Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: Biquad HIDScope controlandadjust mbed QEI angleandposition
main.cpp
- Committer:
- Gerth
- Date:
- 2015-10-28
- Revision:
- 32:c940f6b6a6a0
- Parent:
- 31:8646e853979f
- Child:
- 33:1c7b498ded25
File content as of revision 32:c940f6b6a6a0:
#include "mbed.h"
#include "QEI.h"
#include "HIDScope.h"
#include "Biquad.h"
#include "controlandadjust.h"
#include "angleandposition.h"
///////////////////////////////////////////////info out
HIDScope scope(6);// number of hidscope channels
const double scope_frequency=500; //HIDscope frequency
Timer checktimer;
volatile double checktimervalue=0;
Serial pc(USBTX,USBRX);// serial connection to pc
DigitalOut ledred(LED_RED);
DigitalOut ledgreen(LED_GREEN);
DigitalOut ledblue(LED_BLUE);
Ticker scope_ticker;
/////////////////////////////////////////////ENCODERS
const float cpr_sensor=32;
const float cpr_shaft=cpr_sensor*131;//counts per rotation of the sensor
QEI encoder1(D13,D12,NC,cpr_sensor);/// encoders on motors X2 encoding
QEI encoder2(D10,D11,NC,cpr_sensor);
const double PIE=3.14159265359;
const float counttorad=((2*PIE)/cpr_shaft);// counts per rotation of the shaft
/////////////////////////////////CALIBRATION (MODE)
const double radpersec_calibrate=0.1*PIE;// speed of arms when in calibration mode
int modecounter=1;//counter in which mode the robot is
const double readbuttoncalibrate_frequency=10;//frequency at which the buttons are read when in calibration mode
const double ledblink_frequency=4;//frequency at which the green led and leds on top blink when in resp button or calibration mode
DigitalIn changemodebutton(PTA4);// button to change mode (sw3)
Ticker readbuttoncalibrate_ticker;
Ticker ledblink_ticker;
DigitalIn buttonR(D2);//rigth button on biorobotics shield
DigitalIn buttonL(D3);//left button on biorobotics shield
/////////////////READSIGNAL
const double readsignal_frequency=100;//frequency at wich the filtered emg signal is sampled to be 0 or 1
Ticker readsignal_ticker;
DigitalOut led1(PTC12);// rigth led on biorobotics shield
DigitalOut led2(D9);//left led on biorobotics shield
//////////////////////////////////CONTROLLER
const double control_frequency=250;// frequency at which the controller is called
//controller constants
float Kp_shoot=6;
float Ki_shoot=2;
float Kd_shoot=0.5;
float Kp_move=2;
float Ki_move=1.25;
float Kd_move=0.05;
float factor_taup=1.5;
float tau_p=1.0/(factor_taup*control_frequency);
controlandadjust mycontroller(2,control_frequency); // make a controller, value in brackets is errorband in degrees and controller frequency
Ticker control_ticker;
const double Ts_control=1.0/control_frequency;
float error1=0,//controller error storage variables
error2=0;
InterruptIn valuechangebutton(PTC6);//button to change controller constants
//safetyandthreshold
AnalogIn safety_pot(A3);//pot 2, used for the safety cutoff value for the pwm
AnalogIn threshold_pot(A2);//pot1, used to adjust threshold if signal differs per person
Ticker safetyandthreshold_ticker; // ticker to read potmeters
const double safetyandthreshold_frequency=1; // frequency for the ticker
float threshold_value=1;//initial threshold value
////////////////////////////////FILTER
const double filter_frequency=500;
#include "filtervalues.h"// call the values for the biquads
Ticker filter_ticker;
Biquad myfilter1;// make filter for signal 1
Biquad myfilter2;//make filter for signal 2
AnalogIn emg1_input(A0);//input for first emg signal
AnalogIn emg2_input(A1);//input for second emg signal
volatile double filteredsignal1=0;//the first filtered emg signal
volatile double filteredsignal2=0;//the second filtered emg signal
float filter_extragain=1;
//////////////////////////////// POSITION AND ANGLE SHIZZLE
const float safetymarginfield=0.1; //adjustable, tweak for maximum but safe range
const float mm_per_sec_emg=0.1;// move the pod 100 mm per sec if muscle is flexed
const float y_start=0.145;//starting y position of the pod
const float y_punch=0.473;// position to where there is punched
const float timetoshoot=0.35;// time it can take to shoot
const float timetogoback=1;// time it can take to go back after shooting
float desired_position=0;
float desired_angle1=0;
float desired_angle2=0;
const float fieldwidth=0.473;
const float maxdisplacement=((fieldwidth/2)-safetymarginfield); //so the pod doesn't hit the edges of the playfield
angleandposition anglepos;// initiate the angle and position calculation library
const float radtodeg=(180/PIE);
//////////////////////GO FLAGS AND ACTIVATION FUNCTIONS
volatile bool scopedata_go=false,
control_go=false,
filter_go=false,
safetyandthreshold_go=false,
readsignal_go=false,
switchedmode=true,
readbuttoncalibrate_go=false,
ledblink_go=false;
void scopedata_activate()
{
scopedata_go=true;
}
void control_activate()
{
control_go=true;
}
void filter_activate()
{
filter_go=true;
}
void safetyandthreshold_activate()
{
safetyandthreshold_go=true;
}
void readsignal_activate()
{
readsignal_go=true;
}
void readbuttoncalibrate_activate()
{
readbuttoncalibrate_go=true;
}
void ledblink_activate()
{
ledblink_go=true;
}
////////////////////////FUNCTIONS
//gather data and send to scope
void scopedata(double wanted_y)
{
scope.set(0,desired_position-anglepos.angletoposition(counttorad*encoder1.getPulses(),counttorad*encoder2.getPulses()));
scope.set(1,wanted_y-anglepos.angletoposition_y(counttorad*encoder1.getPulses(),counttorad*encoder2.getPulses()));
scope.set(2,error1*radtodeg);
scope.set(3,error2*radtodeg);
scope.set(4,mycontroller.motor1pwm());
scope.set(5,mycontroller.motor2pwm());
scope.send();
}
//read potmeters and adjust the safetyfactor and threshold
void safetyandthreshold()
{
mycontroller.cutoff((ceil (10*safety_pot.read()) )/10); // adjust the safetyfactor value between 0 and 1 rounded to 1 decimal
threshold_value=((ceil (100*threshold_pot.read()) )/100); // adjust the threshold value between 0 and 1 rounded to 2 decimals
}
/////filter
void filtereverything(bool makeempty)
{
//pass1 so f1
double pass1_emg1 = myfilter1.filter(emg1_input.read(), v1_f1_emg1 , v2_f1_emg1 , a1_f1 , a2_f1 , b0_f1 , b1_f1 , b2_f1);
double pass1_emg2 = myfilter2.filter(emg2_input.read(), v1_f1_emg2 , v2_f1_emg2 , a1_f1 , a2_f1 , b0_f1 , b1_f1 , b2_f1);
//pass2 so f2
double pass2_emg1 = myfilter1.filter(pass1_emg1, v1_f2_emg1 , v2_f2_emg1 , a1_f2 , a2_f2 , b0_f2 , b1_f2 , b2_f2);
double pass2_emg2 = myfilter2.filter(pass1_emg2, v1_f2_emg2 , v2_f2_emg2 , a1_f2 , a2_f2 , b0_f2 , b1_f2 , b2_f2);
//pass3 so f3
double pass3_emg1 = myfilter1.filter(pass2_emg1, v1_f3_emg1 , v2_f3_emg1 , a1_f3 , a2_f3 , b0_f3 , b1_f3 , b2_f3);
double pass3_emg2 = myfilter2.filter(pass2_emg2, v1_f3_emg2 , v2_f3_emg2 , a1_f3 , a2_f3 , b0_f3 , b1_f3 , b2_f3);
//pass4 so f4
double pass4_emg1 = myfilter1.filter(pass3_emg1, v1_f4_emg1 , v2_f4_emg1 , a1_f4 , a2_f4 , b0_f4 , b1_f4 , b2_f4);
double pass4_emg2 = myfilter2.filter(pass3_emg2, v1_f4_emg2 , v2_f4_emg2 , a1_f4 , a2_f4 , b0_f4 , b1_f4 , b2_f4);
//pass5 so f5
double pass5_emg1 = myfilter1.filter(pass4_emg1, v1_f5_emg1 , v2_f5_emg1 , a1_f5 , a2_f5 , b0_f5 , b1_f5 , b2_f5);
double pass5_emg2 = myfilter2.filter(pass4_emg2, v1_f5_emg2 , v2_f5_emg2 , a1_f5 , a2_f5 , b0_f5 , b1_f5 , b2_f5);
///// take absolute value
double pass5_emg1_abs=(fabs(pass5_emg1));
double pass5_emg2_abs=(fabs(pass5_emg2));
//pass6 so f6
double pass6_emg1 = myfilter1.filter(pass5_emg1_abs, v1_f6_emg1 , v2_f6_emg1 , a1_f6 , a2_f6 , b0_f6 , b1_f6 , b2_f6);
double pass6_emg2 = myfilter2.filter(pass5_emg2_abs, v1_f6_emg2 , v2_f6_emg2 , a1_f6 , a2_f6 , b0_f6 , b1_f6 , b2_f6);
//pass7 so f7
double pass7_emg1 = myfilter1.filter(pass6_emg1, v1_f7_emg1 , v2_f7_emg1 , a1_f7 , a2_f7 , b0_f7 , b1_f7 , b2_f7);
double pass7_emg2 = myfilter2.filter(pass6_emg2, v1_f7_emg2 , v2_f7_emg2 , a1_f7 , a2_f7 , b0_f7 , b1_f7 , b2_f7);
filteredsignal1=(pass7_emg1*9e11*filter_extragain);
filteredsignal2=(pass7_emg2*9e11*filter_extragain);
if (makeempty==true) {//this is needed so the filtered value is nog high after shooting
pass1_emg1 = pass1_emg2 =pass2_emg1 =pass2_emg2 =pass3_emg1 = pass3_emg2 =pass4_emg1 =pass4_emg2 =pass5_emg1 =pass5_emg2 =0;
pass5_emg1_abs=pass5_emg2_abs=pass6_emg1 =pass6_emg2 =pass7_emg1=pass7_emg2 =filteredsignal1=filteredsignal2=0;
v1_f1_emg1=v1_f1_emg2=v1_f2_emg1=v1_f2_emg2=v1_f3_emg1=v1_f3_emg2=v1_f4_emg1=v1_f4_emg2=v1_f5_emg1=0;
v1_f5_emg2=v1_f6_emg1=v1_f6_emg2=v1_f7_emg1=v1_f7_emg2=0;
}
}
//adjust controller values when sw2 is pressed
void valuechange()
{
mycontroller.STOP();
pc.printf("KP shoot is now %f, enter new value\n",Kp_shoot);
pc.scanf("%f", &Kp_shoot);
pc.printf("KI shoot is now %f, enter new value\n",Ki_shoot);
pc.scanf("%f", &Ki_shoot);
pc.printf("KD shoot is now %f, enter new value\n",Kd_shoot);
pc.scanf("%f", &Kd_shoot);
pc.printf("Factor of tau_p=1.0/(factor*controlfrequency) is now %f, enter new value\n",factor_taup);
pc.scanf("%f", &factor_taup);
pc.printf("Extra gain is now %f, enter new value\n",filter_extragain);
pc.scanf("%f", &filter_extragain);
}
// shoot the pod forward
void shoot()
{
ledgreen=1;
double time=0;
double stepsize=(0.5*PIE)/(timetoshoot*control_frequency);
double profile_angle=0;
double x_punch=anglepos.angletoposition(counttorad*encoder1.getPulses(),counttorad*encoder2.getPulses());
double y_during_punch=y_start;
Timer shoottimer;
shoottimer.reset();
shoottimer.start();
//forward
while (time<=timetoshoot) {
ledblue=!ledblue;
profile_angle+=stepsize; // add stepsize to angle
y_during_punch=(y_punch-y_start)*(1-cos(profile_angle))+y_start; // calculate y position for shooting
if (y_during_punch>=y_punch) {//to check if y position is not bigger than y_punch for safety
y_during_punch=y_punch;
} else {
y_during_punch=y_during_punch;
}
desired_angle1=anglepos.positiontoangle1(x_punch,y_during_punch);// calculate desired angles
desired_angle2=anglepos.positiontoangle2(x_punch,y_during_punch);
error1=(desired_angle1-counttorad*encoder1.getPulses());//calculate errors
error2=(desired_angle2-counttorad*encoder2.getPulses());
mycontroller.PID(error1,error2,Kp_shoot,Ki_shoot,Kd_shoot);;// send errors to controller
scopedata(y_during_punch);//send data to hidscope WARING lower freqyency than normal
time+=(Ts_control);// add time it should take to calculated time
//pc.printf("Time = %f\n",time);
filtereverything(true);//set al filter variables to 0
wait(time-shoottimer.read());// IMPORTANT wait until the loop has taken the time it should need, if this is not done the loop wil go to fast and the motors can't keep up
}
//back
time=0;
shoottimer.reset();
stepsize=(PIE)/(timetogoback*control_frequency);
profile_angle=0;
while (time<=timetogoback) {
ledblue=!ledblue;
profile_angle+=stepsize; // add stepsize to y position
y_during_punch=0.5*(y_punch-y_start)*(1+cos(profile_angle))+y_start; // calculate y position for shooting
if (y_during_punch<=y_start) {//to check if y position is not smaller than y_start for safety
y_during_punch=y_start;
} else {
y_during_punch=y_during_punch;
}
desired_angle1=anglepos.positiontoangle1(x_punch,y_during_punch);// calculate desired angles
desired_angle2=anglepos.positiontoangle2(x_punch,y_during_punch);
error1=(desired_angle1-counttorad*encoder1.getPulses());//calculate errors
error2=(desired_angle2-counttorad*encoder2.getPulses());
mycontroller.PID(error1,error2,Kp_shoot,Ki_shoot,Kd_shoot);;// send errors to controller
scopedata(y_during_punch);//send data to hidscope WARING lower freqyency than normal
time+=(Ts_control);// add time it should take to calculated time
//pc.printf("Time = %f\n",time);
filtereverything(false);
wait(time-shoottimer.read());// IMPORTANT wait until the loop has taken the time it should need, if this is not done the loop wil go to fast and the motors can't keep up
}
shoottimer.stop();
ledblue=1;
ledgreen=0;
}
////////////////////////////////////////////////////READ EMG AND MOVE DESIRED POSITION
void readsignal()
{
//check if pod has to shoot
if (filteredsignal1>=threshold_value && filteredsignal2>=threshold_value) {
led1=led2=1;
shoot();
// check if pod has to move to the right
} else if (filteredsignal1>=threshold_value && filteredsignal2<=threshold_value) {
led1=1;
led2=0;
desired_position += (mm_per_sec_emg/readsignal_frequency);// move desiredposition right
if (desired_position>=maxdisplacement) {//check if the pod doesnt move too far and hit the edge
desired_position=maxdisplacement;
} else {
desired_position=desired_position;
}
// check if pod has to move to the left
} else if (filteredsignal1<=threshold_value && filteredsignal2>=threshold_value) {
led1=0;
led2=1;
desired_position -= (mm_per_sec_emg/readsignal_frequency);//move desiredposition left
if (desired_position<=(-1*maxdisplacement)) {//check if the pod doesnt move too far and hit the edge
desired_position=(-1*maxdisplacement);
} else {
desired_position=desired_position;
}
} else {
led1=led2=0;
}
}
///////////////////////////////////////////////READ BUTTON AND MOVE DESIRED POSITION
void readsignalbutton()
{
//write value of button to variable
int buttonr=buttonR.read();
int buttonl=buttonL.read();
//check if pod has to shoot
if (buttonr==0 && buttonl==0) {
led1=led2=1;
shoot();
// check if pod has to move to the right
} else if (buttonr==0 && buttonl==1) {
led1=1;
led2=0;
desired_position += (mm_per_sec_emg/readsignal_frequency);// move desiredposition right
if (desired_position>=maxdisplacement) {//check if the pod doesnt move too far and hit the edge
desired_position=maxdisplacement;
} else {
desired_position=desired_position;
}
// check if pod has to move to the left
} else if (buttonr==1 && buttonl==0) {
led1=0;
led2=1;
desired_position -= (mm_per_sec_emg/readsignal_frequency);//move desiredposition left
if (desired_position<=(-1*maxdisplacement)) {//check if the pod doesnt move too far and hit the edge
desired_position=(-1*maxdisplacement);
} else {
desired_position=desired_position;
}
} else {
led1=led2=0;
}
}
void changemode() //this makes the counter higher to switch between modes
{
mycontroller.STOP();
switchedmode=true;
modecounter++;
if (modecounter==4) {
modecounter=0;
} else {
modecounter=modecounter;
}
wait(1);// needed because else it is checked too fast if the button is pressed and modes change too fast
// tried it with interruptin but dinn't work
}
///////////////////////////////////////////////////MAIN
int main()
{
//tickers
safetyandthreshold_ticker.attach(&safetyandthreshold_activate,1.0/safetyandthreshold_frequency);
filter_ticker.attach(&filter_activate,1.0/filter_frequency);
control_ticker.attach(&control_activate,1.0/control_frequency);
scope_ticker.attach(&scopedata_activate,1.0/scope_frequency);
readsignal_ticker.attach(&readsignal_activate, 1.0/readsignal_frequency);
readbuttoncalibrate_ticker.attach(&readbuttoncalibrate_activate, 1.0/readbuttoncalibrate_frequency);
ledblink_ticker.attach(&ledblink_activate, 1.0/ledblink_frequency);
pc.baud(115200);//set baudrate to 115200
while(1) {
valuechangebutton.fall(&valuechange);// used to change controller variables and the gain for the filter
checktimer.reset();
checktimer.start();
if (changemodebutton==0) {// check if the change mode button is pressed
changemode();
}
if (scopedata_go==true) {//send scopedata
//TIME THIS LOOP TAKES 0.000008 SEC (PEAKS AT 0.000015)
scopedata(y_start);
scopedata_go=false;
}
if (safetyandthreshold_go==true) {// check the potmeters
//TIME THIS LOOP TAKES: 0.000032 SEC
safetyandthreshold();
safetyandthreshold_go=false;
}
///////////////////////////////////////////NORMAL RUNNING MODE
if(modecounter==0) {
if (switchedmode==true) {
encoder1.reset();// reset encoders so they are at 0 degrees
encoder2.reset();
pc.printf("Program running\n");//
ledgreen=0;
led1=led2=ledred=ledblue=1;
switchedmode=false;
}
if (filter_go==true) {// filter the emg signal
// TIME THIS LOOP TAKES: 0.000173 SEC
filtereverything(false);
filter_go=false;
}
if (readsignal_go==true) {// check if signal is 0 or 1 and adjust wanted position
// TIME THIS LOOP TAKES: 0.000005 SEC
readsignal();
readsignal_go=false;
}
if (control_go==true) {// calculate angles from positions and send error to controller
//TIME THIS LOOP TAKES: 0.000223 SEC
desired_angle1=anglepos.positiontoangle1(desired_position,y_start);
desired_angle2=anglepos.positiontoangle2(desired_position,y_start);
float error1=(desired_angle1-counttorad*encoder1.getPulses());
float error2=(desired_angle2-counttorad*encoder2.getPulses());
mycontroller.PID(error1,error2,Kp_move,Ki_move,Kd_move);
control_go=false;
}
valuechangebutton.fall(&valuechange);// used to change controller variables and the gain for the filter
}
////////////////////////////////////////////////////CALIBRATE RIGHT ARM
if (modecounter==1) {
if(switchedmode==true) {
pc.printf("Calibration mode! Use buttons to move rigth arm to 0 degrees\n");
led1=led2=ledred=0;
ledgreen=ledblue=1;
switchedmode=false;
}
if (ledblink_go==true) {
led1=!led1;// blink rigth led on biorobotics shield (because rigth arm is being calibrated)
ledblink_go=false;
}
if (readbuttoncalibrate_go==true) {//check wich button is pressed and adjust wanted angle of rigth arm
if (buttonR.read()==0 && buttonL.read()==1) {
desired_angle1 += (radpersec_calibrate/readbuttoncalibrate_frequency);
readbuttoncalibrate_go=false;
}
if (buttonR.read()==1 && buttonL.read()==0) {
desired_angle1 -= (radpersec_calibrate/readbuttoncalibrate_frequency);
readbuttoncalibrate_go=false;
}
}
if (control_go==true) {// calculate errors and send them to controllers
error1=(desired_angle1-counttorad*encoder1.getPulses());
error2=0;
mycontroller.PI(error1,error2,Kp_move,Ki_move);
control_go=false;
}
}
////////////////////////////////////////////CALIBRATE LEFT ARM
if (modecounter==2) {
if(switchedmode==true) {
pc.printf("Calibration mode! Use buttons to move left arm to 0 degrees\n");
led1=led2=ledred=0;
ledgreen=ledblue=1;
switchedmode=false;
}
if (ledblink_go==true) {
led2=!led2;// blink left led on biorobotics shield (because left arm is being calibrated)
ledblink_go=false;
}
if (readbuttoncalibrate_go==true) {//
if (buttonR.read()==0 && buttonL.read()==1) {//check wich button is pressed and adjust wanted angle of left arm
desired_angle2 += (radpersec_calibrate/readbuttoncalibrate_frequency);
readbuttoncalibrate_go=false;
}
if (buttonR.read()==1 && buttonL.read()==0) {
desired_angle2 -= (radpersec_calibrate/readbuttoncalibrate_frequency);
readbuttoncalibrate_go=false;
}
}
if (control_go==true) {// calculate errors and send to controller
error1=0;
error2=(desired_angle2-counttorad*encoder2.getPulses());
mycontroller.PI(error1,error2,Kp_move,Ki_move);
control_go=false;
}
}
///////////////////////////////BUTTONCONTROLMODE
if (modecounter==3) {
if (switchedmode==true) {
pc.printf("Buttonmode, you can use the buttons to control the robot\n");
led1=led2=0;
ledred=ledblue=1;
encoder1.reset();// reset encoders so they are at 0 degrees
encoder2.reset();
switchedmode=false;
}
if (ledblink_go==true) {
ledgreen=!ledgreen;
ledblink_go=false;
}
if (readsignal_go==true) {// read buttons and adjus wanted position
readsignalbutton();
readsignal_go=false;
}
if (control_go==true) {// calculate wanted angles from position, errors and send to controller
desired_angle1=anglepos.positiontoangle1(desired_position,y_start);
desired_angle2=anglepos.positiontoangle2(desired_position,y_start);
error1=(desired_angle1-counttorad*encoder1.getPulses());
error2=(desired_angle2-counttorad*encoder2.getPulses());
mycontroller.PID(error1,error2,Kp_move,Ki_move,Kd_move);
control_go=false;
}
}
checktimervalue=checktimer.read();
checktimer.stop();
}
}