State machine
Dependencies: mbed Adafruit_GFX BioroboticsMotorControl MODSERIAL BioroboticsEMGFilter
inverse_kinematics.h
- Committer:
- brass_phoenix
- Date:
- 2018-11-01
- Revision:
- 26:a8f4a117cc0d
- Parent:
- 21:d541303a2ea6
- Child:
- 27:b247e78a4380
File content as of revision 26:a8f4a117cc0d:
#pragma once #include "mbed.h" #include "constants.h" // Pass the two values that you want the target angle outputs in, as 3rd and 4th arguments. void inverse_kinematics(double Pe_x, double Pe_y, double &dest_main_angle, double &dest_sec_angle) { // Calculation of the position of joint 3 in frame 0 float n = sqrt(pow((L6-Pe_x),2) + pow(Pe_y,2)); // Radius between motor 1 and endeffector [meter] float omega = acos(-(pow(n,2) - pow(L4,2) - pow(L5,2))/(2*L4*L5)); // Angle between L4 and L5 [rad] float q4 = PI - omega; // Angle of joint 3 between L3 and L4 float theta = acos( -(pow(L5,2) - pow(n,2) - pow(L4,2))/(2*n*L4) ); // Angle between n and L4 float lambda_pre_value = Pe_y/(L6-Pe_x); float lambda = PI - atan(lambda_pre_value); // Entire angle between L0 and n dest_main_angle = lambda - theta; float J3x_0 = L6 + L4*cos(dest_main_angle); // x-coordinate of joint 3 in frame 0 float J3y_0 = L4*sin(dest_main_angle); // y-coordinate of joint 3 in frame 0 // Calculation of the position of joint 2 in frame 0 float S = J3y_0 - Pe_y; // Distance between height endeffector and joint 3 float kappa = asin(S/L5); // Angle of L5 float J2x_0 = (L3+L5)*cos(kappa) + Pe_x; // x-coordinate of joint 2 in frame 0 float J2y_0 = (L3+L5)*sin(kappa) + Pe_y; // y-coordinate of joint 2 in frame 0 // Calculation of the position of joint 1 in frame 0 float J2x_1 = J2x_0 - L0 - L6; // x-coordinate of joint 2 in frame 1 float J2y_1 = J2y_0; // y-coordinate of joint 2 in frame 1 float r = sqrt(pow(J2x_1,2) + pow(J2y_1,2)); // Radius between origin frame 1 and J2 float alfa = acos( -(pow(r,2) - pow(L1,2) - pow(L2,2))/(2*L1*L2) ); // Angle opposite of radius r float q2 = PI - alfa; // Angle between L1 and L2 // Calculation of motor_angle2 float beta = acos(- (pow(L2,2) - pow(r,2) - pow(L1,2))/(2*L1*r)); // Angle between r and L1 float zeta = acos(J2x_1/r); // Angle between r and x-axis of frame 1 dest_sec_angle = zeta - beta; // Determining angle delta for safety float J1x_0 = L0 + L6 + L1*cos(dest_sec_angle); // x-coordinate of joint 1 in frame 0 float J1y_0 = L1*sin(dest_sec_angle); // y-coordinate of joint 1 in frame 0 float m = sqrt(pow((J1x_0 - J3x_0),2) + pow((J3y_0 - J1y_0),2)); // Radius between Joint 1 and Joint 3 float delta = acos(- (pow(m,2) - pow(L2,2) - pow(L3,2))/(2*L2*L3)); // Angle between L2 and L3 // Implementing stops for safety // 45 < Motor_angle1 < 70 graden if (dest_main_angle < main_arm_min_angle) // If motor_angle is smaller than 45 degrees { dest_main_angle = main_arm_min_angle; } else if (dest_main_angle > main_arm_max_angle) // If motor_angle is larger than 70 degrees { dest_main_angle = main_arm_max_angle; } // -42 < Motor_angle2 < 85 graden if (dest_sec_angle < sec_arm_min_angle) // If motor_angle is smaller than -42 degrees { dest_sec_angle = sec_arm_min_angle; } else if (dest_sec_angle > sec_arm_max_angle) // If motor_angle is larger than 85 degrees { dest_sec_angle = sec_arm_max_angle; } // Delta < 170 graden if (delta > 2.96706) // If delta is larger than 180 degrees { delta = 2.96706; } }