.h"
+#include "processing_chain_emg.h"
 
 //Define objects
 MODSERIAL pc(USBTX, USBRX);
@@ -24,6 +25,7 @@
 QEI motor_1_encoder(D12,D13,NC,32);
 QEI motor_2_encoder(D10,D11,NC,32);
 
+// other objects
 AnalogIn    potmeter1(A2);
 AnalogIn    potmeter2(A3);
 DigitalIn   button(D0);
@@ -37,24 +39,21 @@
 //Global variables/objects
 States current_state;
 
-double des_vx, des_vy, x, y, q1, q2, qref1, qref2, e1, e2, u1, u2, emg_raw_0, processed_emg_0, emg_raw_1, processed_emg_1; //will be set by the motor_controller function
+double des_vx, des_vy, x, y, q1, q2, qref1, qref2, e1, e2, u1, u2, raw_emg_0, process_emg_0, raw_emg_1, process_emg_1; //will be set by the motor_controller function
+double vxmax = 1.0, vymax = 1.0;
 int counts_per_rotation = 32;
 bool state_changed = false;
 const double T = 0.001;
 
-float processing_chain_emg(int num) {
-    return 6.0;
-}
-
+// Functions
 void measure_all() 
 {
     q1 = motor_1_encoder.getPulses()*2.0f*3.1415926535f/counts_per_rotation; //do this here, and not in the encoder interrupt, to reduce computational load
     q2 = motor_2_encoder.getPulses()*2.0f*3.1415926535f/counts_per_rotation;
     forwardkinematics_function(q1,q2,x,y);  //motor_angle is global, this function ne
-    emg_raw_0 = emg0.read(); //sample analog voltages (all sampling theory applies, you might get aliasing etc.)
-    emg_raw_1 = emg1.read();
-    processed_emg_0 = processing_chain_emg(0);  // some function ‘float my_emg_processing_chain()’ that returns a float. The raw emg is global
-    processed_emg_1 = processing_chain_emg(1);
+    raw_emg_0 = emg0.read(); //sample analog voltages (all sampling theory applies, you might get aliasing etc.)
+    raw_emg_1 = emg1.read();
+    processing_chain_emg(raw_emg_0, raw_emg_1, process_emg_0, process_emg_1);  // processes the emg signals
 }
 
 void output_all() {
@@ -93,24 +92,36 @@
             break;
             
         case calib_emg:     //calibrate emg-signals
-            
+            current_state = operational;
             break;
         
         case operational:       //interpreting emg-signals to move the end effector
             if (state_changed==true) { ; }
-            // example
+            
+            // here we have to determine the desired velocity based on the processed emg signals and calibration
+            if (process_emg_0 >= 0.16) { des_vx = vxmax; }
+            else if(process_emg_0 >= 0.09) { des_vx = vxmax * 0.66; }
+            else if(process_emg_0 >= 0.02) { des_vx = vxmax * 0.33; }
+            else { des_vx = 0; }
+            
+            if (process_emg_1 >= 0.16) { des_vy = vymax; }
+            else if(process_emg_1 >= 0.09) { des_vy = vymax * 0.66; }
+            else if(process_emg_1 >= 0.02) { des_vy = vymax * 0.33; }
+            else { des_vy = 0; }
+            
             if (button.read() == true) { current_state = demo; }
             
             break;
             
         case demo: //moving according to a specified trajectory
             
-            if (button.read() == true) { current_state = demo; }
+            if (button.read() == true) { current_state = operational; }
             
             break;
         
         case failure: //no way to get out
             u1 = 0.0f;
+            u2 = 0.0f;
             break;
     }
 }
@@ -121,7 +132,7 @@
         inversekinematics_function(x,y,T,qref1,qref2,q1,q2,des_vx,des_vy); //many different states can modify your reference position, so just do the inverse kinematics once, here
         e1 = qref1 - q1; //tracking error (q_ref - q_meas)
         e2 = qref2 - q2;
-        PID_controller(e1,e2,u1,u2); //feedback controller or with possibly fancy controller additions...; pass by reference
+        PID_controller(e1,e2,u1,u2,T); //feedback controller or with possibly fancy controller additions...; pass by reference
         } //otherwise we just don’t mess with the value of control variable ‘u’ that is set somewhere in the state-machine.
 }
 
@@ -142,7 +153,8 @@
     current_state = waiting; //we start in state ‘waiting’ and current_state can be accessed by all functions
     u1 = 0.0f; //initial output to motors is 0.
     u2 = 0.0f;
-    loop_ticker.attach(&loop_function, 1/samplingfreq); //Run the function loop_function 1000 times per second
+    bqc.add(&bqhigh).add(&bqnotch);        // filter cascade for emg
+    loop_ticker.attach(&loop_function, T); //Run the function loop_function 1000 times per second
     
     while (true) { }  //Do nothing here (timing purposes)
 }