TMRh20 ported to MBED
Fork of TMRh20 by
Revision 6:15a3bbf90fe9, committed 2017-10-06
- Comitter:
- gume
- Date:
- Fri Oct 06 20:20:33 2017 +0000
- Parent:
- 5:836f5c6da243
- Commit message:
- Initial release
Changed in this revision
diff -r 836f5c6da243 -r 15a3bbf90fe9 RF24.cpp --- a/RF24.cpp Mon Mar 28 18:13:17 2016 +0000 +++ b/RF24.cpp Fri Oct 06 20:20:33 2017 +0000 @@ -12,238 +12,218 @@ /****************************************************************************/ -void RF24::csn(int mode) +void RF24::csn(bool mode) { csn_pin = mode; -// wait_us(5); -} - -/****************************************************************************/ - -void RF24::ce(int level) -{ - ce_pin = level; + wait_us(csDelay); } /****************************************************************************/ -void RF24::beginTransaction() +void RF24::ce(bool level) { - //#if defined (RF24_SPI_TRANSACTIONS) - //_SPI.beginTransaction(SPISettings(RF24_SPI_SPEED, MSBFIRST, SPI_MODE0)); - //#endif - - csn(LOW); - wait_us(5); + ce_pin = level; } + /****************************************************************************/ -void RF24::endTransaction() -{ + inline void RF24::beginTransaction() { + csn(LOW); + } -// wait_us(5); +/****************************************************************************/ + + inline void RF24::endTransaction() { csn(HIGH); - - //#if defined (RF24_SPI_TRANSACTIONS) - //_SPI.endTransaction(); - //#endif -} + } /****************************************************************************/ uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len) { - uint8_t status; - - beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low + uint8_t status; - status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) ); - while ( len-- ) - *buf++ = spi.write(0x55); // 0xff + beginTransaction(); + status = spi->write( R_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ){ + *buf++ = spi->write(0xff); + } + endTransaction(); - endTransaction(); //unlocks mutex and setting csn high - - return status; + return status; } /****************************************************************************/ uint8_t RF24::read_register(uint8_t reg) { - uint8_t result; - - beginTransaction(); + uint8_t result; + + beginTransaction(); + spi->write( R_REGISTER | ( REGISTER_MASK & reg ) ); + result = spi->write(0xff); + endTransaction(); - spi.write( R_REGISTER | ( REGISTER_MASK & reg ) ); - result = spi.write(0x55); // 0xff - - endTransaction(); - - //printf_P(PSTR("read_register(%02x,%02x)\r\n"),reg,result); - - return result; + return result; } /****************************************************************************/ uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len) { - uint8_t status; - - //printf_P(PSTR("write_register_more(%02x,%d)\r\n"), reg, len); - - beginTransaction(); + uint8_t status; - status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) ); - while ( len-- ) - spi.write(*buf++); + beginTransaction(); + status = spi->write( W_REGISTER | ( REGISTER_MASK & reg ) ); + while ( len-- ) + spi->write(*buf++); + endTransaction(); - endTransaction(); - - return status; + return status; } /****************************************************************************/ uint8_t RF24::write_register(uint8_t reg, uint8_t value) { - uint8_t status; + uint8_t status; - //printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value); - - beginTransaction(); + IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value)); - status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) ); - spi.write(value); + beginTransaction(); + status = spi->write( W_REGISTER | ( REGISTER_MASK & reg ) ); + spi->write(value); + endTransaction(); - endTransaction(); - - return status; + return status; } /****************************************************************************/ uint8_t RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType) { - uint8_t status; - const uint8_t* current = reinterpret_cast<const uint8_t*>(buf); - - data_len = rf24_min(data_len, payload_size); - uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; - - //printf_P("[Writing %u bytes %u blanks]\n",data_len,blank_len); - - beginTransaction(); + uint8_t status; + const uint8_t* current = reinterpret_cast<const uint8_t*>(buf); - status = spi.write( W_TX_PAYLOAD ); - while ( data_len-- ) - spi.write(*current++); - while ( blank_len-- ) - spi.write(0); + data_len = rf24_min(data_len, payload_size); + uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; + + //printf("[Writing %u bytes %u blanks]",data_len,blank_len); + IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); ); + + beginTransaction(); + status = spi->write( writeType ); + while ( data_len-- ) { + spi->write(*current++); + } + while ( blank_len-- ) { + spi->write(0); + } + endTransaction(); - endTransaction(); - - return status; + return status; } /****************************************************************************/ uint8_t RF24::read_payload(void* buf, uint8_t data_len) { - uint8_t status; - uint8_t* current = reinterpret_cast<uint8_t*>(buf); + uint8_t status; + uint8_t* current = reinterpret_cast<uint8_t*>(buf); - if(data_len > payload_size) data_len = payload_size; - uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; - - //printf_P("[Reading %u bytes %u blanks]\n",data_len,blank_len); - - beginTransaction(); + if(data_len > payload_size) data_len = payload_size; + uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len; + + //printf("[Reading %u bytes %u blanks]",data_len,blank_len); - status = spi.write( R_RX_PAYLOAD ); - while ( data_len-- ) - *current++ = spi.write(0xff); - while ( blank_len-- ) - spi.write(0xff); + IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); ); + + beginTransaction(); + status = spi->write( R_RX_PAYLOAD ); + while ( data_len-- ) { + *current++ = spi->write(0xFF); + } + while ( blank_len-- ) { + spi->write(0xff); + } + endTransaction(); - endTransaction(); - - return status; + return status; } /****************************************************************************/ uint8_t RF24::flush_rx(void) { - return spiTrans( FLUSH_RX ); + return spiTrans( FLUSH_RX ); } /****************************************************************************/ uint8_t RF24::flush_tx(void) { - return spiTrans( FLUSH_TX ); + return spiTrans( FLUSH_TX ); } /****************************************************************************/ -uint8_t RF24::spiTrans(uint8_t cmd) -{ - - uint8_t status; +uint8_t RF24::spiTrans(uint8_t cmd){ - //printf_P(PSTR("spiTrans(%02x)\r\n"), cmd); - - beginTransaction(); - status = spi.write(cmd); - endTransaction(); - - return status; + uint8_t status; + + beginTransaction(); + status = spi->write( cmd ); + endTransaction(); + + return status; } /****************************************************************************/ uint8_t RF24::get_status(void) { - return spiTrans(NOP); + return spiTrans(NOP); } /****************************************************************************/ #if !defined (MINIMAL) void RF24::print_status(uint8_t status) { - printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), - status, - (status & _BV(RX_DR))?1:0, - (status & _BV(TX_DS))?1:0, - (status & _BV(MAX_RT))?1:0, - ((status >> RX_P_NO) & 0b111), - (status & _BV(TX_FULL))?1:0 - ); + printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"), + status, + (status & _BV(RX_DR))?1:0, + (status & _BV(TX_DS))?1:0, + (status & _BV(MAX_RT))?1:0, + ((status >> RX_P_NO) & 0x07), + (status & _BV(TX_FULL))?1:0 + ); } /****************************************************************************/ void RF24::print_observe_tx(uint8_t value) { - printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), - value, - (value >> PLOS_CNT) & 0b1111, - (value >> ARC_CNT) & 0b1111 - ); + printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"), + value, + (value >> PLOS_CNT) & 0x0F, + (value >> ARC_CNT) & 0x0F + ); } /****************************************************************************/ void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty) { - //char extra_tab = strlen_P(name) < 8 ? '\t' : 0; + //char extra_tab = strlen_P(name) < 8 ? '\t' : 0; + //printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab); + #if defined (RF24_LINUX) printf("%s\t =", name); - - while (qty--) - printf_P(PSTR(" 0x%02x"),read_register(reg++)); - - printf_P(PSTR("\r\n")); + #else + printf_P(PSTR(PRIPSTR"\t ="),name); + #endif + while (qty--) + printf_P(PSTR(" 0x%02x"),read_register(reg++)); + printf_P(PSTR("\r\n")); } /****************************************************************************/ @@ -251,64 +231,59 @@ void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty) { - printf("%s\t =",name); + printf_P(PSTR(PRIPSTR"\t ="),name); - while (qty--) { - uint8_t buffer[addr_width]; - read_register(reg++,buffer,sizeof buffer); + while (qty--) + { + uint8_t buffer[addr_width]; + read_register(reg++,buffer,sizeof buffer); - printf_P(PSTR(" 0x")); - uint8_t* bufptr = buffer + sizeof buffer; - while( --bufptr >= buffer ) - printf_P(PSTR("%02x"),*bufptr); - } + printf_P(PSTR(" 0x")); + uint8_t* bufptr = buffer + sizeof buffer; + while( --bufptr >= buffer ) + printf_P(PSTR("%02x"),*bufptr); + } - printf_P(PSTR("\r\n")); + printf_P(PSTR("\r\n")); } -#endif // MINIMAL + +#endif /****************************************************************************/ -RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin): - ce_pin(_cepin), csn_pin(_cspin), p_variant(false), - payload_size(32), dynamic_payloads_enabled(false), addr_width(5), //,pipe0_reading_address(0) - spi(mosi, miso, sck) +RF24::RF24(SPI *spi, PinName _cepin, PinName _cspin): + ce_pin(_cepin),csn_pin(_cspin),p_variant(false), + payload_size(32), dynamic_payloads_enabled(false),addr_width(5),csDelay(5)//,pipe0_reading_address(0) { - //_SPI.begin(csn_pin); - spi.frequency(RF24_SPI_SPEED); - spi.format(8,0); - - pipe0_reading_address[0]=0; - - mainTimer.start(); - + this->spi = spi; + pipe0_reading_address[0]=0; } /****************************************************************************/ void RF24::setChannel(uint8_t channel) { - const uint8_t max_channel = 125; - write_register(RF_CH, rf24_min(channel,max_channel)); + const uint8_t max_channel = 125; + write_register(RF_CH,rf24_min(channel,max_channel)); } uint8_t RF24::getChannel() { - - return read_register(RF_CH); + + return read_register(RF_CH); } /****************************************************************************/ void RF24::setPayloadSize(uint8_t size) { - payload_size = rf24_min(size,32); + payload_size = rf24_min(size,32); } /****************************************************************************/ uint8_t RF24::getPayloadSize(void) { - return payload_size; + return payload_size; } /****************************************************************************/ @@ -319,185 +294,115 @@ static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS"; static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS"; static const char * const rf24_datarate_e_str_P[] PROGMEM = { - rf24_datarate_e_str_0, - rf24_datarate_e_str_1, - rf24_datarate_e_str_2, + rf24_datarate_e_str_0, + rf24_datarate_e_str_1, + rf24_datarate_e_str_2, }; static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01"; static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+"; static const char * const rf24_model_e_str_P[] PROGMEM = { - rf24_model_e_str_0, - rf24_model_e_str_1, + rf24_model_e_str_0, + rf24_model_e_str_1, }; static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled"; static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits"; static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ; static const char * const rf24_crclength_e_str_P[] PROGMEM = { - rf24_crclength_e_str_0, - rf24_crclength_e_str_1, - rf24_crclength_e_str_2, + rf24_crclength_e_str_0, + rf24_crclength_e_str_1, + rf24_crclength_e_str_2, }; static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN"; static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW"; static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH"; static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX"; static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = { - rf24_pa_dbm_e_str_0, - rf24_pa_dbm_e_str_1, - rf24_pa_dbm_e_str_2, - rf24_pa_dbm_e_str_3, + rf24_pa_dbm_e_str_0, + rf24_pa_dbm_e_str_1, + rf24_pa_dbm_e_str_2, + rf24_pa_dbm_e_str_3, }; void RF24::printDetails(void) { - print_status(get_status()); + print_status(get_status()); - print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2); - print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4); - print_address_register(PSTR("TX_ADDR\t"),TX_ADDR); + print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2); + print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4); + print_address_register(PSTR("TX_ADDR\t"),TX_ADDR); - print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6); - print_byte_register(PSTR("EN_AA\t"),EN_AA); - print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR); - print_byte_register(PSTR("RF_CH\t"),RF_CH); - print_byte_register(PSTR("RF_SETUP"),RF_SETUP); - print_byte_register(PSTR("CONFIG\t"),CONFIG); - print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2); + print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6); + print_byte_register(PSTR("EN_AA\t"),EN_AA); + print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR); + print_byte_register(PSTR("RF_CH\t"),RF_CH); + print_byte_register(PSTR("RF_SETUP"),RF_SETUP); + print_byte_register(PSTR("CONFIG\t"),NRF_CONFIG); + print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2); - printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()])); - printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()])); - printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()])); - printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"), pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()])); + printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()])); + printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()])); + printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()])); + printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"), pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()])); } #endif + /****************************************************************************/ bool RF24::begin(void) { - //printf("RF24::begin\n"); - uint8_t setup=0; - - ce(LOW); - csn(HIGH); // extra - - //wait_ms(100); - - // Must allow the radio time to settle else configuration bits will not necessarily stick. - // This is actually only required following power up but some settling time also appears to - // be required after resets too. For full coverage, we'll always assume the worst. - // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. - // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. - // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. - wait_ms( 5 ) ; - - // Reset CONFIG and enable 16-bit CRC. - write_register( CONFIG, 0b00001100 ) ; - - // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier - // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet - // sizes must never be used. See documentation for a more complete explanation. - setRetries(5,15); - - // Reset value is MAX - //setPALevel( RF24_PA_MAX ) ; - - // check for connected module and if this is a p nRF24l01 variant - // - if( setDataRate( RF24_250KBPS ) ) { - p_variant = true ; - } - setup = read_register(RF_SETUP); - /*if( setup == 0b00001110 ) // register default for nRF24L01P - { - p_variant = true ; - }*/ - - // Then set the data rate to the slowest (and most reliable) speed supported by all - // hardware. - setDataRate( RF24_1MBPS ) ; - - // Initialize CRC and request 2-byte (16bit) CRC - //setCRCLength( RF24_CRC_16 ) ; - - // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0 - toggle_features(); - write_register(FEATURE,0 ); - write_register(DYNPD,0); - - // Reset current status - // Notice reset and flush is the last thing we do - write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); - - // Set up default configuration. Callers can always change it later. - // This channel should be universally safe and not bleed over into adjacent - // spectrum. - setChannel(76); - - // Flush buffers - flush_rx(); - flush_tx(); - - powerUp(); //Power up by default when begin() is called - - // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp ) - // PTX should use only 22uA of power - write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) ); - - // if setup is 0 or ff then there was no response from module - return ( setup != 0 && setup != 0xff ); -} - -void RF24::begin_MB(void) -{ - // Initialize pins -// pinMode(ce_pin,OUTPUT); -// pinMode(csn_pin,OUTPUT); - - // Initialize spi bus - //spi.begin(); - mainTimer.start(); + uint8_t setup=0; ce(LOW); csn(HIGH); + //wait_ms(100); // Must allow the radio time to settle else configuration bits will not necessarily stick. // This is actually only required following power up but some settling time also appears to // be required after resets too. For full coverage, we'll always assume the worst. // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped. // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure. - // WARNING: wait_ms is based on P-variant whereby non-P *may* require different timing. + // WARNING: Delay is based on P-variant whereby non-P *may* require different timing. wait_ms( 5 ) ; + // Reset NRF_CONFIG and enable 16-bit CRC. + write_register( NRF_CONFIG, 0x0C ) ; + // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet // sizes must never be used. See documentation for a more complete explanation. - write_register(SETUP_RETR,(4 << ARD) | (15 << ARC)); - - // Restore our default PA level - setPALevel( RF24_PA_MAX ) ; + setRetries(5,15); - // Determine if this is a p or non-p RF24 module and then - // reset our data rate back to default value. This works - // because a non-P variant won't allow the data rate to - // be set to 250Kbps. + // Reset value is MAX + //setPALevel( RF24_PA_MAX ) ; + + // check for connected module and if this is a p nRF24l01 variant + // if( setDataRate( RF24_250KBPS ) ) { p_variant = true ; } + setup = read_register(RF_SETUP); + /*if( setup == 0b00001110 ) // register default for nRF24L01P + { + p_variant = true ; + }*/ // Then set the data rate to the slowest (and most reliable) speed supported by all // hardware. setDataRate( RF24_1MBPS ) ; // Initialize CRC and request 2-byte (16bit) CRC - setCRCLength( RF24_CRC_16 ) ; - - // Disable dynamic payloads, to match dynamic_payloads_enabled setting + //setCRCLength( RF24_CRC_16 ) ; + + // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0 + toggle_features(); + write_register(FEATURE,0 ); write_register(DYNPD,0); + dynamic_payloads_enabled = false; // Reset current status // Notice reset and flush is the last thing we do @@ -511,60 +416,79 @@ // Flush buffers flush_rx(); flush_tx(); - - // set EN_RXADDRR to 0 to fix pipe 0 from receiving - write_register(EN_RXADDR, 0); + + powerUp(); //Power up by default when begin() is called + + // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp ) + // PTX should use only 22uA of power + write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) ); + + // if setup is 0 or ff then there was no response from module + return ( setup != 0 && setup != 0xff ); } +/****************************************************************************/ +bool RF24::isChipConnected() +{ + uint8_t setup = read_register(SETUP_AW); + if(setup >= 1 && setup <= 3) + { + return true; + } + + return false; +} /****************************************************************************/ void RF24::startListening(void) { - - powerUp(); + #if !defined (RF24_TINY) && ! defined(LITTLEWIRE) + powerUp(); + #endif + write_register(NRF_CONFIG, read_register(NRF_CONFIG) | _BV(PRIM_RX)); + write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + ce(HIGH); + // Restore the pipe0 adddress, if exists + if (pipe0_reading_address[0] > 0){ + write_register(RX_ADDR_P0, pipe0_reading_address, addr_width); + }else{ + closeReadingPipe(0); + } - write_register(CONFIG, read_register(CONFIG) | _BV(PRIM_RX)); - write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); - ce(HIGH); - // Restore the pipe0 adddress, if exists - if (pipe0_reading_address[0] > 0) { - write_register(RX_ADDR_P0, pipe0_reading_address, addr_width); - } else { - closeReadingPipe(0); - } + // Flush buffers + //flush_rx(); + if(read_register(FEATURE) & _BV(EN_ACK_PAY)){ + flush_tx(); + } - // Flush buffers - //flush_rx(); - if(read_register(FEATURE) & _BV(EN_ACK_PAY)) { - flush_tx(); - } - - // Go! - //delayMicroseconds(100); + // Go! + //delayMicroseconds(100); } /****************************************************************************/ -static const uint8_t child_pipe_enable[] PROGMEM = { - ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 +static const uint8_t child_pipe_enable[] PROGMEM = +{ + ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5 }; void RF24::stopListening(void) -{ - ce(LOW); - - wait_us(txRxDelay); +{ + ce(LOW); - if(read_register(FEATURE) & _BV(EN_ACK_PAY)) { - wait_us(txRxDelay); //200 - flush_tx(); - } - //flush_rx(); - write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) ); - write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0 - - //delayMicroseconds(100); + wait_us(txDelay); + + if(read_register(FEATURE) & _BV(EN_ACK_PAY)){ + wait_us(txDelay); //200 + flush_tx(); + } + //flush_rx(); + write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) ); + + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0 + + //delayMicroseconds(100); } @@ -572,8 +496,8 @@ void RF24::powerDown(void) { - ce(LOW); // Guarantee CE is low on powerDown - write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP)); + ce(LOW); // Guarantee CE is low on powerDown + write_register(NRF_CONFIG,read_register(NRF_CONFIG) & ~_BV(PWR_UP)); } /****************************************************************************/ @@ -581,29 +505,30 @@ //Power up now. Radio will not power down unless instructed by MCU for config changes etc. void RF24::powerUp(void) { - uint8_t cfg = read_register(CONFIG); + uint8_t cfg = read_register(NRF_CONFIG); - // if not powered up then power up and wait for the radio to initialize - if (!(cfg & _BV(PWR_UP))) { - write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP)); + // if not powered up then power up and wait for the radio to initialize + if (!(cfg & _BV(PWR_UP))){ + write_register(NRF_CONFIG, cfg | _BV(PWR_UP)); - // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. - // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before - // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet - wait_ms(5); - } + // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode. + // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before + // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet + wait_ms(5); + } } /******************************************************************/ -#if defined (FAILURE_HANDLING) -void RF24::errNotify() -{ - printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n")); -#if defined (FAILURE_HANDLING) +#if defined (FAILURE_HANDLING) || defined (RF24_LINUX) +void RF24::errNotify(){ + #if defined (SERIAL_DEBUG) || defined (RF24_LINUX) + printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n")); + #endif + #if defined (FAILURE_HANDLING) failureDetected = 1; -#else + #else delay(5000); -#endif + #endif } #endif /******************************************************************/ @@ -615,38 +540,37 @@ startFastWrite(buf,len,multicast); //Wait until complete or failed -#if defined (FAILURE_HANDLING) - uint32_t timer = millis(); -#endif - - while( ! ( get_status() & ( _BV(TX_DS) | _BV(MAX_RT) ))) { -#if defined (FAILURE_HANDLING) - if(millis() - timer > 85) { - errNotify(); -#if defined (FAILURE_HANDLING) - return 0; -#else - delay(100); -#endif - } -#endif + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + uint32_t timer = millis(); + #endif + + while( ! ( get_status() & ( _BV(TX_DS) | _BV(MAX_RT) ))) { + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if(millis() - timer > 95){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #else + delay(100); + #endif + } + #endif } - + ce(LOW); uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); - //Max retries exceeded - if( status & _BV(MAX_RT)) { - flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush - return 0; - } + //Max retries exceeded + if( status & _BV(MAX_RT)){ + flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush + return 0; + } //TX OK 1 or 0 - return 1; + return 1; } -bool RF24::write( const void* buf, uint8_t len ) -{ +bool RF24::write( const void* buf, uint8_t len ){ return write(buf,len,0); } /****************************************************************************/ @@ -659,24 +583,22 @@ //This way the FIFO will fill up and allow blocking until packets go through //The radio will auto-clear everything in the FIFO as long as CE remains high - uint32_t timer = mainTimer.read_ms(); //Get the time that the payload transmission started + uint32_t timer = millis(); //Get the time that the payload transmission started while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout - if( get_status() & _BV(MAX_RT)) { //If MAX Retries have been reached + if( get_status() & _BV(MAX_RT)){ //If MAX Retries have been reached reUseTX(); //Set re-transmit and clear the MAX_RT interrupt flag - if(mainTimer.read_ms() - timer > timeout) { - return 0; //If this payload has exceeded the user-defined timeout, exit and return 0 - } + if(millis() - timer > timeout){ return 0; } //If this payload has exceeded the user-defined timeout, exit and return 0 } -#if defined (FAILURE_HANDLING) - if(mainTimer.read_ms() - timer > (timeout+85) ) { - errNotify(); -#if defined (FAILURE_HANDLING) - return 0; -#endif - } -#endif + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if(millis() - timer > (timeout+95) ){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif } @@ -688,8 +610,7 @@ /****************************************************************************/ -void RF24::reUseTX() -{ +void RF24::reUseTX(){ write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag spiTrans( REUSE_TX_PL ); ce(LOW); //Re-Transfer packet @@ -705,35 +626,34 @@ //Return 0 so the user can control the retrys and set a timer or failure counter if required //The radio will auto-clear everything in the FIFO as long as CE remains high -#if defined (FAILURE_HANDLING) - uint32_t timer = millis(); -#endif - + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + uint32_t timer = millis(); + #endif + while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or fail - if( get_status() & _BV(MAX_RT)) { + if( get_status() & _BV(MAX_RT)){ //reUseTX(); //Set re-transmit write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag return 0; //Return 0. The previous payload has been retransmitted - //From the user perspective, if you get a 0, just keep trying to send the same payload + //From the user perspective, if you get a 0, just keep trying to send the same payload } -#if defined (FAILURE_HANDLING) - if(millis() - timer > 85 ) { - errNotify(); -#if defined (FAILURE_HANDLING) - return 0; -#endif - } -#endif + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if(millis() - timer > 95 ){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif } - //Start Writing + //Start Writing startFastWrite(buf,len,multicast); return 1; } -bool RF24::writeFast( const void* buf, uint8_t len ) -{ +bool RF24::writeFast( const void* buf, uint8_t len ){ return writeFast(buf,len,0); } @@ -744,12 +664,11 @@ //Otherwise we enter Standby-II mode, which is still faster than standby mode //Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data -void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx) //TMRh20 -{ +void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx){ //TMRh20 //write_payload( buf,len); write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; - if(startTx) { + if(startTx){ ce(HIGH); } @@ -759,50 +678,48 @@ //Added the original startWrite back in so users can still use interrupts, ack payloads, etc //Allows the library to pass all tests -void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ) -{ +void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ){ - // Send the payload + // Send the payload - //write_payload( buf, len ); - write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; - ce(HIGH); - // Maybe wait for 10 us - // delayMicroseconds(10); - ce(LOW); + //write_payload( buf, len ); + write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ; + ce(HIGH); + #if defined(CORE_TEENSY) || !defined(ARDUINO) || defined (RF24_SPIDEV) || defined (RF24_DUE) + delayMicroseconds(10); + #endif + ce(LOW); } /****************************************************************************/ -bool RF24::rxFifoFull() -{ +bool RF24::rxFifoFull(){ return read_register(FIFO_STATUS) & _BV(RX_FULL); } /****************************************************************************/ -bool RF24::txStandBy() -{ +bool RF24::txStandBy(){ -#if defined (FAILURE_HANDLING) - uint32_t timeout = millis(); -#endif - while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) { - if( get_status() & _BV(MAX_RT)) { + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + uint32_t timeout = millis(); + #endif + while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ + if( get_status() & _BV(MAX_RT)){ write_register(NRF_STATUS,_BV(MAX_RT) ); ce(LOW); flush_tx(); //Non blocking, flush the data return 0; } -#if defined (FAILURE_HANDLING) - if( millis() - timeout > 85) { - errNotify(); -#if defined (FAILURE_HANDLING) - return 0; -#endif - } -#endif + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if( millis() - timeout > 95){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif } ce(LOW); //Set STANDBY-I mode @@ -811,36 +728,34 @@ /****************************************************************************/ -bool RF24::txStandBy(uint32_t timeout, bool startTx) -{ +bool RF24::txStandBy(uint32_t timeout, bool startTx){ - if(startTx) { - stopListening(); - ce(HIGH); + if(startTx){ + stopListening(); + ce(HIGH); } - uint32_t start = mainTimer.read_ms(); + uint32_t start = millis(); - while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) { - if( get_status() & _BV(MAX_RT)) { + while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){ + if( get_status() & _BV(MAX_RT)){ write_register(NRF_STATUS,_BV(MAX_RT) ); - ce(LOW); //Set re-transmit - ce(HIGH); - if(mainTimer.read_ms() - start >= timeout) { - ce(LOW); - flush_tx(); - return 0; - } + ce(LOW); //Set re-transmit + ce(HIGH); + if(millis() - start >= timeout){ + ce(LOW); flush_tx(); return 0; + } } -#if defined (FAILURE_HANDLING) - if( mainTimer.read_ms() - start > (timeout+85)) { - errNotify(); -#if defined (FAILURE_HANDLING) - return 0; -#endif - } -#endif + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) + if( millis() - start > (timeout+95)){ + errNotify(); + #if defined (FAILURE_HANDLING) + return 0; + #endif + } + #endif } + ce(LOW); //Set STANDBY-I mode return 1; @@ -848,70 +763,67 @@ /****************************************************************************/ -void RF24::maskIRQ(bool tx, bool fail, bool rx) -{ +void RF24::maskIRQ(bool tx, bool fail, bool rx){ - uint8_t config = read_register(CONFIG); + uint8_t config = read_register(NRF_CONFIG); /* clear the interrupt flags */ config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); /* set the specified interrupt flags */ config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; - write_register(CONFIG, config); + write_register(NRF_CONFIG, config); } /****************************************************************************/ uint8_t RF24::getDynamicPayloadSize(void) { - uint8_t result = 0; - - beginTransaction(); + uint8_t result = 0; - spi.write( R_RX_PL_WID ); - result = spi.write(0xff); + beginTransaction(); + spi->write( R_RX_PL_WID ); + result = spi->write(0xff); + endTransaction(); - endTransaction(); - - return result; + if(result > 32) { flush_rx(); delay(2); return 0; } + return result; } /****************************************************************************/ bool RF24::available(void) { - return available(NULL); + return available(NULL); } /****************************************************************************/ bool RF24::available(uint8_t* pipe_num) { - if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )) { + if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )){ - // If the caller wants the pipe number, include that - if ( pipe_num ) { - uint8_t status = get_status(); - *pipe_num = ( status >> RX_P_NO ) & 0b111; - } - return 1; + // If the caller wants the pipe number, include that + if ( pipe_num ){ + uint8_t status = get_status(); + *pipe_num = ( status >> RX_P_NO ) & 0x07; } + return 1; + } - return 0; + return 0; } /****************************************************************************/ -void RF24::read( void* buf, uint8_t len ) -{ +void RF24::read( void* buf, uint8_t len ){ - // Fetch the payload - read_payload( buf, len ); + // Fetch the payload + read_payload( buf, len ); - //Clear the two possible interrupt flags with one command - write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) ); + //Clear the two possible interrupt flags with one command + write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) ); } @@ -919,87 +831,92 @@ void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready) { - // Read the status & reset the status in one easy call - // Or is that such a good idea? - uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); + // Read the status & reset the status in one easy call + // Or is that such a good idea? + uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); - // Report to the user what happened - tx_ok = status & _BV(TX_DS); - tx_fail = status & _BV(MAX_RT); - rx_ready = status & _BV(RX_DR); + // Report to the user what happened + tx_ok = status & _BV(TX_DS); + tx_fail = status & _BV(MAX_RT); + rx_ready = status & _BV(RX_DR); } /****************************************************************************/ void RF24::openWritingPipe(uint64_t value) { - // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) - // expects it LSB first too, so we're good. + // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) + // expects it LSB first too, so we're good. - write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width); - write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width); - - - //const uint8_t max_payload_size = 32; - //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size)); - write_register(RX_PW_P0,payload_size); + write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width); + write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width); + + + //const uint8_t max_payload_size = 32; + //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size)); + write_register(RX_PW_P0,payload_size); } /****************************************************************************/ void RF24::openWritingPipe(const uint8_t *address) { - // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) - // expects it LSB first too, so we're good. + // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+) + // expects it LSB first too, so we're good. - write_register(RX_ADDR_P0,address, addr_width); - write_register(TX_ADDR, address, addr_width); + write_register(RX_ADDR_P0,address, addr_width); + write_register(TX_ADDR, address, addr_width); - //const uint8_t max_payload_size = 32; - //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size)); - write_register(RX_PW_P0,payload_size); + //const uint8_t max_payload_size = 32; + //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size)); + write_register(RX_PW_P0,payload_size); } /****************************************************************************/ -static const uint8_t child_pipe[] PROGMEM = { - RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 +static const uint8_t child_pipe[] PROGMEM = +{ + RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5 }; -static const uint8_t child_payload_size[] PROGMEM = { - RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 +static const uint8_t child_payload_size[] PROGMEM = +{ + RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5 }; void RF24::openReadingPipe(uint8_t child, uint64_t address) { - // If this is pipe 0, cache the address. This is needed because - // openWritingPipe() will overwrite the pipe 0 address, so - // startListening() will have to restore it. - if (child == 0) { - memcpy(pipe0_reading_address,&address,addr_width); - } + // If this is pipe 0, cache the address. This is needed because + // openWritingPipe() will overwrite the pipe 0 address, so + // startListening() will have to restore it. + if (child == 0){ + memcpy(pipe0_reading_address,&address,addr_width); + } - if (child <= 6) { - // For pipes 2-5, only write the LSB - if ( child < 2 ) - write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width); - else - write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1); + if (child <= 6) + { + // For pipes 2-5, only write the LSB + if ( child < 2 ) + write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width); + else + write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1); - write_register(pgm_read_byte(&child_payload_size[child]),payload_size); + write_register(pgm_read_byte(&child_payload_size[child]),payload_size); - // Note it would be more efficient to set all of the bits for all open - // pipes at once. However, I thought it would make the calling code - // more simple to do it this way. - write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); - } + // Note it would be more efficient to set all of the bits for all open + // pipes at once. However, I thought it would make the calling code + // more simple to do it this way. + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); + } } /****************************************************************************/ -void RF24::setAddressWidth(uint8_t a_width) -{ +void RF24::setAddressWidth(uint8_t a_width){ - if(a_width -= 2) { + if(a_width -= 2){ write_register(SETUP_AW,a_width%4); addr_width = (a_width%4) + 2; + }else{ + write_register(SETUP_AW,0); + addr_width = 2; } } @@ -1008,47 +925,44 @@ void RF24::openReadingPipe(uint8_t child, const uint8_t *address) { - // If this is pipe 0, cache the address. This is needed because - // openWritingPipe() will overwrite the pipe 0 address, so - // startListening() will have to restore it. - if (child == 0) { - memcpy(pipe0_reading_address,address,addr_width); + // If this is pipe 0, cache the address. This is needed because + // openWritingPipe() will overwrite the pipe 0 address, so + // startListening() will have to restore it. + if (child == 0){ + memcpy(pipe0_reading_address,address,addr_width); + } + if (child <= 6) + { + // For pipes 2-5, only write the LSB + if ( child < 2 ){ + write_register(pgm_read_byte(&child_pipe[child]), address, addr_width); + }else{ + write_register(pgm_read_byte(&child_pipe[child]), address, 1); } - if (child <= 6) { - // For pipes 2-5, only write the LSB - if ( child < 2 ) { - write_register(pgm_read_byte(&child_pipe[child]), address, addr_width); - } else { - write_register(pgm_read_byte(&child_pipe[child]), address, 1); - } - write_register(pgm_read_byte(&child_payload_size[child]),payload_size); + write_register(pgm_read_byte(&child_payload_size[child]),payload_size); - // Note it would be more efficient to set all of the bits for all open - // pipes at once. However, I thought it would make the calling code - // more simple to do it this way. - write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); + // Note it would be more efficient to set all of the bits for all open + // pipes at once. However, I thought it would make the calling code + // more simple to do it this way. + write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child]))); - } + } } /****************************************************************************/ void RF24::closeReadingPipe( uint8_t pipe ) { - write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))); + write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe]))); } /****************************************************************************/ void RF24::toggle_features(void) { - //printf_P("ACTIVATE"); - beginTransaction(); - - spi.write( ACTIVATE ); - spi.write( 0x73 ); - + spi->write( ACTIVATE ); + spi->write( 0x73 ); endTransaction(); } @@ -1056,54 +970,74 @@ void RF24::enableDynamicPayloads(void) { - // Enable dynamic payload throughout the system + // Enable dynamic payload throughout the system //toggle_features(); write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) ); - //printf_P("FEATURE=%i\r\n",read_register(FEATURE)); + + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // Enable dynamic payload on all pipes + // + // Not sure the use case of only having dynamic payload on certain + // pipes, so the library does not support it. + write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)); + + dynamic_payloads_enabled = true; +} - // Enable dynamic payload on all pipes - // - // Not sure the use case of only having dynamic payload on certain - // pipes, so the library does not support it. - write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0)); +/****************************************************************************/ +void RF24::disableDynamicPayloads(void) +{ + // Disables dynamic payload throughout the system. Also disables Ack Payloads + + //toggle_features(); + write_register(FEATURE, 0); + - dynamic_payloads_enabled = true; + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); + + // Disable dynamic payload on all pipes + // + // Not sure the use case of only having dynamic payload on certain + // pipes, so the library does not support it. + write_register(DYNPD, 0); + + dynamic_payloads_enabled = false; } /****************************************************************************/ void RF24::enableAckPayload(void) { - // - // enable ack payload and dynamic payload features - // + // + // enable ack payload and dynamic payload features + // //toggle_features(); write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) ); - //printf_P("FEATURE=%i\r\n",read_register(FEATURE)); + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); - // - // Enable dynamic payload on pipes 0 & 1 - // + // + // Enable dynamic payload on pipes 0 & 1 + // - write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); - dynamic_payloads_enabled = true; + write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0)); + dynamic_payloads_enabled = true; } /****************************************************************************/ -void RF24::enableDynamicAck(void) -{ - // - // enable dynamic ack features - // +void RF24::enableDynamicAck(void){ + // + // enable dynamic ack features + // //toggle_features(); write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) ); - //printf_P("FEATURE=%i\r\n",read_register(FEATURE)); + IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE))); } @@ -1112,72 +1046,74 @@ void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len) { - const uint8_t* current = reinterpret_cast<const uint8_t*>(buf); + const uint8_t* current = reinterpret_cast<const uint8_t*>(buf); - const uint8_t max_payload_size = 32; - uint8_t data_len = rf24_min(len, max_payload_size); - - beginTransaction(); + uint8_t data_len = rf24_min(len,32); - spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) ); - while ( data_len-- ) - spi.write(*current++); + beginTransaction(); + spi->write(W_ACK_PAYLOAD | ( pipe & 0x07 ) ); - endTransaction(); - + while ( data_len-- ) + spi->write(*current++); + endTransaction(); + } /****************************************************************************/ bool RF24::isAckPayloadAvailable(void) { - return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY)); + return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY)); } /****************************************************************************/ bool RF24::isPVariant(void) { - return p_variant ; + return p_variant ; } /****************************************************************************/ void RF24::setAutoAck(bool enable) { - if ( enable ) - write_register(EN_AA, 0b111111); - else - write_register(EN_AA, 0); + if ( enable ) + write_register(EN_AA, 0x3F); + else + write_register(EN_AA, 0); } /****************************************************************************/ void RF24::setAutoAck( uint8_t pipe, bool enable ) { - if ( pipe <= 6 ) { - uint8_t en_aa = read_register( EN_AA ) ; - if( enable ) { - en_aa |= _BV(pipe) ; - } else { - en_aa &= ~_BV(pipe) ; - } - write_register( EN_AA, en_aa ) ; + if ( pipe <= 6 ) + { + uint8_t en_aa = read_register( EN_AA ) ; + if( enable ) + { + en_aa |= _BV(pipe) ; } + else + { + en_aa &= ~_BV(pipe) ; + } + write_register( EN_AA, en_aa ) ; + } } /****************************************************************************/ bool RF24::testCarrier(void) { - return ( read_register(CD) & 1 ); + return ( read_register(CD) & 1 ); } /****************************************************************************/ bool RF24::testRPD(void) { - return ( read_register(RPD) & 1 ) ; + return ( read_register(RPD) & 1 ) ; } /****************************************************************************/ @@ -1185,16 +1121,16 @@ void RF24::setPALevel(uint8_t level) { - uint8_t setup = read_register(RF_SETUP) & 0b11111000; + uint8_t setup = read_register(RF_SETUP) & 0xF8; - if(level > 3) { // If invalid level, go to max PA - level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit - } else { - level = (level << 1) + 1; // Else set level as requested - } + if(level > 3){ // If invalid level, go to max PA + level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit + }else{ + level = (level << 1) + 1; // Else set level as requested + } - write_register( RF_SETUP, setup |= level ) ; // Write it to the chip + write_register( RF_SETUP, setup |= level ) ; // Write it to the chip } /****************************************************************************/ @@ -1202,112 +1138,139 @@ uint8_t RF24::getPALevel(void) { - return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ; + return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ; } /****************************************************************************/ bool RF24::setDataRate(rf24_datarate_e speed) { - bool result = false; - uint8_t setup = read_register(RF_SETUP) ; - - // HIGH and LOW '00' is 1Mbs - our default - setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ; - - txRxDelay=250; + bool result = false; + uint8_t setup = read_register(RF_SETUP) ; - if( speed == RF24_250KBPS ) { - // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 - // Making it '10'. - setup |= _BV( RF_DR_LOW ) ; - txRxDelay=450; - } else { - // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 - // Making it '01' - if ( speed == RF24_2MBPS ) { - setup |= _BV(RF_DR_HIGH); - txRxDelay=190; - } + // HIGH and LOW '00' is 1Mbs - our default + setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ; + + #if defined(__arm__) || defined (RF24_LINUX) || defined (__ARDUINO_X86__) + txDelay=250; + #else //16Mhz Arduino + txDelay=85; + #endif + if( speed == RF24_250KBPS ) + { + // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0 + // Making it '10'. + setup |= _BV( RF_DR_LOW ) ; + #if defined(__arm__) || defined (RF24_LINUX) || defined (__ARDUINO_X86__) + txDelay=450; + #else //16Mhz Arduino + txDelay=155; + #endif + } + else + { + // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1 + // Making it '01' + if ( speed == RF24_2MBPS ) + { + setup |= _BV(RF_DR_HIGH); + #if defined(__arm__) || defined (RF24_LINUX) || defined (__ARDUINO_X86__) + txDelay=190; + #else //16Mhz Arduino + txDelay=65; + #endif } - write_register(RF_SETUP,setup); + } + write_register(RF_SETUP,setup); - // Verify our result - if ( read_register(RF_SETUP) == setup ) { - result = true; - } - return result; + // Verify our result + if ( read_register(RF_SETUP) == setup ) + { + result = true; + } + return result; } /****************************************************************************/ rf24_datarate_e RF24::getDataRate( void ) { - rf24_datarate_e result ; - uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); + rf24_datarate_e result ; + uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)); - // switch uses RAM (evil!) - // Order matters in our case below - if ( dr == _BV(RF_DR_LOW) ) { - // '10' = 250KBPS - result = RF24_250KBPS ; - } else if ( dr == _BV(RF_DR_HIGH) ) { - // '01' = 2MBPS - result = RF24_2MBPS ; - } else { - // '00' = 1MBPS - result = RF24_1MBPS ; - } - return result ; + // switch uses RAM (evil!) + // Order matters in our case below + if ( dr == _BV(RF_DR_LOW) ) + { + // '10' = 250KBPS + result = RF24_250KBPS ; + } + else if ( dr == _BV(RF_DR_HIGH) ) + { + // '01' = 2MBPS + result = RF24_2MBPS ; + } + else + { + // '00' = 1MBPS + result = RF24_1MBPS ; + } + return result ; } /****************************************************************************/ void RF24::setCRCLength(rf24_crclength_e length) { - uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ; + uint8_t config = read_register(NRF_CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ; - // switch uses RAM (evil!) - if ( length == RF24_CRC_DISABLED ) { - // Do nothing, we turned it off above. - } else if ( length == RF24_CRC_8 ) { - config |= _BV(EN_CRC); - } else { - config |= _BV(EN_CRC); - config |= _BV( CRCO ); - } - write_register( CONFIG, config ) ; + // switch uses RAM (evil!) + if ( length == RF24_CRC_DISABLED ) + { + // Do nothing, we turned it off above. + } + else if ( length == RF24_CRC_8 ) + { + config |= _BV(EN_CRC); + } + else + { + config |= _BV(EN_CRC); + config |= _BV( CRCO ); + } + write_register( NRF_CONFIG, config ) ; } /****************************************************************************/ rf24_crclength_e RF24::getCRCLength(void) { - rf24_crclength_e result = RF24_CRC_DISABLED; - - uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ; - uint8_t AA = read_register(EN_AA); + rf24_crclength_e result = RF24_CRC_DISABLED; + + uint8_t config = read_register(NRF_CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ; + uint8_t AA = read_register(EN_AA); + + if ( config & _BV(EN_CRC ) || AA) + { + if ( config & _BV(CRCO) ) + result = RF24_CRC_16; + else + result = RF24_CRC_8; + } - if ( config & _BV(EN_CRC ) || AA) { - if ( config & _BV(CRCO) ) - result = RF24_CRC_16; - else - result = RF24_CRC_8; - } - - return result; + return result; } /****************************************************************************/ void RF24::disableCRC( void ) { - uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ; - write_register( CONFIG, disable ) ; + uint8_t disable = read_register(NRF_CONFIG) & ~_BV(EN_CRC) ; + write_register( NRF_CONFIG, disable ) ; } /****************************************************************************/ void RF24::setRetries(uint8_t delay, uint8_t count) { - write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC); + write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC); }
diff -r 836f5c6da243 -r 15a3bbf90fe9 RF24.h --- a/RF24.h Mon Mar 28 18:13:17 2016 +0000 +++ b/RF24.h Fri Oct 06 20:20:33 2017 +0000 @@ -15,8 +15,8 @@ #ifndef __RF24_H__ #define __RF24_H__ +#include "RF24_config.h" #include "mbed.h" -#include "RF24_config.h" /** * Power Amplifier level. @@ -47,1052 +47,1082 @@ { private: - DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */ - DigitalOut csn_pin; /**< SPI Chip select */ - //uint16_t spi_speed; /**< SPI Bus Speed */ + SPI *spi; - uint8_t spi_rxbuff[32+1] ; //SPI receive buffer (payload max 32 bytes) - uint8_t spi_txbuff[32+1] ; //SPI transmit buffer (payload max 32 bytes + 1 byte for the command) + DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */ + DigitalOut csn_pin; /**< SPI Chip select */ - bool p_variant; /* False for RF24L01 and true for RF24L01P */ - uint8_t payload_size; /**< Fixed size of payloads */ - bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */ - uint8_t pipe0_reading_address[5]; /**< Last address set on pipe 0 for reading. */ - uint8_t addr_width; /**< The address width to use - 3,4 or 5 bytes. */ - uint32_t txRxDelay; /**< Var for adjusting delays depending on datarate */ - - SPI spi; - - Timer mainTimer; - + bool p_variant; /* False for RF24L01 and true for RF24L01P */ + uint8_t payload_size; /**< Fixed size of payloads */ + bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */ + uint8_t pipe0_reading_address[5]; /**< Last address set on pipe 0 for reading. */ + uint8_t addr_width; /**< The address width to use - 3,4 or 5 bytes. */ + protected: - /** - * SPI transactions - * - * Common code for SPI transactions including CSN toggle - * - */ - void beginTransaction(); // inline removed + /** + * SPI transactions + * + * Common code for SPI transactions including CSN toggle + * + */ + inline void beginTransaction(); - void endTransaction(); // inline removed + inline void endTransaction(); public: - /** - * @name Primary public interface - * - * These are the main methods you need to operate the chip - */ - /**@{*/ + /** + * @name Primary public interface + * + * These are the main methods you need to operate the chip + */ + /**@{*/ + + /** + * MBED Constructor + * + * Creates a new instance of this driver. Before using, you create an instance + * and send in the unique pins that this chip is connected to. + * + * @param _cepin The pin attached to Chip Enable on the RF module + * @param _cspin The pin attached to Chip Select + * @param spispeed For RPi, the SPI speed in MHZ ie: BCM2835_SPI_SPEED_8MHZ + */ + + RF24(SPI *spi, PinName _cepin, PinName _cspin); - /** - * Arduino Constructor - * - * Creates a new instance of this driver. Before using, you create an instance - * and send in the unique pins that this chip is connected to. - * - * @param _cepin The pin attached to Chip Enable on the RF module - * @param _cspin The pin attached to Chip Select - */ - RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin); + /** + * Begin operation of the chip + * + * Call this in setup(), before calling any other methods. + * @code radio.begin() @endcode + */ + bool begin(void); - virtual ~RF24() {}; + /** + * Checks if the chip is connected to the SPI bus + */ + bool isChipConnected(); - /** - * Begin operation of the chip - * - * Call this in setup(), before calling any other methods. - * @code radio.begin() @endcode - */ - bool begin(void); - void begin_MB(void); + /** + * Start listening on the pipes opened for reading. + * + * 1. Be sure to call openReadingPipe() first. + * 2. Do not call write() while in this mode, without first calling stopListening(). + * 3. Call available() to check for incoming traffic, and read() to get it. + * + * @code + * Open reading pipe 1 using address CCCECCCECC + * + * byte address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC }; + * radio.openReadingPipe(1,address); + * radio.startListening(); + * @endcode + */ + void startListening(void); - /** - * Start listening on the pipes opened for reading. - * - * 1. Be sure to call openReadingPipe() first. - * 2. Do not call write() while in this mode, without first calling stopListening(). - * 3. Call available() to check for incoming traffic, and read() to get it. - * - * @code - * Open reading pipe 1 using address CCCECCCECC - * - * byte address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC }; - * radio.openReadingPipe(1,address); - * radio.startListening(); - * @endcode - */ - void startListening(void); + /** + * Stop listening for incoming messages, and switch to transmit mode. + * + * Do this before calling write(). + * @code + * radio.stopListening(); + * radio.write(&data,sizeof(data)); + * @endcode + */ + void stopListening(void); + + /** + * Check whether there are bytes available to be read + * @code + * if(radio.available()){ + * radio.read(&data,sizeof(data)); + * } + * @endcode + * @return True if there is a payload available, false if none is + */ + bool available(void); - /** - * Stop listening for incoming messages, and switch to transmit mode. - * - * Do this before calling write(). - * @code - * radio.stopListening(); - * radio.write(&data,sizeof(data)); - * @endcode - */ - void stopListening(void); - - /** - * Check whether there are bytes available to be read - * @code - * if(radio.available()){ - * radio.read(&data,sizeof(data)); - * } - * @endcode - * @return True if there is a payload available, false if none is - */ - bool available(void); + /** + * Read the available payload + * + * The size of data read is the fixed payload size, see getPayloadSize() + * + * @note I specifically chose 'void*' as a data type to make it easier + * for beginners to use. No casting needed. + * + * @note No longer boolean. Use available to determine if packets are + * available. Interrupt flags are now cleared during reads instead of + * when calling available(). + * + * @param buf Pointer to a buffer where the data should be written + * @param len Maximum number of bytes to read into the buffer + * + * @code + * if(radio.available()){ + * radio.read(&data,sizeof(data)); + * } + * @endcode + * @return No return value. Use available(). + */ + void read( void* buf, uint8_t len ); - /** - * Read the available payload - * - * The size of data read is the fixed payload size, see getPayloadSize() - * - * @note I specifically chose 'void*' as a data type to make it easier - * for beginners to use. No casting needed. - * - * @note No longer boolean. Use available to determine if packets are - * available. Interrupt flags are now cleared during reads instead of - * when calling available(). - * - * @param buf Pointer to a buffer where the data should be written - * @param len Maximum number of bytes to read into the buffer - * - * @code - * if(radio.available()){ - * radio.read(&data,sizeof(data)); - * } - * @endcode - * @return No return value. Use available(). - */ - void read( void* buf, uint8_t len ); + /** + * Be sure to call openWritingPipe() first to set the destination + * of where to write to. + * + * This blocks until the message is successfully acknowledged by + * the receiver or the timeout/retransmit maxima are reached. In + * the current configuration, the max delay here is 60-70ms. + * + * The maximum size of data written is the fixed payload size, see + * getPayloadSize(). However, you can write less, and the remainder + * will just be filled with zeroes. + * + * TX/RX/RT interrupt flags will be cleared every time write is called + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * + * @code + * radio.stopListening(); + * radio.write(&data,sizeof(data)); + * @endcode + * @return True if the payload was delivered successfully false if not + */ + bool write( const void* buf, uint8_t len ); + + /** + * New: Open a pipe for writing via byte array. Old addressing format retained + * for compatibility. + * + * Only one writing pipe can be open at once, but you can change the address + * you'll write to. Call stopListening() first. + * + * Addresses are assigned via a byte array, default is 5 byte address length +s * + * @code + * uint8_t addresses[][6] = {"1Node","2Node"}; + * radio.openWritingPipe(addresses[0]); + * @endcode + * @code + * uint8_t address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC }; + * radio.openWritingPipe(address); + * address[0] = 0x33; + * radio.openReadingPipe(1,address); + * @endcode + * @see setAddressWidth + * + * @param address The address of the pipe to open. Coordinate these pipe + * addresses amongst nodes on the network. + */ + + void openWritingPipe(const uint8_t *address); - /** - * Be sure to call openWritingPipe() first to set the destination - * of where to write to. - * - * This blocks until the message is successfully acknowledged by - * the receiver or the timeout/retransmit maxima are reached. In - * the current configuration, the max delay here is 60-70ms. - * - * The maximum size of data written is the fixed payload size, see - * getPayloadSize(). However, you can write less, and the remainder - * will just be filled with zeroes. - * - * TX/RX/RT interrupt flags will be cleared every time write is called - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * - * @code - * radio.stopListening(); - * radio.write(&data,sizeof(data)); - * @endcode - * @return True if the payload was delivered successfully false if not - */ - bool write( const void* buf, uint8_t len ); + /** + * Open a pipe for reading + * + * Up to 6 pipes can be open for reading at once. Open all the required + * reading pipes, and then call startListening(). + * + * @see openWritingPipe + * @see setAddressWidth + * + * @note Pipes 0 and 1 will store a full 5-byte address. Pipes 2-5 will technically + * only store a single byte, borrowing up to 4 additional bytes from pipe #1 per the + * assigned address width. + * @warning Pipes 1-5 should share the same address, except the first byte. + * Only the first byte in the array should be unique, e.g. + * @code + * uint8_t addresses[][6] = {"1Node","2Node"}; + * openReadingPipe(1,addresses[0]); + * openReadingPipe(2,addresses[1]); + * @endcode + * + * @warning Pipe 0 is also used by the writing pipe. So if you open + * pipe 0 for reading, and then startListening(), it will overwrite the + * writing pipe. Ergo, do an openWritingPipe() again before write(). + * + * @param number Which pipe# to open, 0-5. + * @param address The 24, 32 or 40 bit address of the pipe to open. + */ + + void openReadingPipe(uint8_t number, const uint8_t *address); - /** - * New: Open a pipe for writing via byte array. Old addressing format retained - * for compatibility. - * - * Only one writing pipe can be open at once, but you can change the address - * you'll write to. Call stopListening() first. - * - * Addresses are assigned via a byte array, default is 5 byte address length - s * - * @code - * uint8_t addresses[][6] = {"1Node","2Node"}; - * radio.openWritingPipe(addresses[0]); - * @endcode - * @code - * uint8_t address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC }; - * radio.openWritingPipe(address); - * address[0] = 0x33; - * radio.openReadingPipe(1,address); - * @endcode - * @see setAddressWidth - * - * @param address The address of the pipe to open. Coordinate these pipe - * addresses amongst nodes on the network. - */ + /**@}*/ + /** + * @name Advanced Operation + * + * Methods you can use to drive the chip in more advanced ways + */ + /**@{*/ - void openWritingPipe(const uint8_t *address); + /** + * Print a giant block of debugging information to stdout + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + * The printf.h file is included with the library for Arduino. + * @code + * #include <printf.h> + * setup(){ + * Serial.begin(115200); + * printf_begin(); + * ... + * } + * @endcode + */ + void printDetails(void); + + /** + * Test whether there are bytes available to be read in the + * FIFO buffers. + * + * @param[out] pipe_num Which pipe has the payload available + * + * @code + * uint8_t pipeNum; + * if(radio.available(&pipeNum)){ + * radio.read(&data,sizeof(data)); + * Serial.print("Got data on pipe"); + * Serial.println(pipeNum); + * } + * @endcode + * @return True if there is a payload available, false if none is + */ + bool available(uint8_t* pipe_num); - /** - * Open a pipe for reading - * - * Up to 6 pipes can be open for reading at once. Open all the required - * reading pipes, and then call startListening(). - * - * @see openWritingPipe - * @see setAddressWidth - * - * @note Pipes 0 and 1 will store a full 5-byte address. Pipes 2-5 will technically - * only store a single byte, borrowing up to 4 additional bytes from pipe #1 per the - * assigned address width. - * @warning Pipes 1-5 should share the same address, except the first byte. - * Only the first byte in the array should be unique, e.g. - * @code - * uint8_t addresses[][6] = {"1Node","2Node"}; - * openReadingPipe(1,addresses[0]); - * openReadingPipe(2,addresses[1]); - * @endcode - * - * @warning Pipe 0 is also used by the writing pipe. So if you open - * pipe 0 for reading, and then startListening(), it will overwrite the - * writing pipe. Ergo, do an openWritingPipe() again before write(). - * - * @param number Which pipe# to open, 0-5. - * @param address The 24, 32 or 40 bit address of the pipe to open. - */ + /** + * Check if the radio needs to be read. Can be used to prevent data loss + * @return True if all three 32-byte radio buffers are full + */ + bool rxFifoFull(); + + /** + * Enter low-power mode + * + * To return to normal power mode, call powerUp(). + * + * @note After calling startListening(), a basic radio will consume about 13.5mA + * at max PA level. + * During active transmission, the radio will consume about 11.5mA, but this will + * be reduced to 26uA (.026mA) between sending. + * In full powerDown mode, the radio will consume approximately 900nA (.0009mA) + * + * @code + * radio.powerDown(); + * avr_enter_sleep_mode(); // Custom function to sleep the device + * radio.powerUp(); + * @endcode + */ + void powerDown(void); + + /** + * Leave low-power mode - required for normal radio operation after calling powerDown() + * + * To return to low power mode, call powerDown(). + * @note This will take up to 5ms for maximum compatibility + */ + void powerUp(void) ; - void openReadingPipe(uint8_t number, const uint8_t *address); - - /**@}*/ - /** - * @name Advanced Operation - * - * Methods you can use to drive the chip in more advanced ways - */ - /**@{*/ + /** + * Write for single NOACK writes. Optionally disables acknowledgements/autoretries for a single write. + * + * @note enableDynamicAck() must be called to enable this feature + * + * Can be used with enableAckPayload() to request a response + * @see enableDynamicAck() + * @see setAutoAck() + * @see write() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0), NOACK (1) + */ + bool write( const void* buf, uint8_t len, const bool multicast ); - /** - * Print a giant block of debugging information to stdout - * - * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h - * The printf.h file is included with the library for Arduino. - * @code - * #include <printf.h> - * setup(){ - * Serial.begin(115200); - * printf_begin(); - * ... - * } - * @endcode - */ - void printDetails(void); + /** + * This will not block until the 3 FIFO buffers are filled with data. + * Once the FIFOs are full, writeFast will simply wait for success or + * timeout, and return 1 or 0 respectively. From a user perspective, just + * keep trying to send the same data. The library will keep auto retrying + * the current payload using the built in functionality. + * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto + * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO + * to clear by issuing txStandBy() or ensure appropriate time between transmissions. + * + * @code + * Example (Partial blocking): + * + * radio.writeFast(&buf,32); // Writes 1 payload to the buffers + * txStandBy(); // Returns 0 if failed. 1 if success. Blocks only until MAX_RT timeout or success. Data flushed on fail. + * + * radio.writeFast(&buf,32); // Writes 1 payload to the buffers + * txStandBy(1000); // Using extended timeouts, returns 1 if success. Retries failed payloads for 1 seconds before returning 0. + * @endcode + * + * @see txStandBy() + * @see write() + * @see writeBlocking() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @return True if the payload was delivered successfully false if not + */ + bool writeFast( const void* buf, uint8_t len ); - /** - * Test whether there are bytes available to be read in the - * FIFO buffers. - * - * @param[out] pipe_num Which pipe has the payload available - * - * @code - * uint8_t pipeNum; - * if(radio.available(&pipeNum)){ - * radio.read(&data,sizeof(data)); - * Serial.print("Got data on pipe"); - * Serial.println(pipeNum); - * } - * @endcode - * @return True if there is a payload available, false if none is - */ - bool available(uint8_t* pipe_num); + /** + * WriteFast for single NOACK writes. Disables acknowledgements/autoretries for a single write. + * + * @note enableDynamicAck() must be called to enable this feature + * @see enableDynamicAck() + * @see setAutoAck() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0) or NOACK (1) + */ + bool writeFast( const void* buf, uint8_t len, const bool multicast ); - /** - * Check if the radio needs to be read. Can be used to prevent data loss - * @return True if all three 32-byte radio buffers are full - */ - bool rxFifoFull(); - - /** - * Enter low-power mode - * - * To return to normal power mode, call powerUp(). - * - * @note After calling startListening(), a basic radio will consume about 13.5mA - * at max PA level. - * During active transmission, the radio will consume about 11.5mA, but this will - * be reduced to 26uA (.026mA) between sending. - * In full powerDown mode, the radio will consume approximately 900nA (.0009mA) - * - * @code - * radio.powerDown(); - * avr_enter_sleep_mode(); // Custom function to sleep the device - * radio.powerUp(); - * @endcode - */ - void powerDown(void); + /** + * This function extends the auto-retry mechanism to any specified duration. + * It will not block until the 3 FIFO buffers are filled with data. + * If so the library will auto retry until a new payload is written + * or the user specified timeout period is reached. + * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto + * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO + * to clear by issuing txStandBy() or ensure appropriate time between transmissions. + * + * @code + * Example (Full blocking): + * + * radio.writeBlocking(&buf,32,1000); //Wait up to 1 second to write 1 payload to the buffers + * txStandBy(1000); //Wait up to 1 second for the payload to send. Return 1 if ok, 0 if failed. + * //Blocks only until user timeout or success. Data flushed on fail. + * @endcode + * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis(). + * @see txStandBy() + * @see write() + * @see writeFast() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param timeout User defined timeout in milliseconds. + * @return True if the payload was loaded into the buffer successfully false if not + */ + bool writeBlocking( const void* buf, uint8_t len, uint32_t timeout ); - /** - * Leave low-power mode - required for normal radio operation after calling powerDown() - * - * To return to low power mode, call powerDown(). - * @note This will take up to 5ms for maximum compatibility - */ - void powerUp(void) ; - - /** - * Write for single NOACK writes. Optionally disables acknowledgements/autoretries for a single write. - * - * @note enableDynamicAck() must be called to enable this feature - * - * Can be used with enableAckPayload() to request a response - * @see enableDynamicAck() - * @see setAutoAck() - * @see write() - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * @param multicast Request ACK (0), NOACK (1) - */ - bool write( const void* buf, uint8_t len, const bool multicast ); + /** + * This function should be called as soon as transmission is finished to + * drop the radio back to STANDBY-I mode. If not issued, the radio will + * remain in STANDBY-II mode which, per the data sheet, is not a recommended + * operating mode. + * + * @note When transmitting data in rapid succession, it is still recommended by + * the manufacturer to drop the radio out of TX or STANDBY-II mode if there is + * time enough between sends for the FIFOs to empty. This is not required if auto-ack + * is enabled. + * + * Relies on built-in auto retry functionality. + * + * @code + * Example (Partial blocking): + * + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); //Fills the FIFO buffers up + * bool ok = txStandBy(); //Returns 0 if failed. 1 if success. + * //Blocks only until MAX_RT timeout or success. Data flushed on fail. + * @endcode + * @see txStandBy(unsigned long timeout) + * @return True if transmission is successful + * + */ + bool txStandBy(); - /** - * This will not block until the 3 FIFO buffers are filled with data. - * Once the FIFOs are full, writeFast will simply wait for success or - * timeout, and return 1 or 0 respectively. From a user perspective, just - * keep trying to send the same data. The library will keep auto retrying - * the current payload using the built in functionality. - * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto - * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO - * to clear by issuing txStandBy() or ensure appropriate time between transmissions. - * - * @code - * Example (Partial blocking): - * - * radio.writeFast(&buf,32); // Writes 1 payload to the buffers - * txStandBy(); // Returns 0 if failed. 1 if success. Blocks only until MAX_RT timeout or success. Data flushed on fail. - * - * radio.writeFast(&buf,32); // Writes 1 payload to the buffers - * txStandBy(1000); // Using extended timeouts, returns 1 if success. Retries failed payloads for 1 seconds before returning 0. - * @endcode - * - * @see txStandBy() - * @see write() - * @see writeBlocking() - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * @return True if the payload was delivered successfully false if not - */ - bool writeFast( const void* buf, uint8_t len ); + /** + * This function allows extended blocking and auto-retries per a user defined timeout + * @code + * Fully Blocking Example: + * + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); + * radio.writeFast(&buf,32); //Fills the FIFO buffers up + * bool ok = txStandBy(1000); //Returns 0 if failed after 1 second of retries. 1 if success. + * //Blocks only until user defined timeout or success. Data flushed on fail. + * @endcode + * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis(). + * @param timeout Number of milliseconds to retry failed payloads + * @return True if transmission is successful + * + */ + bool txStandBy(uint32_t timeout, bool startTx = 0); + + /** + * Write an ack payload for the specified pipe + * + * The next time a message is received on @p pipe, the data in @p buf will + * be sent back in the acknowledgement. + * @see enableAckPayload() + * @see enableDynamicPayloads() + * @warning Only three of these can be pending at any time as there are only 3 FIFO buffers.<br> Dynamic payloads must be enabled. + * @note Ack payloads are handled automatically by the radio chip when a payload is received. Users should generally + * write an ack payload as soon as startListening() is called, so one is available when a regular payload is received. + * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call + * enableDynamicPayloads() to enable on all pipes. + * + * @param pipe Which pipe# (typically 1-5) will get this response. + * @param buf Pointer to data that is sent + * @param len Length of the data to send, up to 32 bytes max. Not affected + * by the static payload set by setPayloadSize(). + */ + void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len); + + /** + * Determine if an ack payload was received in the most recent call to + * write(). The regular available() can also be used. + * + * Call read() to retrieve the ack payload. + * + * @return True if an ack payload is available. + */ + bool isAckPayloadAvailable(void); + + /** + * Call this when you get an interrupt to find out why + * + * Tells you what caused the interrupt, and clears the state of + * interrupts. + * + * @param[out] tx_ok The send was successful (TX_DS) + * @param[out] tx_fail The send failed, too many retries (MAX_RT) + * @param[out] rx_ready There is a message waiting to be read (RX_DS) + */ + void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready); - /** - * WriteFast for single NOACK writes. Disables acknowledgements/autoretries for a single write. - * - * @note enableDynamicAck() must be called to enable this feature - * @see enableDynamicAck() - * @see setAutoAck() - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * @param multicast Request ACK (0) or NOACK (1) - */ - bool writeFast( const void* buf, uint8_t len, const bool multicast ); + /** + * Non-blocking write to the open writing pipe used for buffered writes + * + * @note Optimization: This function now leaves the CE pin high, so the radio + * will remain in TX or STANDBY-II Mode until a txStandBy() command is issued. Can be used as an alternative to startWrite() + * if writing multiple payloads at once. + * @warning It is important to never keep the nRF24L01 in TX mode with FIFO full for more than 4ms at a time. If the auto + * retransmit/autoAck is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO + * to clear by issuing txStandBy() or ensure appropriate time between transmissions. + * + * @see write() + * @see writeFast() + * @see startWrite() + * @see writeBlocking() + * + * For single noAck writes see: + * @see enableDynamicAck() + * @see setAutoAck() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0) or NOACK (1) + * @return True if the payload was delivered successfully false if not + */ + void startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx = 1 ); - /** - * This function extends the auto-retry mechanism to any specified duration. - * It will not block until the 3 FIFO buffers are filled with data. - * If so the library will auto retry until a new payload is written - * or the user specified timeout period is reached. - * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto - * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO - * to clear by issuing txStandBy() or ensure appropriate time between transmissions. - * - * @code - * Example (Full blocking): - * - * radio.writeBlocking(&buf,32,1000); //Wait up to 1 second to write 1 payload to the buffers - * txStandBy(1000); //Wait up to 1 second for the payload to send. Return 1 if ok, 0 if failed. - * //Blocks only until user timeout or success. Data flushed on fail. - * @endcode - * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis(). - * @see txStandBy() - * @see write() - * @see writeFast() - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * @param timeout User defined timeout in milliseconds. - * @return True if the payload was loaded into the buffer successfully false if not - */ - bool writeBlocking( const void* buf, uint8_t len, uint32_t timeout ); + /** + * Non-blocking write to the open writing pipe + * + * Just like write(), but it returns immediately. To find out what happened + * to the send, catch the IRQ and then call whatHappened(). + * + * @see write() + * @see writeFast() + * @see startFastWrite() + * @see whatHappened() + * + * For single noAck writes see: + * @see enableDynamicAck() + * @see setAutoAck() + * + * @param buf Pointer to the data to be sent + * @param len Number of bytes to be sent + * @param multicast Request ACK (0) or NOACK (1) + * + */ + void startWrite( const void* buf, uint8_t len, const bool multicast ); + + /** + * This function is mainly used internally to take advantage of the auto payload + * re-use functionality of the chip, but can be beneficial to users as well. + * + * The function will instruct the radio to re-use the data in the FIFO buffers, + * and instructs the radio to re-send once the timeout limit has been reached. + * Used by writeFast and writeBlocking to initiate retries when a TX failure + * occurs. Retries are automatically initiated except with the standard write(). + * This way, data is not flushed from the buffer until switching between modes. + * + * @note This is to be used AFTER auto-retry fails if wanting to resend + * using the built-in payload reuse features. + * After issuing reUseTX(), it will keep reending the same payload forever or until + * a payload is written to the FIFO, or a flush_tx command is given. + */ + void reUseTX(); + + /** + * Empty the transmit buffer. This is generally not required in standard operation. + * May be required in specific cases after stopListening() , if operating at 250KBPS data rate. + * + * @return Current value of status register + */ + uint8_t flush_tx(void); + + /** + * Test whether there was a carrier on the line for the + * previous listening period. + * + * Useful to check for interference on the current channel. + * + * @return true if was carrier, false if not + */ + bool testCarrier(void); - /** - * This function should be called as soon as transmission is finished to - * drop the radio back to STANDBY-I mode. If not issued, the radio will - * remain in STANDBY-II mode which, per the data sheet, is not a recommended - * operating mode. - * - * @note When transmitting data in rapid succession, it is still recommended by - * the manufacturer to drop the radio out of TX or STANDBY-II mode if there is - * time enough between sends for the FIFOs to empty. This is not required if auto-ack - * is enabled. - * - * Relies on built-in auto retry functionality. - * - * @code - * Example (Partial blocking): - * - * radio.writeFast(&buf,32); - * radio.writeFast(&buf,32); - * radio.writeFast(&buf,32); //Fills the FIFO buffers up - * bool ok = txStandBy(); //Returns 0 if failed. 1 if success. - * //Blocks only until MAX_RT timeout or success. Data flushed on fail. - * @endcode - * @see txStandBy(unsigned long timeout) - * @return True if transmission is successful - * - */ - bool txStandBy(); + /** + * Test whether a signal (carrier or otherwise) greater than + * or equal to -64dBm is present on the channel. Valid only + * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier(). + * + * Useful to check for interference on the current channel and + * channel hopping strategies. + * + * @code + * bool goodSignal = radio.testRPD(); + * if(radio.available()){ + * Serial.println(goodSignal ? "Strong signal > 64dBm" : "Weak signal < 64dBm" ); + * radio.read(0,0); + * } + * @endcode + * @return true if signal => -64dBm, false if not + */ + bool testRPD(void) ; + + /** + * Test whether this is a real radio, or a mock shim for + * debugging. Setting either pin to 0xff is the way to + * indicate that this is not a real radio. + * + * @return true if this is a legitimate radio + */ + bool isValid() { return ce_pin != 0xff && csn_pin != 0xff; } + + /** + * Close a pipe after it has been previously opened. + * Can be safely called without having previously opened a pipe. + * @param pipe Which pipe # to close, 0-5. + */ + void closeReadingPipe( uint8_t pipe ) ; - /** - * This function allows extended blocking and auto-retries per a user defined timeout - * @code - * Fully Blocking Example: - * - * radio.writeFast(&buf,32); - * radio.writeFast(&buf,32); - * radio.writeFast(&buf,32); //Fills the FIFO buffers up - * bool ok = txStandBy(1000); //Returns 0 if failed after 1 second of retries. 1 if success. - * //Blocks only until user defined timeout or success. Data flushed on fail. - * @endcode - * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis(). - * @param timeout Number of milliseconds to retry failed payloads - * @return True if transmission is successful - * - */ - bool txStandBy(uint32_t timeout, bool startTx = 0); + /** + * Enable error detection by un-commenting #define FAILURE_HANDLING in RF24_config.h + * If a failure has been detected, it usually indicates a hardware issue. By default the library + * will cease operation when a failure is detected. + * This should allow advanced users to detect and resolve intermittent hardware issues. + * + * In most cases, the radio must be re-enabled via radio.begin(); and the appropriate settings + * applied after a failure occurs, if wanting to re-enable the device immediately. + * + * Usage: (Failure handling must be enabled per above) + * @code + * if(radio.failureDetected){ + * radio.begin(); // Attempt to re-configure the radio with defaults + * radio.failureDetected = 0; // Reset the detection value + * radio.openWritingPipe(addresses[1]); // Re-configure pipe addresses + * radio.openReadingPipe(1,addresses[0]); + * report_failure(); // Blink leds, send a message, etc. to indicate failure + * } + * @endcode + */ + //#if defined (FAILURE_HANDLING) + bool failureDetected; + //#endif + + /**@}*/ - /** - * Write an ack payload for the specified pipe - * - * The next time a message is received on @p pipe, the data in @p buf will - * be sent back in the acknowledgement. - * @see enableAckPayload() - * @see enableDynamicPayloads() - * @warning Only three of these can be pending at any time as there are only 3 FIFO buffers.<br> Dynamic payloads must be enabled. - * @note Ack payloads are handled automatically by the radio chip when a payload is received. Users should generally - * write an ack payload as soon as startListening() is called, so one is available when a regular payload is received. - * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call - * enableDynamicPayloads() to enable on all pipes. - * - * @param pipe Which pipe# (typically 1-5) will get this response. - * @param buf Pointer to data that is sent - * @param len Length of the data to send, up to 32 bytes max. Not affected - * by the static payload set by setPayloadSize(). - */ - void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len); + /**@}*/ + /** + * @name Optional Configurators + * + * Methods you can use to get or set the configuration of the chip. + * None are required. Calling begin() sets up a reasonable set of + * defaults. + */ + /**@{*/ + + /** + * Set the address width from 3 to 5 bytes (24, 32 or 40 bit) + * + * @param a_width The address width to use: 3,4 or 5 + */ + void setAddressWidth(uint8_t a_width); + + /** + * Set the number and delay of retries upon failed submit + * + * @param delay How long to wait between each retry, in multiples of 250us, + * max is 15. 0 means 250us, 15 means 4000us. + * @param count How many retries before giving up, max 15 + */ + void setRetries(uint8_t delay, uint8_t count); + + /** + * Set RF communication channel + * + * @param channel Which RF channel to communicate on, 0-125 + */ + void setChannel(uint8_t channel); + /** - * Determine if an ack payload was received in the most recent call to - * write(). The regular available() can also be used. - * - * Call read() to retrieve the ack payload. - * - * @return True if an ack payload is available. - */ - bool isAckPayloadAvailable(void); - - /** - * Call this when you get an interrupt to find out why - * - * Tells you what caused the interrupt, and clears the state of - * interrupts. - * - * @param[out] tx_ok The send was successful (TX_DS) - * @param[out] tx_fail The send failed, too many retries (MAX_RT) - * @param[out] rx_ready There is a message waiting to be read (RX_DS) - */ - void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready); + * Get RF communication channel + * + * @return The currently configured RF Channel + */ + uint8_t getChannel(void); - /** - * Non-blocking write to the open writing pipe used for buffered writes - * - * @note Optimization: This function now leaves the CE pin high, so the radio - * will remain in TX or STANDBY-II Mode until a txStandBy() command is issued. Can be used as an alternative to startWrite() - * if writing multiple payloads at once. - * @warning It is important to never keep the nRF24L01 in TX mode with FIFO full for more than 4ms at a time. If the auto - * retransmit/autoAck is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO - * to clear by issuing txStandBy() or ensure appropriate time between transmissions. - * - * @see write() - * @see writeFast() - * @see startWrite() - * @see writeBlocking() - * - * For single noAck writes see: - * @see enableDynamicAck() - * @see setAutoAck() - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * @param multicast Request ACK (0) or NOACK (1) - * @return True if the payload was delivered successfully false if not - */ - void startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx = 1 ); + /** + * Set Static Payload Size + * + * This implementation uses a pre-stablished fixed payload size for all + * transmissions. If this method is never called, the driver will always + * transmit the maximum payload size (32 bytes), no matter how much + * was sent to write(). + * + * @todo Implement variable-sized payloads feature + * + * @param size The number of bytes in the payload + */ + void setPayloadSize(uint8_t size); - /** - * Non-blocking write to the open writing pipe - * - * Just like write(), but it returns immediately. To find out what happened - * to the send, catch the IRQ and then call whatHappened(). - * - * @see write() - * @see writeFast() - * @see startFastWrite() - * @see whatHappened() - * - * For single noAck writes see: - * @see enableDynamicAck() - * @see setAutoAck() - * - * @param buf Pointer to the data to be sent - * @param len Number of bytes to be sent - * @param multicast Request ACK (0) or NOACK (1) - * - */ - void startWrite( const void* buf, uint8_t len, const bool multicast ); + /** + * Get Static Payload Size + * + * @see setPayloadSize() + * + * @return The number of bytes in the payload + */ + uint8_t getPayloadSize(void); - /** - * This function is mainly used internally to take advantage of the auto payload - * re-use functionality of the chip, but can be beneficial to users as well. - * - * The function will instruct the radio to re-use the data in the FIFO buffers, - * and instructs the radio to re-send once the timeout limit has been reached. - * Used by writeFast and writeBlocking to initiate retries when a TX failure - * occurs. Retries are automatically initiated except with the standard write(). - * This way, data is not flushed from the buffer until switching between modes. - * - * @note This is to be used AFTER auto-retry fails if wanting to resend - * using the built-in payload reuse features. - * After issuing reUseTX(), it will keep reending the same payload forever or until - * a payload is written to the FIFO, or a flush_tx command is given. - */ - void reUseTX(); - - /** - * Empty the transmit buffer. This is generally not required in standard operation. - * May be required in specific cases after stopListening() , if operating at 250KBPS data rate. - * - * @return Current value of status register - */ - uint8_t flush_tx(void); + /** + * Get Dynamic Payload Size + * + * For dynamic payloads, this pulls the size of the payload off + * the chip + * + * @note Corrupt packets are now detected and flushed per the + * manufacturer. + * @code + * if(radio.available()){ + * if(radio.getDynamicPayloadSize() < 1){ + * // Corrupt payload has been flushed + * return; + * } + * radio.read(&data,sizeof(data)); + * } + * @endcode + * + * @return Payload length of last-received dynamic payload + */ + uint8_t getDynamicPayloadSize(void); - /** - * Test whether there was a carrier on the line for the - * previous listening period. - * - * Useful to check for interference on the current channel. - * - * @return true if was carrier, false if not - */ - bool testCarrier(void); - - /** - * Test whether a signal (carrier or otherwise) greater than - * or equal to -64dBm is present on the channel. Valid only - * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier(). - * - * Useful to check for interference on the current channel and - * channel hopping strategies. - * - * @code - * bool goodSignal = radio.testRPD(); - * if(radio.available()){ - * Serial.println(goodSignal ? "Strong signal > 64dBm" : "Weak signal < 64dBm" ); - * radio.read(0,0); - * } - * @endcode - * @return true if signal => -64dBm, false if not - */ - bool testRPD(void) ; - - /** - * Test whether this is a real radio, or a mock shim for - * debugging. Setting either pin to 0xff is the way to - * indicate that this is not a real radio. - * - * @return true if this is a legitimate radio - */ - bool isValid() { - return ce_pin != 0xff && csn_pin != 0xff; - } - - /** - * Close a pipe after it has been previously opened. - * Can be safely called without having previously opened a pipe. - * @param pipe Which pipe # to close, 0-5. - */ - void closeReadingPipe( uint8_t pipe ) ; + /** + * Enable custom payloads on the acknowledge packets + * + * Ack payloads are a handy way to return data back to senders without + * manually changing the radio modes on both units. + * + * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call + * enableDynamicPayloads() to enable on all pipes. + */ + void enableAckPayload(void); - /** - * Enable error detection by un-commenting #define FAILURE_HANDLING in RF24_config.h - * If a failure has been detected, it usually indicates a hardware issue. By default the library - * will cease operation when a failure is detected. - * This should allow advanced users to detect and resolve intermittent hardware issues. - * - * In most cases, the radio must be re-enabled via radio.begin(); and the appropriate settings - * applied after a failure occurs, if wanting to re-enable the device immediately. - * - * Usage: (Failure handling must be enabled per above) - * @code - * if(radio.failureDetected){ - * radio.begin(); // Attempt to re-configure the radio with defaults - * radio.failureDetected = 0; // Reset the detection value - * radio.openWritingPipe(addresses[1]); // Re-configure pipe addresses - * radio.openReadingPipe(1,addresses[0]); - * report_failure(); // Blink leds, send a message, etc. to indicate failure - * } - * @endcode - */ - //#if defined (FAILURE_HANDLING) - bool failureDetected; - //#endif - - /**@}*/ + /** + * Enable dynamically-sized payloads + * + * This way you don't always have to send large packets just to send them + * once in a while. This enables dynamic payloads on ALL pipes. + * + */ + void enableDynamicPayloads(void); + + /** + * Disable dynamically-sized payloads + * + * This disables dynamic payloads on ALL pipes. Since Ack Payloads + * requires Dynamic Payloads, Ack Payloads are also disabled. + * If dynamic payloads are later re-enabled and ack payloads are desired + * then enableAckPayload() must be called again as well. + * + */ + void disableDynamicPayloads(void); + + /** + * Enable dynamic ACKs (single write multicast or unicast) for chosen messages + * + * @note To enable full multicast or per-pipe multicast, use setAutoAck() + * + * @warning This MUST be called prior to attempting single write NOACK calls + * @code + * radio.enableDynamicAck(); + * radio.write(&data,32,1); // Sends a payload with no acknowledgement requested + * radio.write(&data,32,0); // Sends a payload using auto-retry/autoACK + * @endcode + */ + void enableDynamicAck(); + + /** + * Determine whether the hardware is an nRF24L01+ or not. + * + * @return true if the hardware is nRF24L01+ (or compatible) and false + * if its not. + */ + bool isPVariant(void) ; - /**@}*/ - /** - * @name Optional Configurators - * - * Methods you can use to get or set the configuration of the chip. - * None are required. Calling begin() sets up a reasonable set of - * defaults. - */ - /**@{*/ - - /** - * Set the address width from 3 to 5 bytes (24, 32 or 40 bit) - * - * @param a_width The address width to use: 3,4 or 5 - */ - - void setAddressWidth(uint8_t a_width); - - /** - * Set the number and delay of retries upon failed submit - * - * @param delay How long to wait between each retry, in multiples of 250us, - * max is 15. 0 means 250us, 15 means 4000us. - * @param count How many retries before giving up, max 15 - */ - void setRetries(uint8_t delay, uint8_t count); - - /** - * Set RF communication channel - * - * @param channel Which RF channel to communicate on, 0-125 - */ - void setChannel(uint8_t channel); + /** + * Enable or disable auto-acknowlede packets + * + * This is enabled by default, so it's only needed if you want to turn + * it off for some reason. + * + * @param enable Whether to enable (true) or disable (false) auto-acks + */ + void setAutoAck(bool enable); - /** - * Get RF communication channel - * - * @return The currently configured RF Channel - */ - uint8_t getChannel(void); + /** + * Enable or disable auto-acknowlede packets on a per pipeline basis. + * + * AA is enabled by default, so it's only needed if you want to turn + * it off/on for some reason on a per pipeline basis. + * + * @param pipe Which pipeline to modify + * @param enable Whether to enable (true) or disable (false) auto-acks + */ + void setAutoAck( uint8_t pipe, bool enable ) ; - /** - * Set Static Payload Size - * - * This implementation uses a pre-stablished fixed payload size for all - * transmissions. If this method is never called, the driver will always - * transmit the maximum payload size (32 bytes), no matter how much - * was sent to write(). - * - * @todo Implement variable-sized payloads feature - * - * @param size The number of bytes in the payload - */ - void setPayloadSize(uint8_t size); - - /** - * Get Static Payload Size - * - * @see setPayloadSize() - * - * @return The number of bytes in the payload - */ - uint8_t getPayloadSize(void); + /** + * Set Power Amplifier (PA) level to one of four levels: + * RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX + * + * The power levels correspond to the following output levels respectively: + * NRF24L01: -18dBm, -12dBm,-6dBM, and 0dBm + * + * SI24R1: -6dBm, 0dBm, 3dBM, and 7dBm. + * + * @param level Desired PA level. + */ + void setPALevel ( uint8_t level ); - /** - * Get Dynamic Payload Size - * - * For dynamic payloads, this pulls the size of the payload off - * the chip - * - * @note Corrupt packets are now detected and flushed per the - * manufacturer. - * @code - * if(radio.available()){ - * if(radio.getDynamicPayloadSize() < 1){ - * // Corrupt payload has been flushed - * return; - * } - * radio.read(&data,sizeof(data)); - * } - * @endcode - * - * @return Payload length of last-received dynamic payload - */ - uint8_t getDynamicPayloadSize(void); + /** + * Fetches the current PA level. + * + * NRF24L01: -18dBm, -12dBm, -6dBm and 0dBm + * SI24R1: -6dBm, 0dBm, 3dBm, 7dBm + * + * @return Returns values 0 to 3 representing the PA Level. + */ + uint8_t getPALevel( void ); - /** - * Enable custom payloads on the acknowledge packets - * - * Ack payloads are a handy way to return data back to senders without - * manually changing the radio modes on both units. - * - * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call - * enableDynamicPayloads() to enable on all pipes. - */ - void enableAckPayload(void); - - /** - * Enable dynamically-sized payloads - * - * This way you don't always have to send large packets just to send them - * once in a while. This enables dynamic payloads on ALL pipes. - * - */ - void enableDynamicPayloads(void); + /** + * Set the transmission data rate + * + * @warning setting RF24_250KBPS will fail for non-plus units + * + * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps + * @return true if the change was successful + */ + bool setDataRate(rf24_datarate_e speed); - /** - * Enable dynamic ACKs (single write multicast or unicast) for chosen messages - * - * @note To enable full multicast or per-pipe multicast, use setAutoAck() - * - * @warning This MUST be called prior to attempting single write NOACK calls - * @code - * radio.enableDynamicAck(); - * radio.write(&data,32,1); // Sends a payload with no acknowledgement requested - * radio.write(&data,32,0); // Sends a payload using auto-retry/autoACK - * @endcode - */ - void enableDynamicAck(); + /** + * Fetches the transmission data rate + * + * @return Returns the hardware's currently configured datarate. The value + * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the + * rf24_datarate_e enum. + */ + rf24_datarate_e getDataRate( void ) ; - /** - * Determine whether the hardware is an nRF24L01+ or not. - * - * @return true if the hardware is nRF24L01+ (or compatible) and false - * if its not. - */ - bool isPVariant(void) ; + /** + * Set the CRC length + * <br>CRC checking cannot be disabled if auto-ack is enabled + * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit + */ + void setCRCLength(rf24_crclength_e length); - /** - * Enable or disable auto-acknowlede packets - * - * This is enabled by default, so it's only needed if you want to turn - * it off for some reason. - * - * @param enable Whether to enable (true) or disable (false) auto-acks - */ - void setAutoAck(bool enable); - - /** - * Enable or disable auto-acknowlede packets on a per pipeline basis. - * - * AA is enabled by default, so it's only needed if you want to turn - * it off/on for some reason on a per pipeline basis. - * - * @param pipe Which pipeline to modify - * @param enable Whether to enable (true) or disable (false) auto-acks - */ - void setAutoAck( uint8_t pipe, bool enable ) ; + /** + * Get the CRC length + * <br>CRC checking cannot be disabled if auto-ack is enabled + * @return RF24_CRC_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit + */ + rf24_crclength_e getCRCLength(void); - /** - * Set Power Amplifier (PA) level to one of four levels: - * RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX - * - * The power levels correspond to the following output levels respectively: - * NRF24L01: -18dBm, -12dBm,-6dBM, and 0dBm - * - * SI24R1: -6dBm, 0dBm, 3dBM, and 7dBm. - * - * @param level Desired PA level. - */ - void setPALevel ( uint8_t level ); - - /** - * Fetches the current PA level. - * - * NRF24L01: -18dBm, -12dBm, -6dBm and 0dBm - * SI24R1: -6dBm, 0dBm, 3dBm, 7dBm - * - * @return Returns values 0 to 3 representing the PA Level. - */ - uint8_t getPALevel( void ); - - /** - * Set the transmission data rate - * - * @warning setting RF24_250KBPS will fail for non-plus units - * - * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps - * @return true if the change was successful - */ - bool setDataRate(rf24_datarate_e speed); + /** + * Disable CRC validation + * + * @warning CRC cannot be disabled if auto-ack/ESB is enabled. + */ + void disableCRC( void ) ; - /** - * Fetches the transmission data rate - * - * @return Returns the hardware's currently configured datarate. The value - * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the - * rf24_datarate_e enum. - */ - rf24_datarate_e getDataRate( void ) ; - - /** - * Set the CRC length - * <br>CRC checking cannot be disabled if auto-ack is enabled - * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit - */ - void setCRCLength(rf24_crclength_e length); - - /** - * Get the CRC length - * <br>CRC checking cannot be disabled if auto-ack is enabled - * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit - */ - rf24_crclength_e getCRCLength(void); + /** + * The radio will generate interrupt signals when a transmission is complete, + * a transmission fails, or a payload is received. This allows users to mask + * those interrupts to prevent them from generating a signal on the interrupt + * pin. Interrupts are enabled on the radio chip by default. + * + * @code + * Mask all interrupts except the receive interrupt: + * + * radio.maskIRQ(1,1,0); + * @endcode + * + * @param tx_ok Mask transmission complete interrupts + * @param tx_fail Mask transmit failure interrupts + * @param rx_ready Mask payload received interrupts + */ + void maskIRQ(bool tx_ok,bool tx_fail,bool rx_ready); + + /** + * + * The driver will delay for this duration when stopListening() is called + * + * When responding to payloads, faster devices like ARM(RPi) are much faster than Arduino: + * 1. Arduino sends data to RPi, switches to RX mode + * 2. The RPi receives the data, switches to TX mode and sends before the Arduino radio is in RX mode + * 3. If AutoACK is disabled, this can be set as low as 0. If AA/ESB enabled, set to 100uS minimum on RPi + * + * @warning If set to 0, ensure 130uS delay after stopListening() and before any sends + */ + + uint32_t txDelay; - /** - * Disable CRC validation - * - * @warning CRC cannot be disabled if auto-ack/ESB is enabled. - */ - void disableCRC( void ) ; - - /** - * The radio will generate interrupt signals when a transmission is complete, - * a transmission fails, or a payload is received. This allows users to mask - * those interrupts to prevent them from generating a signal on the interrupt - * pin. Interrupts are enabled on the radio chip by default. - * - * @code - * Mask all interrupts except the receive interrupt: - * - * radio.maskIRQ(1,1,0); - * @endcode - * - * @param tx_ok Mask transmission complete interrupts - * @param tx_fail Mask transmit failure interrupts - * @param rx_ready Mask payload received interrupts - */ - void maskIRQ(bool tx_ok,bool tx_fail,bool rx_ready); - - /**@}*/ - /** - * @name Deprecated - * - * Methods provided for backwards compabibility. - */ - /**@{*/ + /** + * + * On all devices but Linux and ATTiny, a small delay is added to the CSN toggling function + * + * This is intended to minimise the speed of SPI polling due to radio commands + * + * If using interrupts or timed requests, this can be set to 0 Default:5 + */ + + uint32_t csDelay; + + /**@}*/ + /** + * @name Deprecated + * + * Methods provided for backwards compabibility. + */ + /**@{*/ - /** - * Open a pipe for reading - * @note For compatibility with old code only, see new function - * - * @warning Pipes 1-5 should share the first 32 bits. - * Only the least significant byte should be unique, e.g. - * @code - * openReadingPipe(1,0xF0F0F0F0AA); - * openReadingPipe(2,0xF0F0F0F066); - * @endcode - * - * @warning Pipe 0 is also used by the writing pipe. So if you open - * pipe 0 for reading, and then startListening(), it will overwrite the - * writing pipe. Ergo, do an openWritingPipe() again before write(). - * - * @param number Which pipe# to open, 0-5. - * @param address The 40-bit address of the pipe to open. - */ - void openReadingPipe(uint8_t number, uint64_t address); + /** + * Open a pipe for reading + * @note For compatibility with old code only, see new function + * + * @warning Pipes 1-5 should share the first 32 bits. + * Only the least significant byte should be unique, e.g. + * @code + * openReadingPipe(1,0xF0F0F0F0AA); + * openReadingPipe(2,0xF0F0F0F066); + * @endcode + * + * @warning Pipe 0 is also used by the writing pipe. So if you open + * pipe 0 for reading, and then startListening(), it will overwrite the + * writing pipe. Ergo, do an openWritingPipe() again before write(). + * + * @param number Which pipe# to open, 0-5. + * @param address The 40-bit address of the pipe to open. + */ + void openReadingPipe(uint8_t number, uint64_t address); - /** - * Open a pipe for writing - * @note For compatibility with old code only, see new function - * - * Addresses are 40-bit hex values, e.g.: - * - * @code - * openWritingPipe(0xF0F0F0F0F0); - * @endcode - * - * @param address The 40-bit address of the pipe to open. - */ - void openWritingPipe(uint64_t address); + /** + * Open a pipe for writing + * @note For compatibility with old code only, see new function + * + * Addresses are 40-bit hex values, e.g.: + * + * @code + * openWritingPipe(0xF0F0F0F0F0); + * @endcode + * + * @param address The 40-bit address of the pipe to open. + */ + void openWritingPipe(uint64_t address); + + /** + * Empty the receive buffer + * + * @return Current value of status register + */ + uint8_t flush_rx(void); private: - /** - * @name Low-level internal interface. - * - * Protected methods that address the chip directly. Regular users cannot - * ever call these. They are documented for completeness and for developers who - * may want to extend this class. - */ - /**@{*/ + /** + * @name Low-level internal interface. + * + * Protected methods that address the chip directly. Regular users cannot + * ever call these. They are documented for completeness and for developers who + * may want to extend this class. + */ + /**@{*/ - /** - * Set chip select pin - * - * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data - * and best of all, we make use of the radio's FIFO buffers. A lower speed - * means we're less likely to effectively leverage our FIFOs and pay a higher - * AVR runtime cost as toll. - * - * @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet - * for a much more detailed description of this pin. - */ - void csn(int mode); + /** + * Set chip select pin + * + * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data + * and best of all, we make use of the radio's FIFO buffers. A lower speed + * means we're less likely to effectively leverage our FIFOs and pay a higher + * AVR runtime cost as toll. + * + * @param mode HIGH to take this unit off the SPI bus, LOW to put it on + */ + void csn(bool mode); - /** - * Set chip enable - * - * @param mode HIGH to take this unit off the SPI bus, LOW to put it on - */ - void ce(int level); + /** + * Set chip enable + * + * @param level HIGH to actively begin transmission or LOW to put in standby. Please see data sheet + * for a much more detailed description of this pin. + */ + void ce(bool level); - /** - * Read a chunk of data in from a register - * - * @param reg Which register. Use constants from nRF24L01.h - * @param buf Where to put the data - * @param len How many bytes of data to transfer - * @return Current value of status register - */ - uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len); + /** + * Read a chunk of data in from a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param buf Where to put the data + * @param len How many bytes of data to transfer + * @return Current value of status register + */ + uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len); - /** - * Read single byte from a register - * - * @param reg Which register. Use constants from nRF24L01.h - * @return Current value of register @p reg - */ - uint8_t read_register(uint8_t reg); + /** + * Read single byte from a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @return Current value of register @p reg + */ + uint8_t read_register(uint8_t reg); - /** - * Write a chunk of data to a register - * - * @param reg Which register. Use constants from nRF24L01.h - * @param buf Where to get the data - * @param len How many bytes of data to transfer - * @return Current value of status register - */ - uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len); + /** + * Write a chunk of data to a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param buf Where to get the data + * @param len How many bytes of data to transfer + * @return Current value of status register + */ + uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len); - /** - * Write a single byte to a register - * - * @param reg Which register. Use constants from nRF24L01.h - * @param value The new value to write - * @return Current value of status register - */ - uint8_t write_register(uint8_t reg, uint8_t value); + /** + * Write a single byte to a register + * + * @param reg Which register. Use constants from nRF24L01.h + * @param value The new value to write + * @return Current value of status register + */ + uint8_t write_register(uint8_t reg, uint8_t value); - /** - * Write the transmit payload - * - * The size of data written is the fixed payload size, see getPayloadSize() - * - * @param buf Where to get the data - * @param len Number of bytes to be sent - * @return Current value of status register - */ - uint8_t write_payload(const void* buf, uint8_t len, const uint8_t writeType); + /** + * Write the transmit payload + * + * The size of data written is the fixed payload size, see getPayloadSize() + * + * @param buf Where to get the data + * @param len Number of bytes to be sent + * @return Current value of status register + */ + uint8_t write_payload(const void* buf, uint8_t len, const uint8_t writeType); - /** - * Read the receive payload - * - * The size of data read is the fixed payload size, see getPayloadSize() - * - * @param buf Where to put the data - * @param len Maximum number of bytes to read - * @return Current value of status register - */ - uint8_t read_payload(void* buf, uint8_t len); + /** + * Read the receive payload + * + * The size of data read is the fixed payload size, see getPayloadSize() + * + * @param buf Where to put the data + * @param len Maximum number of bytes to read + * @return Current value of status register + */ + uint8_t read_payload(void* buf, uint8_t len); - /** - * Empty the receive buffer - * - * @return Current value of status register - */ - uint8_t flush_rx(void); + /** + * Retrieve the current status of the chip + * + * @return Current value of status register + */ + uint8_t get_status(void); - /** - * Retrieve the current status of the chip - * - * @return Current value of status register - */ - uint8_t get_status(void); + #if !defined (MINIMAL) + /** + * Decode and print the given status to stdout + * + * @param status Status value to print + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void print_status(uint8_t status); -#if !defined (MINIMAL) - /** - * Decode and print the given status to stdout - * - * @param status Status value to print - * - * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h - */ - void print_status(uint8_t status); - - /** - * Decode and print the given 'observe_tx' value to stdout - * - * @param value The observe_tx value to print - * - * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h - */ - void print_observe_tx(uint8_t value); + /** + * Decode and print the given 'observe_tx' value to stdout + * + * @param value The observe_tx value to print + * + * @warning Does nothing if stdout is not defined. See fdevopen in stdio.h + */ + void print_observe_tx(uint8_t value); - /** - * Print the name and value of an 8-bit register to stdout - * - * Optionally it can print some quantity of successive - * registers on the same line. This is useful for printing a group - * of related registers on one line. - * - * @param name Name of the register - * @param reg Which register. Use constants from nRF24L01.h - * @param qty How many successive registers to print - */ - void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1); + /** + * Print the name and value of an 8-bit register to stdout + * + * Optionally it can print some quantity of successive + * registers on the same line. This is useful for printing a group + * of related registers on one line. + * + * @param name Name of the register + * @param reg Which register. Use constants from nRF24L01.h + * @param qty How many successive registers to print + */ + void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1); - /** - * Print the name and value of a 40-bit address register to stdout - * - * Optionally it can print some quantity of successive - * registers on the same line. This is useful for printing a group - * of related registers on one line. - * - * @param name Name of the register - * @param reg Which register. Use constants from nRF24L01.h - * @param qty How many successive registers to print - */ - void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1); + /** + * Print the name and value of a 40-bit address register to stdout + * + * Optionally it can print some quantity of successive + * registers on the same line. This is useful for printing a group + * of related registers on one line. + * + * @param name Name of the register + * @param reg Which register. Use constants from nRF24L01.h + * @param qty How many successive registers to print + */ + void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1); #endif - /** - * Turn on or off the special features of the chip - * - * The chip has certain 'features' which are only available when the 'features' - * are enabled. See the datasheet for details. - */ - void toggle_features(void); + /** + * Turn on or off the special features of the chip + * + * The chip has certain 'features' which are only available when the 'features' + * are enabled. See the datasheet for details. + */ + void toggle_features(void); - /** - * Built in spi transfer function to simplify repeating code repeating code - */ - - uint8_t spiTrans(uint8_t cmd); + /** + * Built in spi transfer function to simplify repeating code repeating code + */ -#if defined (FAILURE_HANDLING) + uint8_t spiTrans(uint8_t cmd); + + #if defined (FAILURE_HANDLING) || defined (RF24_LINUX) void errNotify(void); -#endif - - /**@}*/ + #endif + + /**@}*/ }; #endif // __RF24_H__ -
diff -r 836f5c6da243 -r 15a3bbf90fe9 RF24_config.h --- a/RF24_config.h Mon Mar 28 18:13:17 2016 +0000 +++ b/RF24_config.h Fri Oct 06 20:20:33 2017 +0000 @@ -6,9 +6,9 @@ modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. */ - -/* spaniakos <spaniakos@gmail.com> - Added __ARDUINO_X86__ support + + /* spaniakos <spaniakos@gmail.com> + Added __ARDUINO_X86__ support */ #ifndef __RF24_CONFIG_H__ @@ -16,29 +16,51 @@ #include <stdint.h> -#define rf24_max(a,b) (a>b?a:b) -#define rf24_min(a,b) (a<b?a:b) - -#define RF24_SPI_TRANSACTIONS + /*** USER DEFINES: ***/ + //#define FAILURE_HANDLING + //#define SERIAL_DEBUG + //#define MINIMAL + + /**********************/ + #define rf24_max(a,b) (a>b?a:b) + #define rf24_min(a,b) (a<b?a:b) -// RF modules support 10 Mhz SPI bus speed -const uint32_t RF24_SPI_SPEED = 8000000; - -//typedef char const char; + #if defined SPI_HAS_TRANSACTION && !defined SPI_UART && !defined SOFTSPI + #define RF24_SPI_TRANSACTIONS + #endif + -typedef uint16_t prog_uint16_t; -#define PSTR(x) (x) -#define printf_P printf -#define strlen_P strlen -#define PROGMEM -#define pgm_read_byte(addr) (*(const unsigned char *)(addr)) -#define pgm_read_word(p) (*(p)) + #define RF24_MBED + + #define HIGH 1 + #define LOW 0 + + // Define _BV for non-Arduino platforms and for Arduino DUE + #include <stdint.h> + #include <stdio.h> + #include <string.h> + + #define _BV(x) (1<<(x)) -#define PRIPSTR "%s" + #ifdef SERIAL_DEBUG + #define IF_SERIAL_DEBUG(x) ({x;}) + #else + #define IF_SERIAL_DEBUG(x) + #endif + + #define PSTR(x) (x) + //#define printf Serial.printf + //#define sprintf(...) os_sprintf( __VA_ARGS__ ) + #define printf_P printf + #define strlen_P strlen + #define PROGMEM + #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) + #define pgm_read_word(p) (*(p)) + #define PRIPSTR "%s" -#define HIGH 1 -#define LOW 0 -#define _BV(n) (1 << n) + #define millis() (us_ticker_read() / 1000) + #define delay(t) wait_ms(t) + #define delayMicroseconds(t) wait_us(t) #endif // __RF24_CONFIG_H__
diff -r 836f5c6da243 -r 15a3bbf90fe9 nRF24L01.h --- a/nRF24L01.h Mon Mar 28 18:13:17 2016 +0000 +++ b/nRF24L01.h Fri Oct 06 20:20:33 2017 +0000 @@ -24,7 +24,7 @@ */ /* Memory Map */ -#define CONFIG 0x00 +#define NRF_CONFIG 0x00 #define EN_AA 0x01 #define EN_RXADDR 0x02 #define SETUP_AW 0x03