TMRh20 ported to MBED

Fork of TMRh20 by BME SmartLab

Committer:
gume
Date:
Wed Mar 16 11:51:59 2016 +0000
Revision:
1:8f889354678f
Parent:
0:163155b607df
Child:
2:3332510eebba
- DeafNode is working. For yet unknown reason, the CSN signal goes to HIGH even before the spi transmission finishes. Now, there is a +5 us delay to avoid this. Still, this is a strange situation! (Could be optimization problem?)

Who changed what in which revision?

UserRevisionLine numberNew contents of line
gume 0:163155b607df 1 /*
gume 0:163155b607df 2 Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
gume 0:163155b607df 3
gume 0:163155b607df 4 This program is free software; you can redistribute it and/or
gume 0:163155b607df 5 modify it under the terms of the GNU General Public License
gume 0:163155b607df 6 version 2 as published by the Free Software Foundation.
gume 0:163155b607df 7 */
gume 0:163155b607df 8
gume 0:163155b607df 9 #include "nRF24L01.h"
gume 0:163155b607df 10 #include "RF24_config.h"
gume 0:163155b607df 11 #include "RF24.h"
gume 0:163155b607df 12
gume 0:163155b607df 13 /****************************************************************************/
gume 0:163155b607df 14
gume 0:163155b607df 15 void RF24::csn(bool mode)
gume 0:163155b607df 16 {
gume 0:163155b607df 17 csn_pin = mode;
gume 0:163155b607df 18 wait_us(5);
gume 0:163155b607df 19 }
gume 0:163155b607df 20
gume 0:163155b607df 21 /****************************************************************************/
gume 0:163155b607df 22
gume 0:163155b607df 23 void RF24::ce(bool level)
gume 0:163155b607df 24 {
gume 0:163155b607df 25 ce_pin = level;
gume 0:163155b607df 26 }
gume 0:163155b607df 27
gume 0:163155b607df 28 /****************************************************************************/
gume 0:163155b607df 29
gume 0:163155b607df 30 inline void RF24::beginTransaction()
gume 0:163155b607df 31 {
gume 0:163155b607df 32 //#if defined (RF24_SPI_TRANSACTIONS)
gume 0:163155b607df 33 //_SPI.beginTransaction(SPISettings(RF24_SPI_SPEED, MSBFIRST, SPI_MODE0));
gume 0:163155b607df 34 //#endif
gume 0:163155b607df 35 csn(LOW);
gume 1:8f889354678f 36 wait_us(5);
gume 0:163155b607df 37 }
gume 0:163155b607df 38
gume 0:163155b607df 39 /****************************************************************************/
gume 0:163155b607df 40
gume 0:163155b607df 41 inline void RF24::endTransaction()
gume 0:163155b607df 42 {
gume 1:8f889354678f 43 wait_us(10);
gume 0:163155b607df 44 csn(HIGH);
gume 0:163155b607df 45 //#if defined (RF24_SPI_TRANSACTIONS)
gume 0:163155b607df 46 //_SPI.endTransaction();
gume 0:163155b607df 47 //#endif
gume 0:163155b607df 48 }
gume 0:163155b607df 49
gume 0:163155b607df 50 /****************************************************************************/
gume 0:163155b607df 51
gume 0:163155b607df 52 uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
gume 0:163155b607df 53 {
gume 0:163155b607df 54 uint8_t status;
gume 0:163155b607df 55
gume 0:163155b607df 56 beginTransaction(); //configures the spi settings for RPi, locks mutex and setting csn low
gume 0:163155b607df 57
gume 0:163155b607df 58 status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
gume 0:163155b607df 59 while ( len-- )
gume 0:163155b607df 60 *buf++ = spi.write(0xff);
gume 0:163155b607df 61
gume 0:163155b607df 62 endTransaction(); //unlocks mutex and setting csn high
gume 0:163155b607df 63
gume 0:163155b607df 64 return status;
gume 0:163155b607df 65 }
gume 0:163155b607df 66
gume 0:163155b607df 67 /****************************************************************************/
gume 0:163155b607df 68
gume 0:163155b607df 69 uint8_t RF24::read_register(uint8_t reg)
gume 0:163155b607df 70 {
gume 0:163155b607df 71 uint8_t result;
gume 0:163155b607df 72
gume 0:163155b607df 73 beginTransaction();
gume 0:163155b607df 74
gume 0:163155b607df 75 spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
gume 1:8f889354678f 76 result = spi.write(0x55); // 0xff
gume 0:163155b607df 77
gume 0:163155b607df 78 endTransaction();
gume 0:163155b607df 79
gume 1:8f889354678f 80 //printf_P(PSTR("read_register(%02x,%02x)\r\n"),reg,result);
gume 1:8f889354678f 81
gume 0:163155b607df 82 return result;
gume 0:163155b607df 83 }
gume 0:163155b607df 84
gume 0:163155b607df 85 /****************************************************************************/
gume 0:163155b607df 86
gume 0:163155b607df 87 uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
gume 0:163155b607df 88 {
gume 0:163155b607df 89 uint8_t status;
gume 0:163155b607df 90
gume 1:8f889354678f 91 //printf_P(PSTR("write_register_more(%02x,%d)\r\n"), reg, len);
gume 1:8f889354678f 92
gume 0:163155b607df 93 beginTransaction();
gume 0:163155b607df 94
gume 0:163155b607df 95 status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
gume 0:163155b607df 96 while ( len-- )
gume 0:163155b607df 97 spi.write(*buf++);
gume 0:163155b607df 98
gume 0:163155b607df 99 endTransaction();
gume 0:163155b607df 100
gume 0:163155b607df 101 return status;
gume 0:163155b607df 102 }
gume 0:163155b607df 103
gume 0:163155b607df 104 /****************************************************************************/
gume 0:163155b607df 105
gume 0:163155b607df 106 uint8_t RF24::write_register(uint8_t reg, uint8_t value)
gume 0:163155b607df 107 {
gume 0:163155b607df 108 uint8_t status;
gume 0:163155b607df 109
gume 1:8f889354678f 110 //printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value);
gume 0:163155b607df 111
gume 0:163155b607df 112 beginTransaction();
gume 0:163155b607df 113
gume 0:163155b607df 114 status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
gume 0:163155b607df 115 spi.write(value);
gume 0:163155b607df 116
gume 0:163155b607df 117 endTransaction();
gume 0:163155b607df 118
gume 0:163155b607df 119 return status;
gume 0:163155b607df 120 }
gume 0:163155b607df 121
gume 0:163155b607df 122 /****************************************************************************/
gume 0:163155b607df 123
gume 0:163155b607df 124 uint8_t RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType)
gume 0:163155b607df 125 {
gume 0:163155b607df 126 uint8_t status;
gume 0:163155b607df 127 const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
gume 0:163155b607df 128
gume 0:163155b607df 129 data_len = rf24_min(data_len, payload_size);
gume 0:163155b607df 130 uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
gume 0:163155b607df 131
gume 1:8f889354678f 132 //printf_P("[Writing %u bytes %u blanks]\n",data_len,blank_len);
gume 0:163155b607df 133
gume 0:163155b607df 134 beginTransaction();
gume 0:163155b607df 135
gume 0:163155b607df 136 status = spi.write( W_TX_PAYLOAD );
gume 0:163155b607df 137 while ( data_len-- )
gume 0:163155b607df 138 spi.write(*current++);
gume 0:163155b607df 139 while ( blank_len-- )
gume 0:163155b607df 140 spi.write(0);
gume 0:163155b607df 141
gume 0:163155b607df 142 endTransaction();
gume 0:163155b607df 143
gume 0:163155b607df 144 return status;
gume 0:163155b607df 145 }
gume 0:163155b607df 146
gume 0:163155b607df 147 /****************************************************************************/
gume 0:163155b607df 148
gume 0:163155b607df 149 uint8_t RF24::read_payload(void* buf, uint8_t data_len)
gume 0:163155b607df 150 {
gume 0:163155b607df 151 uint8_t status;
gume 0:163155b607df 152 uint8_t* current = reinterpret_cast<uint8_t*>(buf);
gume 0:163155b607df 153
gume 0:163155b607df 154 if(data_len > payload_size) data_len = payload_size;
gume 0:163155b607df 155 uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
gume 0:163155b607df 156
gume 1:8f889354678f 157 //printf_P("[Reading %u bytes %u blanks]\n",data_len,blank_len);
gume 0:163155b607df 158
gume 0:163155b607df 159 beginTransaction();
gume 0:163155b607df 160
gume 0:163155b607df 161 status = spi.write( R_RX_PAYLOAD );
gume 0:163155b607df 162 while ( data_len-- )
gume 0:163155b607df 163 *current++ = spi.write(0xff);
gume 0:163155b607df 164 while ( blank_len-- )
gume 0:163155b607df 165 spi.write(0xff);
gume 0:163155b607df 166
gume 0:163155b607df 167 endTransaction();
gume 0:163155b607df 168
gume 0:163155b607df 169 return status;
gume 0:163155b607df 170 }
gume 0:163155b607df 171
gume 0:163155b607df 172 /****************************************************************************/
gume 0:163155b607df 173
gume 0:163155b607df 174 uint8_t RF24::flush_rx(void)
gume 0:163155b607df 175 {
gume 0:163155b607df 176 return spiTrans( FLUSH_RX );
gume 0:163155b607df 177 }
gume 0:163155b607df 178
gume 0:163155b607df 179 /****************************************************************************/
gume 0:163155b607df 180
gume 0:163155b607df 181 uint8_t RF24::flush_tx(void)
gume 0:163155b607df 182 {
gume 0:163155b607df 183 return spiTrans( FLUSH_TX );
gume 0:163155b607df 184 }
gume 0:163155b607df 185
gume 0:163155b607df 186 /****************************************************************************/
gume 0:163155b607df 187
gume 0:163155b607df 188 uint8_t RF24::spiTrans(uint8_t cmd)
gume 0:163155b607df 189 {
gume 0:163155b607df 190
gume 0:163155b607df 191 uint8_t status;
gume 0:163155b607df 192
gume 1:8f889354678f 193 //printf_P(PSTR("spiTrans(%02x)\r\n"), cmd);
gume 1:8f889354678f 194
gume 0:163155b607df 195 beginTransaction();
gume 0:163155b607df 196 status = spi.write(cmd);
gume 0:163155b607df 197 endTransaction();
gume 0:163155b607df 198
gume 0:163155b607df 199 return status;
gume 0:163155b607df 200 }
gume 0:163155b607df 201
gume 0:163155b607df 202 /****************************************************************************/
gume 0:163155b607df 203
gume 0:163155b607df 204 uint8_t RF24::get_status(void)
gume 0:163155b607df 205 {
gume 0:163155b607df 206 return spiTrans(NOP);
gume 0:163155b607df 207 }
gume 0:163155b607df 208
gume 0:163155b607df 209 /****************************************************************************/
gume 0:163155b607df 210 #if !defined (MINIMAL)
gume 0:163155b607df 211 void RF24::print_status(uint8_t status)
gume 0:163155b607df 212 {
gume 0:163155b607df 213 printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
gume 0:163155b607df 214 status,
gume 0:163155b607df 215 (status & _BV(RX_DR))?1:0,
gume 0:163155b607df 216 (status & _BV(TX_DS))?1:0,
gume 0:163155b607df 217 (status & _BV(MAX_RT))?1:0,
gume 0:163155b607df 218 ((status >> RX_P_NO) & 0b111),
gume 0:163155b607df 219 (status & _BV(TX_FULL))?1:0
gume 0:163155b607df 220 );
gume 0:163155b607df 221 }
gume 0:163155b607df 222
gume 0:163155b607df 223 /****************************************************************************/
gume 0:163155b607df 224
gume 0:163155b607df 225 void RF24::print_observe_tx(uint8_t value)
gume 0:163155b607df 226 {
gume 0:163155b607df 227 printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
gume 0:163155b607df 228 value,
gume 0:163155b607df 229 (value >> PLOS_CNT) & 0b1111,
gume 0:163155b607df 230 (value >> ARC_CNT) & 0b1111
gume 0:163155b607df 231 );
gume 0:163155b607df 232 }
gume 0:163155b607df 233
gume 0:163155b607df 234 /****************************************************************************/
gume 0:163155b607df 235
gume 0:163155b607df 236 void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
gume 0:163155b607df 237 {
gume 0:163155b607df 238 //char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
gume 0:163155b607df 239 printf("%s\t =", name);
gume 0:163155b607df 240
gume 0:163155b607df 241 while (qty--)
gume 0:163155b607df 242 printf_P(PSTR(" 0x%02x"),read_register(reg++));
gume 0:163155b607df 243
gume 0:163155b607df 244 printf_P(PSTR("\r\n"));
gume 0:163155b607df 245 }
gume 0:163155b607df 246
gume 0:163155b607df 247 /****************************************************************************/
gume 0:163155b607df 248
gume 0:163155b607df 249 void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
gume 0:163155b607df 250 {
gume 0:163155b607df 251
gume 0:163155b607df 252 printf("%s\t =",name);
gume 0:163155b607df 253
gume 0:163155b607df 254 while (qty--) {
gume 0:163155b607df 255 uint8_t buffer[addr_width];
gume 0:163155b607df 256 read_register(reg++,buffer,sizeof buffer);
gume 0:163155b607df 257
gume 0:163155b607df 258 printf_P(PSTR(" 0x"));
gume 0:163155b607df 259 uint8_t* bufptr = buffer + sizeof buffer;
gume 0:163155b607df 260 while( --bufptr >= buffer )
gume 0:163155b607df 261 printf_P(PSTR("%02x"),*bufptr);
gume 0:163155b607df 262 }
gume 0:163155b607df 263
gume 0:163155b607df 264 printf_P(PSTR("\r\n"));
gume 0:163155b607df 265 }
gume 0:163155b607df 266 #endif // MINIMAL
gume 0:163155b607df 267
gume 0:163155b607df 268 /****************************************************************************/
gume 0:163155b607df 269
gume 1:8f889354678f 270 RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin):
gume 0:163155b607df 271 spi(mosi, miso, sck), ce_pin(_cepin), csn_pin(_cspin), p_variant(false),
gume 0:163155b607df 272 payload_size(32), dynamic_payloads_enabled(false), addr_width(5)//,pipe0_reading_address(0)
gume 0:163155b607df 273 {
gume 0:163155b607df 274 pipe0_reading_address[0]=0;
gume 1:8f889354678f 275
gume 1:8f889354678f 276 //_SPI.begin(csn_pin);
gume 1:8f889354678f 277 spi.frequency(10000000/5); // 2Mbit, 1/5th the maximum transfer rate for the spi bus
gume 1:8f889354678f 278 spi.format(8,0);
gume 1:8f889354678f 279
gume 1:8f889354678f 280 mainTimer.start();
gume 1:8f889354678f 281
gume 0:163155b607df 282 }
gume 0:163155b607df 283
gume 0:163155b607df 284 /****************************************************************************/
gume 0:163155b607df 285
gume 0:163155b607df 286 void RF24::setChannel(uint8_t channel)
gume 0:163155b607df 287 {
gume 0:163155b607df 288 const uint8_t max_channel = 125;
gume 1:8f889354678f 289 write_register(RF_CH, rf24_min(channel,max_channel));
gume 0:163155b607df 290 }
gume 0:163155b607df 291
gume 0:163155b607df 292 uint8_t RF24::getChannel()
gume 0:163155b607df 293 {
gume 0:163155b607df 294
gume 0:163155b607df 295 return read_register(RF_CH);
gume 0:163155b607df 296 }
gume 0:163155b607df 297 /****************************************************************************/
gume 0:163155b607df 298
gume 0:163155b607df 299 void RF24::setPayloadSize(uint8_t size)
gume 0:163155b607df 300 {
gume 0:163155b607df 301 payload_size = rf24_min(size,32);
gume 0:163155b607df 302 }
gume 0:163155b607df 303
gume 0:163155b607df 304 /****************************************************************************/
gume 0:163155b607df 305
gume 0:163155b607df 306 uint8_t RF24::getPayloadSize(void)
gume 0:163155b607df 307 {
gume 0:163155b607df 308 return payload_size;
gume 0:163155b607df 309 }
gume 0:163155b607df 310
gume 0:163155b607df 311 /****************************************************************************/
gume 0:163155b607df 312
gume 0:163155b607df 313 #if !defined (MINIMAL)
gume 0:163155b607df 314
gume 0:163155b607df 315 static const char rf24_datarate_e_str_0[] PROGMEM = "1MBPS";
gume 0:163155b607df 316 static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS";
gume 0:163155b607df 317 static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS";
gume 0:163155b607df 318 static const char * const rf24_datarate_e_str_P[] PROGMEM = {
gume 0:163155b607df 319 rf24_datarate_e_str_0,
gume 0:163155b607df 320 rf24_datarate_e_str_1,
gume 0:163155b607df 321 rf24_datarate_e_str_2,
gume 0:163155b607df 322 };
gume 0:163155b607df 323 static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01";
gume 0:163155b607df 324 static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+";
gume 0:163155b607df 325 static const char * const rf24_model_e_str_P[] PROGMEM = {
gume 0:163155b607df 326 rf24_model_e_str_0,
gume 0:163155b607df 327 rf24_model_e_str_1,
gume 0:163155b607df 328 };
gume 0:163155b607df 329 static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled";
gume 0:163155b607df 330 static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits";
gume 0:163155b607df 331 static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ;
gume 0:163155b607df 332 static const char * const rf24_crclength_e_str_P[] PROGMEM = {
gume 0:163155b607df 333 rf24_crclength_e_str_0,
gume 0:163155b607df 334 rf24_crclength_e_str_1,
gume 0:163155b607df 335 rf24_crclength_e_str_2,
gume 0:163155b607df 336 };
gume 0:163155b607df 337 static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN";
gume 0:163155b607df 338 static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW";
gume 0:163155b607df 339 static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH";
gume 0:163155b607df 340 static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX";
gume 0:163155b607df 341 static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = {
gume 0:163155b607df 342 rf24_pa_dbm_e_str_0,
gume 0:163155b607df 343 rf24_pa_dbm_e_str_1,
gume 0:163155b607df 344 rf24_pa_dbm_e_str_2,
gume 0:163155b607df 345 rf24_pa_dbm_e_str_3,
gume 0:163155b607df 346 };
gume 0:163155b607df 347
gume 0:163155b607df 348 void RF24::printDetails(void)
gume 0:163155b607df 349 {
gume 0:163155b607df 350
gume 0:163155b607df 351 print_status(get_status());
gume 0:163155b607df 352
gume 0:163155b607df 353 print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
gume 0:163155b607df 354 print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
gume 0:163155b607df 355 print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);
gume 0:163155b607df 356
gume 0:163155b607df 357 print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
gume 0:163155b607df 358 print_byte_register(PSTR("EN_AA\t"),EN_AA);
gume 0:163155b607df 359 print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
gume 0:163155b607df 360 print_byte_register(PSTR("RF_CH\t"),RF_CH);
gume 0:163155b607df 361 print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
gume 0:163155b607df 362 print_byte_register(PSTR("CONFIG\t"),CONFIG);
gume 0:163155b607df 363 print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
gume 0:163155b607df 364
gume 0:163155b607df 365 printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()]));
gume 0:163155b607df 366 printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()]));
gume 0:163155b607df 367 printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()]));
gume 0:163155b607df 368 printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"), pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()]));
gume 0:163155b607df 369
gume 0:163155b607df 370 }
gume 0:163155b607df 371
gume 0:163155b607df 372 #endif
gume 0:163155b607df 373 /****************************************************************************/
gume 0:163155b607df 374
gume 0:163155b607df 375 bool RF24::begin(void)
gume 0:163155b607df 376 {
gume 1:8f889354678f 377 //printf("RF24::begin\n");
gume 0:163155b607df 378
gume 0:163155b607df 379 uint8_t setup=0;
gume 0:163155b607df 380
gume 0:163155b607df 381 ce(LOW);
gume 1:8f889354678f 382 csn(HIGH); // extra
gume 0:163155b607df 383
gume 0:163155b607df 384 wait_ms(100);
gume 0:163155b607df 385
gume 0:163155b607df 386 // Must allow the radio time to settle else configuration bits will not necessarily stick.
gume 0:163155b607df 387 // This is actually only required following power up but some settling time also appears to
gume 0:163155b607df 388 // be required after resets too. For full coverage, we'll always assume the worst.
gume 0:163155b607df 389 // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
gume 0:163155b607df 390 // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
gume 0:163155b607df 391 // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
gume 0:163155b607df 392 wait_ms( 5 ) ;
gume 0:163155b607df 393
gume 0:163155b607df 394 // Reset CONFIG and enable 16-bit CRC.
gume 0:163155b607df 395 write_register( CONFIG, 0b00001100 ) ;
gume 0:163155b607df 396
gume 0:163155b607df 397 // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
gume 0:163155b607df 398 // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
gume 0:163155b607df 399 // sizes must never be used. See documentation for a more complete explanation.
gume 0:163155b607df 400 setRetries(5,15);
gume 0:163155b607df 401
gume 0:163155b607df 402 // Reset value is MAX
gume 0:163155b607df 403 //setPALevel( RF24_PA_MAX ) ;
gume 0:163155b607df 404
gume 0:163155b607df 405 // check for connected module and if this is a p nRF24l01 variant
gume 0:163155b607df 406 //
gume 0:163155b607df 407 if( setDataRate( RF24_250KBPS ) ) {
gume 0:163155b607df 408 p_variant = true ;
gume 0:163155b607df 409 }
gume 0:163155b607df 410 setup = read_register(RF_SETUP);
gume 0:163155b607df 411 /*if( setup == 0b00001110 ) // register default for nRF24L01P
gume 0:163155b607df 412 {
gume 0:163155b607df 413 p_variant = true ;
gume 0:163155b607df 414 }*/
gume 0:163155b607df 415
gume 0:163155b607df 416 // Then set the data rate to the slowest (and most reliable) speed supported by all
gume 0:163155b607df 417 // hardware.
gume 0:163155b607df 418 setDataRate( RF24_1MBPS ) ;
gume 0:163155b607df 419
gume 0:163155b607df 420 // Initialize CRC and request 2-byte (16bit) CRC
gume 0:163155b607df 421 //setCRCLength( RF24_CRC_16 ) ;
gume 0:163155b607df 422
gume 0:163155b607df 423 // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
gume 0:163155b607df 424 toggle_features();
gume 0:163155b607df 425 write_register(FEATURE,0 );
gume 0:163155b607df 426 write_register(DYNPD,0);
gume 0:163155b607df 427
gume 0:163155b607df 428 // Reset current status
gume 0:163155b607df 429 // Notice reset and flush is the last thing we do
gume 0:163155b607df 430 write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
gume 0:163155b607df 431
gume 0:163155b607df 432 // Set up default configuration. Callers can always change it later.
gume 0:163155b607df 433 // This channel should be universally safe and not bleed over into adjacent
gume 0:163155b607df 434 // spectrum.
gume 0:163155b607df 435 setChannel(76);
gume 0:163155b607df 436
gume 0:163155b607df 437 // Flush buffers
gume 0:163155b607df 438 flush_rx();
gume 0:163155b607df 439 flush_tx();
gume 0:163155b607df 440
gume 0:163155b607df 441 powerUp(); //Power up by default when begin() is called
gume 0:163155b607df 442
gume 0:163155b607df 443 // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
gume 0:163155b607df 444 // PTX should use only 22uA of power
gume 0:163155b607df 445 write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );
gume 0:163155b607df 446
gume 0:163155b607df 447 // if setup is 0 or ff then there was no response from module
gume 0:163155b607df 448 return ( setup != 0 && setup != 0xff );
gume 0:163155b607df 449 }
gume 0:163155b607df 450
gume 1:8f889354678f 451
gume 0:163155b607df 452 /****************************************************************************/
gume 0:163155b607df 453
gume 0:163155b607df 454 void RF24::startListening(void)
gume 0:163155b607df 455 {
gume 0:163155b607df 456
gume 0:163155b607df 457 powerUp();
gume 0:163155b607df 458
gume 0:163155b607df 459 write_register(CONFIG, read_register(CONFIG) | _BV(PRIM_RX));
gume 0:163155b607df 460 write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
gume 0:163155b607df 461 ce(HIGH);
gume 0:163155b607df 462 // Restore the pipe0 adddress, if exists
gume 0:163155b607df 463 if (pipe0_reading_address[0] > 0) {
gume 0:163155b607df 464 write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);
gume 0:163155b607df 465 } else {
gume 0:163155b607df 466 closeReadingPipe(0);
gume 0:163155b607df 467 }
gume 0:163155b607df 468
gume 0:163155b607df 469 // Flush buffers
gume 0:163155b607df 470 //flush_rx();
gume 0:163155b607df 471 if(read_register(FEATURE) & _BV(EN_ACK_PAY)) {
gume 0:163155b607df 472 flush_tx();
gume 0:163155b607df 473 }
gume 0:163155b607df 474
gume 0:163155b607df 475 // Go!
gume 0:163155b607df 476 //delayMicroseconds(100);
gume 0:163155b607df 477 }
gume 0:163155b607df 478
gume 0:163155b607df 479 /****************************************************************************/
gume 0:163155b607df 480 static const uint8_t child_pipe_enable[] PROGMEM = {
gume 0:163155b607df 481 ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
gume 0:163155b607df 482 };
gume 0:163155b607df 483
gume 0:163155b607df 484 void RF24::stopListening(void)
gume 0:163155b607df 485 {
gume 0:163155b607df 486 ce(LOW);
gume 0:163155b607df 487
gume 0:163155b607df 488 wait_us(txRxDelay);
gume 0:163155b607df 489
gume 0:163155b607df 490 if(read_register(FEATURE) & _BV(EN_ACK_PAY)) {
gume 0:163155b607df 491 wait_us(txRxDelay); //200
gume 0:163155b607df 492 flush_tx();
gume 0:163155b607df 493 }
gume 0:163155b607df 494 //flush_rx();
gume 0:163155b607df 495 write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );
gume 0:163155b607df 496 write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
gume 0:163155b607df 497
gume 0:163155b607df 498 //delayMicroseconds(100);
gume 0:163155b607df 499
gume 0:163155b607df 500 }
gume 0:163155b607df 501
gume 0:163155b607df 502 /****************************************************************************/
gume 0:163155b607df 503
gume 0:163155b607df 504 void RF24::powerDown(void)
gume 0:163155b607df 505 {
gume 0:163155b607df 506 ce(LOW); // Guarantee CE is low on powerDown
gume 0:163155b607df 507 write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
gume 0:163155b607df 508 }
gume 0:163155b607df 509
gume 0:163155b607df 510 /****************************************************************************/
gume 0:163155b607df 511
gume 0:163155b607df 512 //Power up now. Radio will not power down unless instructed by MCU for config changes etc.
gume 0:163155b607df 513 void RF24::powerUp(void)
gume 0:163155b607df 514 {
gume 0:163155b607df 515 uint8_t cfg = read_register(CONFIG);
gume 0:163155b607df 516
gume 0:163155b607df 517 // if not powered up then power up and wait for the radio to initialize
gume 0:163155b607df 518 if (!(cfg & _BV(PWR_UP))) {
gume 0:163155b607df 519 write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP));
gume 0:163155b607df 520
gume 0:163155b607df 521 // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
gume 0:163155b607df 522 // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
gume 0:163155b607df 523 // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
gume 0:163155b607df 524 wait_ms(5);
gume 0:163155b607df 525 }
gume 0:163155b607df 526 }
gume 0:163155b607df 527
gume 0:163155b607df 528 /******************************************************************/
gume 0:163155b607df 529 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 530 void RF24::errNotify()
gume 0:163155b607df 531 {
gume 0:163155b607df 532 printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
gume 0:163155b607df 533 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 534 failureDetected = 1;
gume 0:163155b607df 535 #else
gume 0:163155b607df 536 delay(5000);
gume 0:163155b607df 537 #endif
gume 0:163155b607df 538 }
gume 0:163155b607df 539 #endif
gume 0:163155b607df 540 /******************************************************************/
gume 0:163155b607df 541
gume 0:163155b607df 542 //Similar to the previous write, clears the interrupt flags
gume 0:163155b607df 543 bool RF24::write( const void* buf, uint8_t len, const bool multicast )
gume 0:163155b607df 544 {
gume 0:163155b607df 545 //Start Writing
gume 0:163155b607df 546 startFastWrite(buf,len,multicast);
gume 0:163155b607df 547
gume 0:163155b607df 548 //Wait until complete or failed
gume 0:163155b607df 549 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 550 uint32_t timer = millis();
gume 0:163155b607df 551 #endif
gume 0:163155b607df 552
gume 0:163155b607df 553 while( ! ( get_status() & ( _BV(TX_DS) | _BV(MAX_RT) ))) {
gume 0:163155b607df 554 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 555 if(millis() - timer > 85) {
gume 0:163155b607df 556 errNotify();
gume 0:163155b607df 557 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 558 return 0;
gume 0:163155b607df 559 #else
gume 0:163155b607df 560 delay(100);
gume 0:163155b607df 561 #endif
gume 0:163155b607df 562 }
gume 0:163155b607df 563 #endif
gume 0:163155b607df 564 }
gume 0:163155b607df 565
gume 0:163155b607df 566 ce(LOW);
gume 0:163155b607df 567
gume 0:163155b607df 568 uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
gume 0:163155b607df 569
gume 0:163155b607df 570 //Max retries exceeded
gume 0:163155b607df 571 if( status & _BV(MAX_RT)) {
gume 0:163155b607df 572 flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
gume 0:163155b607df 573 return 0;
gume 0:163155b607df 574 }
gume 0:163155b607df 575 //TX OK 1 or 0
gume 0:163155b607df 576 return 1;
gume 0:163155b607df 577 }
gume 0:163155b607df 578
gume 0:163155b607df 579 bool RF24::write( const void* buf, uint8_t len )
gume 0:163155b607df 580 {
gume 0:163155b607df 581 return write(buf,len,0);
gume 0:163155b607df 582 }
gume 0:163155b607df 583 /****************************************************************************/
gume 0:163155b607df 584
gume 0:163155b607df 585 //For general use, the interrupt flags are not important to clear
gume 0:163155b607df 586 bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout )
gume 0:163155b607df 587 {
gume 0:163155b607df 588 //Block until the FIFO is NOT full.
gume 0:163155b607df 589 //Keep track of the MAX retries and set auto-retry if seeing failures
gume 0:163155b607df 590 //This way the FIFO will fill up and allow blocking until packets go through
gume 0:163155b607df 591 //The radio will auto-clear everything in the FIFO as long as CE remains high
gume 0:163155b607df 592
gume 0:163155b607df 593 uint32_t timer = mainTimer.read_ms(); //Get the time that the payload transmission started
gume 0:163155b607df 594
gume 0:163155b607df 595 while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
gume 0:163155b607df 596
gume 0:163155b607df 597 if( get_status() & _BV(MAX_RT)) { //If MAX Retries have been reached
gume 0:163155b607df 598 reUseTX(); //Set re-transmit and clear the MAX_RT interrupt flag
gume 0:163155b607df 599 if(mainTimer.read_ms() - timer > timeout) {
gume 0:163155b607df 600 return 0; //If this payload has exceeded the user-defined timeout, exit and return 0
gume 0:163155b607df 601 }
gume 0:163155b607df 602 }
gume 0:163155b607df 603 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 604 if(mainTimer.read_ms() - timer > (timeout+85) ) {
gume 0:163155b607df 605 errNotify();
gume 0:163155b607df 606 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 607 return 0;
gume 0:163155b607df 608 #endif
gume 0:163155b607df 609 }
gume 0:163155b607df 610 #endif
gume 0:163155b607df 611
gume 0:163155b607df 612 }
gume 0:163155b607df 613
gume 0:163155b607df 614 //Start Writing
gume 0:163155b607df 615 startFastWrite(buf,len,0); //Write the payload if a buffer is clear
gume 0:163155b607df 616
gume 0:163155b607df 617 return 1; //Return 1 to indicate successful transmission
gume 0:163155b607df 618 }
gume 0:163155b607df 619
gume 0:163155b607df 620 /****************************************************************************/
gume 0:163155b607df 621
gume 0:163155b607df 622 void RF24::reUseTX()
gume 0:163155b607df 623 {
gume 0:163155b607df 624 write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag
gume 0:163155b607df 625 spiTrans( REUSE_TX_PL );
gume 0:163155b607df 626 ce(LOW); //Re-Transfer packet
gume 0:163155b607df 627 ce(HIGH);
gume 0:163155b607df 628 }
gume 0:163155b607df 629
gume 0:163155b607df 630 /****************************************************************************/
gume 0:163155b607df 631
gume 0:163155b607df 632 bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast )
gume 0:163155b607df 633 {
gume 0:163155b607df 634 //Block until the FIFO is NOT full.
gume 0:163155b607df 635 //Keep track of the MAX retries and set auto-retry if seeing failures
gume 0:163155b607df 636 //Return 0 so the user can control the retrys and set a timer or failure counter if required
gume 0:163155b607df 637 //The radio will auto-clear everything in the FIFO as long as CE remains high
gume 0:163155b607df 638
gume 0:163155b607df 639 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 640 uint32_t timer = millis();
gume 0:163155b607df 641 #endif
gume 0:163155b607df 642
gume 0:163155b607df 643 while( ( get_status() & ( _BV(TX_FULL) ))) { //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
gume 0:163155b607df 644
gume 0:163155b607df 645 if( get_status() & _BV(MAX_RT)) {
gume 0:163155b607df 646 //reUseTX(); //Set re-transmit
gume 0:163155b607df 647 write_register(NRF_STATUS,_BV(MAX_RT) ); //Clear max retry flag
gume 0:163155b607df 648 return 0; //Return 0. The previous payload has been retransmitted
gume 0:163155b607df 649 //From the user perspective, if you get a 0, just keep trying to send the same payload
gume 0:163155b607df 650 }
gume 0:163155b607df 651 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 652 if(millis() - timer > 85 ) {
gume 0:163155b607df 653 errNotify();
gume 0:163155b607df 654 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 655 return 0;
gume 0:163155b607df 656 #endif
gume 0:163155b607df 657 }
gume 0:163155b607df 658 #endif
gume 0:163155b607df 659 }
gume 0:163155b607df 660 //Start Writing
gume 0:163155b607df 661 startFastWrite(buf,len,multicast);
gume 0:163155b607df 662
gume 0:163155b607df 663 return 1;
gume 0:163155b607df 664 }
gume 0:163155b607df 665
gume 0:163155b607df 666 bool RF24::writeFast( const void* buf, uint8_t len )
gume 0:163155b607df 667 {
gume 0:163155b607df 668 return writeFast(buf,len,0);
gume 0:163155b607df 669 }
gume 0:163155b607df 670
gume 0:163155b607df 671 /****************************************************************************/
gume 0:163155b607df 672
gume 0:163155b607df 673 //Per the documentation, we want to set PTX Mode when not listening. Then all we do is write data and set CE high
gume 0:163155b607df 674 //In this mode, if we can keep the FIFO buffers loaded, packets will transmit immediately (no 130us delay)
gume 0:163155b607df 675 //Otherwise we enter Standby-II mode, which is still faster than standby mode
gume 0:163155b607df 676 //Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
gume 0:163155b607df 677
gume 0:163155b607df 678 void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx) //TMRh20
gume 0:163155b607df 679 {
gume 0:163155b607df 680
gume 0:163155b607df 681 //write_payload( buf,len);
gume 0:163155b607df 682 write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
gume 0:163155b607df 683 if(startTx) {
gume 0:163155b607df 684 ce(HIGH);
gume 0:163155b607df 685 }
gume 0:163155b607df 686
gume 0:163155b607df 687 }
gume 0:163155b607df 688
gume 0:163155b607df 689 /****************************************************************************/
gume 0:163155b607df 690
gume 0:163155b607df 691 //Added the original startWrite back in so users can still use interrupts, ack payloads, etc
gume 0:163155b607df 692 //Allows the library to pass all tests
gume 0:163155b607df 693 void RF24::startWrite( const void* buf, uint8_t len, const bool multicast )
gume 0:163155b607df 694 {
gume 0:163155b607df 695
gume 0:163155b607df 696 // Send the payload
gume 0:163155b607df 697
gume 0:163155b607df 698 //write_payload( buf, len );
gume 0:163155b607df 699 write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
gume 0:163155b607df 700 ce(HIGH);
gume 0:163155b607df 701 // Maybe wait for 10 us
gume 0:163155b607df 702 // delayMicroseconds(10);
gume 0:163155b607df 703 ce(LOW);
gume 0:163155b607df 704
gume 0:163155b607df 705
gume 0:163155b607df 706 }
gume 0:163155b607df 707
gume 0:163155b607df 708 /****************************************************************************/
gume 0:163155b607df 709
gume 0:163155b607df 710 bool RF24::rxFifoFull()
gume 0:163155b607df 711 {
gume 0:163155b607df 712 return read_register(FIFO_STATUS) & _BV(RX_FULL);
gume 0:163155b607df 713 }
gume 0:163155b607df 714 /****************************************************************************/
gume 0:163155b607df 715
gume 0:163155b607df 716 bool RF24::txStandBy()
gume 0:163155b607df 717 {
gume 0:163155b607df 718
gume 0:163155b607df 719 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 720 uint32_t timeout = millis();
gume 0:163155b607df 721 #endif
gume 0:163155b607df 722 while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) {
gume 0:163155b607df 723 if( get_status() & _BV(MAX_RT)) {
gume 0:163155b607df 724 write_register(NRF_STATUS,_BV(MAX_RT) );
gume 0:163155b607df 725 ce(LOW);
gume 0:163155b607df 726 flush_tx(); //Non blocking, flush the data
gume 0:163155b607df 727 return 0;
gume 0:163155b607df 728 }
gume 0:163155b607df 729 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 730 if( millis() - timeout > 85) {
gume 0:163155b607df 731 errNotify();
gume 0:163155b607df 732 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 733 return 0;
gume 0:163155b607df 734 #endif
gume 0:163155b607df 735 }
gume 0:163155b607df 736 #endif
gume 0:163155b607df 737 }
gume 0:163155b607df 738
gume 0:163155b607df 739 ce(LOW); //Set STANDBY-I mode
gume 0:163155b607df 740 return 1;
gume 0:163155b607df 741 }
gume 0:163155b607df 742
gume 0:163155b607df 743 /****************************************************************************/
gume 0:163155b607df 744
gume 0:163155b607df 745 bool RF24::txStandBy(uint32_t timeout, bool startTx)
gume 0:163155b607df 746 {
gume 0:163155b607df 747
gume 0:163155b607df 748 if(startTx) {
gume 0:163155b607df 749 stopListening();
gume 0:163155b607df 750 ce(HIGH);
gume 0:163155b607df 751 }
gume 0:163155b607df 752 uint32_t start = mainTimer.read_ms();
gume 0:163155b607df 753
gume 0:163155b607df 754 while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) {
gume 0:163155b607df 755 if( get_status() & _BV(MAX_RT)) {
gume 0:163155b607df 756 write_register(NRF_STATUS,_BV(MAX_RT) );
gume 0:163155b607df 757 ce(LOW); //Set re-transmit
gume 0:163155b607df 758 ce(HIGH);
gume 0:163155b607df 759 if(mainTimer.read_ms() - start >= timeout) {
gume 0:163155b607df 760 ce(LOW);
gume 0:163155b607df 761 flush_tx();
gume 0:163155b607df 762 return 0;
gume 0:163155b607df 763 }
gume 0:163155b607df 764 }
gume 0:163155b607df 765 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 766 if( mainTimer.read_ms() - start > (timeout+85)) {
gume 0:163155b607df 767 errNotify();
gume 0:163155b607df 768 #if defined (FAILURE_HANDLING)
gume 0:163155b607df 769 return 0;
gume 0:163155b607df 770 #endif
gume 0:163155b607df 771 }
gume 0:163155b607df 772 #endif
gume 0:163155b607df 773 }
gume 0:163155b607df 774
gume 0:163155b607df 775 ce(LOW); //Set STANDBY-I mode
gume 0:163155b607df 776 return 1;
gume 0:163155b607df 777
gume 0:163155b607df 778 }
gume 0:163155b607df 779
gume 0:163155b607df 780 /****************************************************************************/
gume 0:163155b607df 781
gume 0:163155b607df 782 void RF24::maskIRQ(bool tx, bool fail, bool rx)
gume 0:163155b607df 783 {
gume 0:163155b607df 784
gume 0:163155b607df 785 uint8_t config = read_register(CONFIG);
gume 0:163155b607df 786 /* clear the interrupt flags */
gume 0:163155b607df 787 config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
gume 0:163155b607df 788 /* set the specified interrupt flags */
gume 0:163155b607df 789 config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
gume 0:163155b607df 790 write_register(CONFIG, config);
gume 0:163155b607df 791 }
gume 0:163155b607df 792
gume 0:163155b607df 793 /****************************************************************************/
gume 0:163155b607df 794
gume 0:163155b607df 795 uint8_t RF24::getDynamicPayloadSize(void)
gume 0:163155b607df 796 {
gume 0:163155b607df 797 uint8_t result = 0;
gume 0:163155b607df 798
gume 0:163155b607df 799 beginTransaction();
gume 0:163155b607df 800
gume 0:163155b607df 801 spi.write( R_RX_PL_WID );
gume 0:163155b607df 802 result = spi.write(0xff);
gume 0:163155b607df 803
gume 0:163155b607df 804 endTransaction();
gume 0:163155b607df 805
gume 0:163155b607df 806 return result;
gume 0:163155b607df 807 }
gume 0:163155b607df 808
gume 0:163155b607df 809 /****************************************************************************/
gume 0:163155b607df 810
gume 0:163155b607df 811 bool RF24::available(void)
gume 0:163155b607df 812 {
gume 0:163155b607df 813 return available(NULL);
gume 0:163155b607df 814 }
gume 0:163155b607df 815
gume 0:163155b607df 816 /****************************************************************************/
gume 0:163155b607df 817
gume 0:163155b607df 818 bool RF24::available(uint8_t* pipe_num)
gume 0:163155b607df 819 {
gume 0:163155b607df 820 if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )) {
gume 0:163155b607df 821
gume 0:163155b607df 822 // If the caller wants the pipe number, include that
gume 0:163155b607df 823 if ( pipe_num ) {
gume 0:163155b607df 824 uint8_t status = get_status();
gume 0:163155b607df 825 *pipe_num = ( status >> RX_P_NO ) & 0b111;
gume 0:163155b607df 826 }
gume 0:163155b607df 827 return 1;
gume 0:163155b607df 828 }
gume 0:163155b607df 829
gume 0:163155b607df 830
gume 0:163155b607df 831 return 0;
gume 0:163155b607df 832
gume 0:163155b607df 833
gume 0:163155b607df 834 }
gume 0:163155b607df 835
gume 0:163155b607df 836 /****************************************************************************/
gume 0:163155b607df 837
gume 0:163155b607df 838 void RF24::read( void* buf, uint8_t len )
gume 0:163155b607df 839 {
gume 0:163155b607df 840
gume 0:163155b607df 841 // Fetch the payload
gume 0:163155b607df 842 read_payload( buf, len );
gume 0:163155b607df 843
gume 0:163155b607df 844 //Clear the two possible interrupt flags with one command
gume 0:163155b607df 845 write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
gume 0:163155b607df 846
gume 0:163155b607df 847 }
gume 0:163155b607df 848
gume 0:163155b607df 849 /****************************************************************************/
gume 0:163155b607df 850
gume 0:163155b607df 851 void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
gume 0:163155b607df 852 {
gume 0:163155b607df 853 // Read the status & reset the status in one easy call
gume 0:163155b607df 854 // Or is that such a good idea?
gume 0:163155b607df 855 uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
gume 0:163155b607df 856
gume 0:163155b607df 857 // Report to the user what happened
gume 0:163155b607df 858 tx_ok = status & _BV(TX_DS);
gume 0:163155b607df 859 tx_fail = status & _BV(MAX_RT);
gume 0:163155b607df 860 rx_ready = status & _BV(RX_DR);
gume 0:163155b607df 861 }
gume 0:163155b607df 862
gume 0:163155b607df 863 /****************************************************************************/
gume 0:163155b607df 864
gume 0:163155b607df 865 void RF24::openWritingPipe(uint64_t value)
gume 0:163155b607df 866 {
gume 0:163155b607df 867 // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
gume 0:163155b607df 868 // expects it LSB first too, so we're good.
gume 0:163155b607df 869
gume 0:163155b607df 870 write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
gume 0:163155b607df 871 write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
gume 0:163155b607df 872
gume 0:163155b607df 873
gume 0:163155b607df 874 //const uint8_t max_payload_size = 32;
gume 0:163155b607df 875 //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
gume 0:163155b607df 876 write_register(RX_PW_P0,payload_size);
gume 0:163155b607df 877 }
gume 0:163155b607df 878
gume 0:163155b607df 879 /****************************************************************************/
gume 0:163155b607df 880 void RF24::openWritingPipe(const uint8_t *address)
gume 0:163155b607df 881 {
gume 0:163155b607df 882 // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
gume 0:163155b607df 883 // expects it LSB first too, so we're good.
gume 0:163155b607df 884
gume 0:163155b607df 885 write_register(RX_ADDR_P0,address, addr_width);
gume 0:163155b607df 886 write_register(TX_ADDR, address, addr_width);
gume 0:163155b607df 887
gume 0:163155b607df 888 //const uint8_t max_payload_size = 32;
gume 0:163155b607df 889 //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
gume 0:163155b607df 890 write_register(RX_PW_P0,payload_size);
gume 0:163155b607df 891 }
gume 0:163155b607df 892
gume 0:163155b607df 893 /****************************************************************************/
gume 0:163155b607df 894 static const uint8_t child_pipe[] PROGMEM = {
gume 0:163155b607df 895 RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
gume 0:163155b607df 896 };
gume 0:163155b607df 897 static const uint8_t child_payload_size[] PROGMEM = {
gume 0:163155b607df 898 RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
gume 0:163155b607df 899 };
gume 0:163155b607df 900
gume 0:163155b607df 901
gume 0:163155b607df 902 void RF24::openReadingPipe(uint8_t child, uint64_t address)
gume 0:163155b607df 903 {
gume 0:163155b607df 904 // If this is pipe 0, cache the address. This is needed because
gume 0:163155b607df 905 // openWritingPipe() will overwrite the pipe 0 address, so
gume 0:163155b607df 906 // startListening() will have to restore it.
gume 0:163155b607df 907 if (child == 0) {
gume 0:163155b607df 908 memcpy(pipe0_reading_address,&address,addr_width);
gume 0:163155b607df 909 }
gume 0:163155b607df 910
gume 0:163155b607df 911 if (child <= 6) {
gume 0:163155b607df 912 // For pipes 2-5, only write the LSB
gume 0:163155b607df 913 if ( child < 2 )
gume 0:163155b607df 914 write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
gume 0:163155b607df 915 else
gume 0:163155b607df 916 write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
gume 0:163155b607df 917
gume 0:163155b607df 918 write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
gume 0:163155b607df 919
gume 0:163155b607df 920 // Note it would be more efficient to set all of the bits for all open
gume 0:163155b607df 921 // pipes at once. However, I thought it would make the calling code
gume 0:163155b607df 922 // more simple to do it this way.
gume 0:163155b607df 923 write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
gume 0:163155b607df 924 }
gume 0:163155b607df 925 }
gume 0:163155b607df 926
gume 0:163155b607df 927 /****************************************************************************/
gume 0:163155b607df 928 void RF24::setAddressWidth(uint8_t a_width)
gume 0:163155b607df 929 {
gume 0:163155b607df 930
gume 0:163155b607df 931 if(a_width -= 2) {
gume 0:163155b607df 932 write_register(SETUP_AW,a_width%4);
gume 0:163155b607df 933 addr_width = (a_width%4) + 2;
gume 0:163155b607df 934 }
gume 0:163155b607df 935
gume 0:163155b607df 936 }
gume 0:163155b607df 937
gume 0:163155b607df 938 /****************************************************************************/
gume 0:163155b607df 939
gume 0:163155b607df 940 void RF24::openReadingPipe(uint8_t child, const uint8_t *address)
gume 0:163155b607df 941 {
gume 0:163155b607df 942 // If this is pipe 0, cache the address. This is needed because
gume 0:163155b607df 943 // openWritingPipe() will overwrite the pipe 0 address, so
gume 0:163155b607df 944 // startListening() will have to restore it.
gume 0:163155b607df 945 if (child == 0) {
gume 0:163155b607df 946 memcpy(pipe0_reading_address,address,addr_width);
gume 0:163155b607df 947 }
gume 0:163155b607df 948 if (child <= 6) {
gume 0:163155b607df 949 // For pipes 2-5, only write the LSB
gume 0:163155b607df 950 if ( child < 2 ) {
gume 0:163155b607df 951 write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
gume 0:163155b607df 952 } else {
gume 0:163155b607df 953 write_register(pgm_read_byte(&child_pipe[child]), address, 1);
gume 0:163155b607df 954 }
gume 0:163155b607df 955 write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
gume 0:163155b607df 956
gume 0:163155b607df 957 // Note it would be more efficient to set all of the bits for all open
gume 0:163155b607df 958 // pipes at once. However, I thought it would make the calling code
gume 0:163155b607df 959 // more simple to do it this way.
gume 0:163155b607df 960 write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
gume 0:163155b607df 961
gume 0:163155b607df 962 }
gume 0:163155b607df 963 }
gume 0:163155b607df 964
gume 0:163155b607df 965 /****************************************************************************/
gume 0:163155b607df 966
gume 0:163155b607df 967 void RF24::closeReadingPipe( uint8_t pipe )
gume 0:163155b607df 968 {
gume 0:163155b607df 969 write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
gume 0:163155b607df 970 }
gume 0:163155b607df 971
gume 0:163155b607df 972 /****************************************************************************/
gume 0:163155b607df 973
gume 0:163155b607df 974 void RF24::toggle_features(void)
gume 0:163155b607df 975 {
gume 1:8f889354678f 976 //printf_P("ACTIVATE");
gume 1:8f889354678f 977
gume 0:163155b607df 978 beginTransaction();
gume 0:163155b607df 979
gume 0:163155b607df 980 spi.write( ACTIVATE );
gume 0:163155b607df 981 spi.write( 0x73 );
gume 0:163155b607df 982
gume 0:163155b607df 983 endTransaction();
gume 0:163155b607df 984 }
gume 0:163155b607df 985
gume 0:163155b607df 986 /****************************************************************************/
gume 0:163155b607df 987
gume 0:163155b607df 988 void RF24::enableDynamicPayloads(void)
gume 0:163155b607df 989 {
gume 0:163155b607df 990 // Enable dynamic payload throughout the system
gume 0:163155b607df 991
gume 0:163155b607df 992 //toggle_features();
gume 0:163155b607df 993 write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
gume 0:163155b607df 994
gume 1:8f889354678f 995 //printf_P("FEATURE=%i\r\n",read_register(FEATURE));
gume 0:163155b607df 996
gume 0:163155b607df 997 // Enable dynamic payload on all pipes
gume 0:163155b607df 998 //
gume 0:163155b607df 999 // Not sure the use case of only having dynamic payload on certain
gume 0:163155b607df 1000 // pipes, so the library does not support it.
gume 0:163155b607df 1001 write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
gume 0:163155b607df 1002
gume 0:163155b607df 1003 dynamic_payloads_enabled = true;
gume 0:163155b607df 1004 }
gume 0:163155b607df 1005
gume 0:163155b607df 1006 /****************************************************************************/
gume 0:163155b607df 1007
gume 0:163155b607df 1008 void RF24::enableAckPayload(void)
gume 0:163155b607df 1009 {
gume 0:163155b607df 1010 //
gume 0:163155b607df 1011 // enable ack payload and dynamic payload features
gume 0:163155b607df 1012 //
gume 0:163155b607df 1013
gume 0:163155b607df 1014 //toggle_features();
gume 0:163155b607df 1015 write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
gume 0:163155b607df 1016
gume 1:8f889354678f 1017 //printf_P("FEATURE=%i\r\n",read_register(FEATURE));
gume 0:163155b607df 1018
gume 0:163155b607df 1019 //
gume 0:163155b607df 1020 // Enable dynamic payload on pipes 0 & 1
gume 0:163155b607df 1021 //
gume 0:163155b607df 1022
gume 0:163155b607df 1023 write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
gume 0:163155b607df 1024 dynamic_payloads_enabled = true;
gume 0:163155b607df 1025 }
gume 0:163155b607df 1026
gume 0:163155b607df 1027 /****************************************************************************/
gume 0:163155b607df 1028
gume 0:163155b607df 1029 void RF24::enableDynamicAck(void)
gume 0:163155b607df 1030 {
gume 0:163155b607df 1031 //
gume 0:163155b607df 1032 // enable dynamic ack features
gume 0:163155b607df 1033 //
gume 0:163155b607df 1034 //toggle_features();
gume 0:163155b607df 1035 write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) );
gume 0:163155b607df 1036
gume 1:8f889354678f 1037 //printf_P("FEATURE=%i\r\n",read_register(FEATURE));
gume 0:163155b607df 1038
gume 0:163155b607df 1039
gume 0:163155b607df 1040 }
gume 0:163155b607df 1041
gume 0:163155b607df 1042 /****************************************************************************/
gume 0:163155b607df 1043
gume 0:163155b607df 1044 void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
gume 0:163155b607df 1045 {
gume 0:163155b607df 1046 const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
gume 0:163155b607df 1047
gume 0:163155b607df 1048 const uint8_t max_payload_size = 32;
gume 0:163155b607df 1049 uint8_t data_len = rf24_min(len, max_payload_size);
gume 0:163155b607df 1050
gume 0:163155b607df 1051 beginTransaction();
gume 0:163155b607df 1052
gume 0:163155b607df 1053 spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) );
gume 0:163155b607df 1054 while ( data_len-- )
gume 0:163155b607df 1055 spi.write(*current++);
gume 0:163155b607df 1056
gume 0:163155b607df 1057 endTransaction();
gume 0:163155b607df 1058
gume 0:163155b607df 1059 }
gume 0:163155b607df 1060
gume 0:163155b607df 1061 /****************************************************************************/
gume 0:163155b607df 1062
gume 0:163155b607df 1063 bool RF24::isAckPayloadAvailable(void)
gume 0:163155b607df 1064 {
gume 0:163155b607df 1065 return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY));
gume 0:163155b607df 1066 }
gume 0:163155b607df 1067
gume 0:163155b607df 1068 /****************************************************************************/
gume 0:163155b607df 1069
gume 0:163155b607df 1070 bool RF24::isPVariant(void)
gume 0:163155b607df 1071 {
gume 0:163155b607df 1072 return p_variant ;
gume 0:163155b607df 1073 }
gume 0:163155b607df 1074
gume 0:163155b607df 1075 /****************************************************************************/
gume 0:163155b607df 1076
gume 0:163155b607df 1077 void RF24::setAutoAck(bool enable)
gume 0:163155b607df 1078 {
gume 0:163155b607df 1079 if ( enable )
gume 0:163155b607df 1080 write_register(EN_AA, 0b111111);
gume 0:163155b607df 1081 else
gume 0:163155b607df 1082 write_register(EN_AA, 0);
gume 0:163155b607df 1083 }
gume 0:163155b607df 1084
gume 0:163155b607df 1085 /****************************************************************************/
gume 0:163155b607df 1086
gume 0:163155b607df 1087 void RF24::setAutoAck( uint8_t pipe, bool enable )
gume 0:163155b607df 1088 {
gume 0:163155b607df 1089 if ( pipe <= 6 ) {
gume 0:163155b607df 1090 uint8_t en_aa = read_register( EN_AA ) ;
gume 0:163155b607df 1091 if( enable ) {
gume 0:163155b607df 1092 en_aa |= _BV(pipe) ;
gume 0:163155b607df 1093 } else {
gume 0:163155b607df 1094 en_aa &= ~_BV(pipe) ;
gume 0:163155b607df 1095 }
gume 0:163155b607df 1096 write_register( EN_AA, en_aa ) ;
gume 0:163155b607df 1097 }
gume 0:163155b607df 1098 }
gume 0:163155b607df 1099
gume 0:163155b607df 1100 /****************************************************************************/
gume 0:163155b607df 1101
gume 0:163155b607df 1102 bool RF24::testCarrier(void)
gume 0:163155b607df 1103 {
gume 0:163155b607df 1104 return ( read_register(CD) & 1 );
gume 0:163155b607df 1105 }
gume 0:163155b607df 1106
gume 0:163155b607df 1107 /****************************************************************************/
gume 0:163155b607df 1108
gume 0:163155b607df 1109 bool RF24::testRPD(void)
gume 0:163155b607df 1110 {
gume 0:163155b607df 1111 return ( read_register(RPD) & 1 ) ;
gume 0:163155b607df 1112 }
gume 0:163155b607df 1113
gume 0:163155b607df 1114 /****************************************************************************/
gume 0:163155b607df 1115
gume 0:163155b607df 1116 void RF24::setPALevel(uint8_t level)
gume 0:163155b607df 1117 {
gume 0:163155b607df 1118
gume 0:163155b607df 1119 uint8_t setup = read_register(RF_SETUP) & 0b11111000;
gume 0:163155b607df 1120
gume 0:163155b607df 1121 if(level > 3) { // If invalid level, go to max PA
gume 0:163155b607df 1122 level = (RF24_PA_MAX << 1) + 1; // +1 to support the SI24R1 chip extra bit
gume 0:163155b607df 1123 } else {
gume 0:163155b607df 1124 level = (level << 1) + 1; // Else set level as requested
gume 0:163155b607df 1125 }
gume 0:163155b607df 1126
gume 0:163155b607df 1127
gume 0:163155b607df 1128 write_register( RF_SETUP, setup |= level ) ; // Write it to the chip
gume 0:163155b607df 1129 }
gume 0:163155b607df 1130
gume 0:163155b607df 1131 /****************************************************************************/
gume 0:163155b607df 1132
gume 0:163155b607df 1133 uint8_t RF24::getPALevel(void)
gume 0:163155b607df 1134 {
gume 0:163155b607df 1135
gume 0:163155b607df 1136 return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ;
gume 0:163155b607df 1137 }
gume 0:163155b607df 1138
gume 0:163155b607df 1139 /****************************************************************************/
gume 0:163155b607df 1140
gume 0:163155b607df 1141 bool RF24::setDataRate(rf24_datarate_e speed)
gume 0:163155b607df 1142 {
gume 0:163155b607df 1143 bool result = false;
gume 0:163155b607df 1144 uint8_t setup = read_register(RF_SETUP) ;
gume 0:163155b607df 1145
gume 0:163155b607df 1146 // HIGH and LOW '00' is 1Mbs - our default
gume 0:163155b607df 1147 setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
gume 0:163155b607df 1148
gume 0:163155b607df 1149 txRxDelay=250;
gume 0:163155b607df 1150
gume 0:163155b607df 1151 if( speed == RF24_250KBPS ) {
gume 0:163155b607df 1152 // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
gume 0:163155b607df 1153 // Making it '10'.
gume 0:163155b607df 1154 setup |= _BV( RF_DR_LOW ) ;
gume 0:163155b607df 1155 txRxDelay=450;
gume 0:163155b607df 1156 } else {
gume 0:163155b607df 1157 // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
gume 0:163155b607df 1158 // Making it '01'
gume 0:163155b607df 1159 if ( speed == RF24_2MBPS ) {
gume 0:163155b607df 1160 setup |= _BV(RF_DR_HIGH);
gume 0:163155b607df 1161 txRxDelay=190;
gume 0:163155b607df 1162 }
gume 0:163155b607df 1163 }
gume 0:163155b607df 1164 write_register(RF_SETUP,setup);
gume 0:163155b607df 1165
gume 0:163155b607df 1166 // Verify our result
gume 0:163155b607df 1167 if ( read_register(RF_SETUP) == setup ) {
gume 0:163155b607df 1168 result = true;
gume 0:163155b607df 1169 }
gume 0:163155b607df 1170 return result;
gume 0:163155b607df 1171 }
gume 0:163155b607df 1172
gume 0:163155b607df 1173 /****************************************************************************/
gume 0:163155b607df 1174
gume 0:163155b607df 1175 rf24_datarate_e RF24::getDataRate( void )
gume 0:163155b607df 1176 {
gume 0:163155b607df 1177 rf24_datarate_e result ;
gume 0:163155b607df 1178 uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
gume 0:163155b607df 1179
gume 0:163155b607df 1180 // switch uses RAM (evil!)
gume 0:163155b607df 1181 // Order matters in our case below
gume 0:163155b607df 1182 if ( dr == _BV(RF_DR_LOW) ) {
gume 0:163155b607df 1183 // '10' = 250KBPS
gume 0:163155b607df 1184 result = RF24_250KBPS ;
gume 0:163155b607df 1185 } else if ( dr == _BV(RF_DR_HIGH) ) {
gume 0:163155b607df 1186 // '01' = 2MBPS
gume 0:163155b607df 1187 result = RF24_2MBPS ;
gume 0:163155b607df 1188 } else {
gume 0:163155b607df 1189 // '00' = 1MBPS
gume 0:163155b607df 1190 result = RF24_1MBPS ;
gume 0:163155b607df 1191 }
gume 0:163155b607df 1192 return result ;
gume 0:163155b607df 1193 }
gume 0:163155b607df 1194
gume 0:163155b607df 1195 /****************************************************************************/
gume 0:163155b607df 1196
gume 0:163155b607df 1197 void RF24::setCRCLength(rf24_crclength_e length)
gume 0:163155b607df 1198 {
gume 0:163155b607df 1199 uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
gume 0:163155b607df 1200
gume 0:163155b607df 1201 // switch uses RAM (evil!)
gume 0:163155b607df 1202 if ( length == RF24_CRC_DISABLED ) {
gume 0:163155b607df 1203 // Do nothing, we turned it off above.
gume 0:163155b607df 1204 } else if ( length == RF24_CRC_8 ) {
gume 0:163155b607df 1205 config |= _BV(EN_CRC);
gume 0:163155b607df 1206 } else {
gume 0:163155b607df 1207 config |= _BV(EN_CRC);
gume 0:163155b607df 1208 config |= _BV( CRCO );
gume 0:163155b607df 1209 }
gume 0:163155b607df 1210 write_register( CONFIG, config ) ;
gume 0:163155b607df 1211 }
gume 0:163155b607df 1212
gume 0:163155b607df 1213 /****************************************************************************/
gume 0:163155b607df 1214
gume 0:163155b607df 1215 rf24_crclength_e RF24::getCRCLength(void)
gume 0:163155b607df 1216 {
gume 0:163155b607df 1217 rf24_crclength_e result = RF24_CRC_DISABLED;
gume 0:163155b607df 1218
gume 0:163155b607df 1219 uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
gume 0:163155b607df 1220 uint8_t AA = read_register(EN_AA);
gume 0:163155b607df 1221
gume 0:163155b607df 1222 if ( config & _BV(EN_CRC ) || AA) {
gume 0:163155b607df 1223 if ( config & _BV(CRCO) )
gume 0:163155b607df 1224 result = RF24_CRC_16;
gume 0:163155b607df 1225 else
gume 0:163155b607df 1226 result = RF24_CRC_8;
gume 0:163155b607df 1227 }
gume 0:163155b607df 1228
gume 0:163155b607df 1229 return result;
gume 0:163155b607df 1230 }
gume 0:163155b607df 1231
gume 0:163155b607df 1232 /****************************************************************************/
gume 0:163155b607df 1233
gume 0:163155b607df 1234 void RF24::disableCRC( void )
gume 0:163155b607df 1235 {
gume 0:163155b607df 1236 uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ;
gume 0:163155b607df 1237 write_register( CONFIG, disable ) ;
gume 0:163155b607df 1238 }
gume 0:163155b607df 1239
gume 0:163155b607df 1240 /****************************************************************************/
gume 0:163155b607df 1241 void RF24::setRetries(uint8_t delay, uint8_t count)
gume 0:163155b607df 1242 {
gume 0:163155b607df 1243 write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
gume 0:163155b607df 1244 }