State machine
Dependencies: mbed Adafruit_GFX BioroboticsMotorControl MODSERIAL BioroboticsEMGFilter
main.cpp
- Committer:
- brass_phoenix
- Date:
- 2018-10-31
- Revision:
- 20:af1a6cd7469b
- Parent:
- 19:53b9729fbab5
- Child:
- 21:d541303a2ea6
File content as of revision 20:af1a6cd7469b:
#include "mbed.h" #include "constants.h" #include "Button.h" #include "Screen.h" #include "motor.h" #include "motor_calibration.h" #include "forward_kinematics.h" enum States {waiting, calib_motor, calib_bicep1, calib_bicep2, homing, operation, failure}; // The possible states of the state machine // Global variables Motor main_motor(D6, D7, D13, D12); Motor sec_motor(D5, D4, D10, D11); AnalogIn potmeter1(A5); // Analoge input van potmeter 1 -> Motor 1 AnalogIn potmeter2(A4); // Analoge input van potmeter 2 -> Motor 2 States current_state; // Defining the state we are currently in States last_state; // To detect state changes. Ticker loop_ticker; // Ticker for the loop function // Order of buttons: up_down, left_right, panic // D2, D3, D8 Button ud_button(D2); Button lr_button(D3); Button p_button(D8); Ticker button_ticker; DigitalOut led_red(LED_RED); DigitalOut led_green(LED_GREEN); DigitalOut led_blue(LED_BLUE); // The last arguent is the reset pin. // The screen doesn't use it, but the library requires it // So pick a pin we don't use. Screen screen(D14, D15, D9); // Which direction the emg will control the arm. // Up or down. // Left or right. bool control_goes_up = false; bool control_goes_right = false; void do_state_waiting() { if(last_state != current_state) { last_state = current_state; // State just changed to this one. led_green = 1; screen.clear_display(); screen.display_state_name("Waiting"); screen.get_screen_handle()->printf(" Press to start "); screen.get_screen_handle()->printf(" | "); screen.get_screen_handle()->printf(" V "); screen.display(); } if (ud_button.has_just_been_pressed()) { current_state = calib_motor; } // TODO: // THIS OPTION IS ONLY HERE FOR DEBUGGING PURPOSES. // REMOVE WHEN THE DEMO STATE IS IMPLEMENTED. if (lr_button.has_just_been_pressed()) { current_state = operation; } } void do_state_calib_motor() { static double main_last_angle; static double sec_last_angle; static int main_iterations_not_moving; static int sec_iterations_not_moving; static bool main_is_calibrated; static bool sec_is_calibrated; if(last_state != current_state) { last_state = current_state; // State just changed to this one. led_green = 0; screen.clear_display(); screen.display_state_name("Motor calibration"); main_last_angle = -10; sec_last_angle = -10; main_iterations_not_moving = 0; sec_iterations_not_moving = 0; main_is_calibrated = false; sec_is_calibrated = false; } if (!main_is_calibrated) { main_is_calibrated = calibrate_motor(main_motor, main_last_angle, main_iterations_not_moving); if (main_is_calibrated) { main_motor.define_current_angle_as_x_radians(0.785398); // 45 degrees. } } if (!sec_is_calibrated) { sec_is_calibrated = calibrate_motor(sec_motor, sec_last_angle, sec_iterations_not_moving); if (sec_is_calibrated) { sec_motor.define_current_angle_as_x_radians(-0.733038); // -42 degrees. } } if (main_is_calibrated && sec_is_calibrated) { current_state = homing; } } void do_state_calib_bicep1() { if(last_state != current_state) { last_state = current_state; // State just changed to this one. screen.clear_display(); screen.display_state_name("EMG 1 calibration"); } if (ud_button.has_just_been_pressed()) { current_state = calib_bicep2; } } void do_state_calib_bicep2() { if(last_state != current_state) { last_state = current_state; // State just changed to this one. screen.clear_display(); screen.display_state_name("EMG 2 calibration"); } if (ud_button.has_just_been_pressed()) { current_state = homing; } } void do_state_homing() { double main_home = PI * 0.5; double sec_home = 0; if(last_state != current_state) { last_state = current_state; // State just changed to this one. screen.clear_display(); screen.display_state_name("Homing"); main_motor.set_target_angle(main_home); sec_motor.set_target_angle(sec_home); } if (ud_button.has_just_been_pressed()) { current_state = calib_bicep1; } } void do_state_operation() { if(last_state != current_state) { last_state = current_state; // State just changed to this one. screen.clear_display(); screen.display_state_name("Normal operation"); control_goes_up = true; control_goes_right = true; screen.display_up_down_arrow(control_goes_up); screen.display_left_right_arrow(control_goes_right); } // Using potmeters for debugging purposes; double main_angle = ((potmeter1.read() * 2) - 1) * PI; double sec_angle = ((potmeter2.read() * 2) - 1) * PI; double e_x = 0.0; double e_y = 0.0; forward_kinematics(main_angle, sec_angle, e_x, e_y); screen.get_screen_handle()->setTextCursor(0, 0); screen.get_screen_handle()->printf("M_a: %.6f\n", main_angle); screen.get_screen_handle()->printf("S_a: %.6f\n", sec_angle); screen.get_screen_handle()->printf("X: %.6f\n", e_x); screen.get_screen_handle()->printf("Y: %.6f", e_y); screen.display(); /* double main_target = ((potmeter1.read() * 2) - 1) * PI; main_motor.set_target_angle(main_target); double sec_target = ((potmeter2.read() * 2) - 1) * PI; sec_motor.set_target_angle(sec_target); if (ud_button.has_just_been_pressed()) { control_goes_up = !control_goes_up; screen.display_up_down_arrow(control_goes_up); } if (lr_button.has_just_been_pressed()) { control_goes_right = !control_goes_right; screen.display_left_right_arrow(control_goes_right); } */ } void do_state_failure() { if(last_state != current_state) { last_state = current_state; // State just changed. // Update the display. led_red = 0; led_green = 1; screen.clear_display(); screen.display_state_name("STOP"); } // Stop the motors! main_motor.stop(); sec_motor.stop(); } void main_loop() { ud_button.update(); lr_button.update(); p_button.update(); switch (current_state) { case waiting: do_state_waiting(); break; case calib_motor: do_state_calib_motor(); break; case calib_bicep1: do_state_calib_bicep1(); break; case calib_bicep2: do_state_calib_bicep2(); break; case homing: do_state_homing(); break; case operation: do_state_operation(); break; case failure: do_state_failure(); break; } // Check if the panic button was pressed. // Doesn't matter in which state we are, we need to go to failure. if (p_button.is_pressed()) { current_state = failure; } } void poll_buttons() { // We need to poll the pins periodically. // Normally one would use rise and fall interrupts, so this wouldn't be // needed. But the buttons we use generate so much chatter that // sometimes a rising or a falling edge doesn't get registered. // With all the confusion that accompanies it. ud_button.poll_pin(); lr_button.poll_pin(); p_button.poll_pin(); } int main() { led_red = 1; led_green = 1; led_blue = 1; screen.clear_display(); main_motor.set_pid_k_values(Kp, Ki, Kd); sec_motor.set_pid_k_values(Kp, Ki, Kd); // One of the motors is reversed in the electronics. // This is fixed in the motor controll board, so we have to account // for it in software. main_motor.set_extra_reduction_ratio(-main_gear_ratio); sec_motor.set_extra_reduction_ratio(sec_gear_ratio); // Set the maximum pwm fraction for both motors. main_motor.set_max_pwm_fraction(0.5); sec_motor.set_max_pwm_fraction(0.5); // Start the motor controller at the desired frequency. main_motor.start(pid_period); sec_motor.start(pid_period); // Start in the waiting state. current_state = waiting; // Pretend we come from the operation state. // So that the waiting state knows it just got started. last_state = operation; // Start the button polling ticker. button_ticker.attach(&poll_buttons, button_poll_interval); while (true) { main_loop(); // Button debugging. if (ud_button.has_just_been_pressed() || lr_button.has_just_been_pressed() || p_button.has_just_been_pressed()) { led_blue = 0; } else { led_blue = 1; } wait(main_loop_wait_time); } }