Class of MPU9250
Dependencies: AHRS_fillter mbed
Fork of MPU9250AHRS by
Revision 9:a9b0f8540cc6, committed 2016-01-20
- Comitter:
- soulx
- Date:
- Wed Jan 20 15:14:12 2016 +0000
- Parent:
- 8:928673148b55
- Commit message:
- edit lib
Changed in this revision
diff -r 928673148b55 -r a9b0f8540cc6 AHRS.cpp --- a/AHRS.cpp Wed Jan 20 02:42:22 2016 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,530 +0,0 @@ -#include "AHRS.h" - -#define Kp 5.1f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral -#define Ki 1.0f - -/*AHRS::AHRS(PinName sda, PinName scl, PinName tx, PinName rx, int address):MPU9250(sda,scl,tx,rx,address) -{ - for(int i=0; i<=3; i++) { - eInt[i] = 0; - q[i] = 0; // vector to hold quaternion - } - - q[0] = 1.0f; - - PI = 3.14159265358979323846f; - GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 - beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta - GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) - zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value -}*/ - -/*void AHRS::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat) -{ - float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability - float norm; - float hx, hy, _2bx, _2bz; - float s1, s2, s3, s4; - float qDot1, qDot2, qDot3, qDot4; - - // Auxiliary variables to avoid repeated arithmetic - float _2q1mx; - float _2q1my; - float _2q1mz; - float _2q2mx; - float _4bx; - float _4bz; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; - float _2q1q3 = 2.0f * q1 * q3; - float _2q3q4 = 2.0f * q3 * q4; - float q1q1 = q1 * q1; - float q1q2 = q1 * q2; - float q1q3 = q1 * q3; - float q1q4 = q1 * q4; - float q2q2 = q2 * q2; - float q2q3 = q2 * q3; - float q2q4 = q2 * q4; - float q3q3 = q3 * q3; - float q3q4 = q3 * q4; - float q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - _2q1mx = 2.0f * q1 * mx; - _2q1my = 2.0f * q1 * my; - _2q1mz = 2.0f * q1 * mz; - _2q2mx = 2.0f * q2 * mx; - hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; - hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; - _2bx = sqrt(hx * hx + hy * hy); - _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; - _4bx = 2.0f * _2bx; - _4bz = 2.0f * _2bz; - - // Gradient decent algorithm corrective step - s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude - norm = 1.0f/norm; - s1 *= norm; - s2 *= norm; - s3 *= norm; - s4 *= norm; - - // Compute rate of change of quaternion - qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; - qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; - qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; - qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; - - // Integrate to yield quaternion - q1 += qDot1 * deltat; - q2 += qDot2 * deltat; - q3 += qDot3 * deltat; - q4 += qDot4 * deltat; - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - - float Xh = mx*cos(pitch)+my*sin(roll)*sin(pitch)-mz*cos(roll)*sin(pitch); - float Yh = my*cos(roll)+mz*sin(roll); - - float yawmag = atan2(Yh,Xh)+PI; - //////test.printf("Xh= %f Yh= %f ",Xh,Yh); - //////test.printf("Yaw[mag]= %f\n\r",yawmag*180.0f/PI); - //test.printf(",%f",yawmag*180.0f/PI); - - - - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw += 180.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; - -} - - - -// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and -// measured ones. -void AHRS::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz, float deltat) -{ - q1 = q[0]; - q2 = q[1]; - q3 = q[2]; - q4 = q[3]; // short name local variable for readability - - // Auxiliary variables to avoid repeated arithmetic - q1q1 = q1 * q1; - q1q2 = q1 * q2; - q1q3 = q1 * q3; - q1q4 = q1 * q4; - q2q2 = q2 * q2; - q2q3 = q2 * q3; - q2q4 = q2 * q4; - q3q3 = q3 * q3; - q3q4 = q3 * q4; - q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f / norm; // use reciprocal for division - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f / norm; // use reciprocal for division - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); - hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); - bx = sqrt((hx * hx) + (hy * hy)); - bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); - - // Estimated direction of gravity and magnetic field - vx = 2.0f * (q2q4 - q1q3); - vy = 2.0f * (q1q2 + q3q4); - vz = q1q1 - q2q2 - q3q3 + q4q4; - wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); - wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); - wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); - - // Error is cross product between estimated direction and measured direction of gravity - ex = (ay * vz - az * vy) + (my * wz - mz * wy); - ey = (az * vx - ax * vz) + (mz * wx - mx * wz); - ez = (ax * vy - ay * vx) + (mx * wy - my * wx); - if (Ki > 0.0f) { - eInt[0] += ex; // accumulate integral error - eInt[1] += ey; - eInt[2] += ez; - } else { - eInt[0] = 0.0f; // prevent integral wind up - eInt[1] = 0.0f; - eInt[2] = 0.0f; - } - - // Apply feedback terms - gx = gx + Kp * ex + Ki * eInt[0]; - gy = gy + Kp * ey + Ki * eInt[1]; - gz = gz + Kp * ez + Ki * eInt[2]; - - // Integrate rate of change of quaternion - pa = q2; - pb = q3; - pc = q4; - q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); - q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); - q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); - q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); - - // Normalise quaternion - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); - norm = 1.0f / norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - - Xh = mx*cos(pitch)+my*sin(roll)*sin(pitch)-mz*cos(roll)*sin(pitch); - Yh = my*cos(roll)+mz*sin(roll); - - yawmag = atan2(Yh,Xh)+PI; - ////////////test.printf("Xh= %f Yh= %f ",Xh,Yh); - //////test.printf("Yaw[mag]= %f\n\r",yawmag*180.0f/PI); - //test.printf(",%f",yawmag*180.0f/PI); - - - - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw += 180.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; -}*/ - -void AHRS::MadgwickQuaternionUpdate() -{ - float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability - float norm; - float hx, hy, _2bx, _2bz; - float s1, s2, s3, s4; - float qDot1, qDot2, qDot3, qDot4; - - // Auxiliary variables to avoid repeated arithmetic - float _2q1mx; - float _2q1my; - float _2q1mz; - float _2q2mx; - float _4bx; - float _4bz; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; - float _2q1q3 = 2.0f * q1 * q3; - float _2q3q4 = 2.0f * q3 * q4; - float q1q1 = q1 * q1; - float q1q2 = q1 * q2; - float q1q3 = q1 * q3; - float q1q4 = q1 * q4; - float q2q2 = q2 * q2; - float q2q3 = q2 * q3; - float q2q4 = q2 * q4; - float q3q3 = q3 * q3; - float q3q4 = q3 * q4; - float q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - _2q1mx = 2.0f * q1 * mx; - _2q1my = 2.0f * q1 * my; - _2q1mz = 2.0f * q1 * mz; - _2q2mx = 2.0f * q2 * mx; - hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; - hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; - _2bx = sqrt(hx * hx + hy * hy); - _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; - _4bx = 2.0f * _2bx; - _4bz = 2.0f * _2bz; - - // Gradient decent algorithm corrective step - s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude - norm = 1.0f/norm; - s1 *= norm; - s2 *= norm; - s3 *= norm; - s4 *= norm; - - // Compute rate of change of quaternion - qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; - qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; - qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; - qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; - - // Integrate to yield quaternion - q1 += qDot1 * deltat; - q2 += qDot2 * deltat; - q3 += qDot3 * deltat; - q4 += qDot4 * deltat; - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - -} - - - -// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and -// measured ones. -void AHRS::MahonyQuaternionUpdate() -{ - q1 = q[0]; - q2 = q[1]; - q3 = q[2]; - q4 = q[3]; // short name local variable for readability - - // Auxiliary variables to avoid repeated arithmetic - q1q1 = q1 * q1; - q1q2 = q1 * q2; - q1q3 = q1 * q3; - q1q4 = q1 * q4; - q2q2 = q2 * q2; - q2q3 = q2 * q3; - q2q4 = q2 * q4; - q3q3 = q3 * q3; - q3q4 = q3 * q4; - q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f / norm; // use reciprocal for division - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f / norm; // use reciprocal for division - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); - hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); - bx = sqrt((hx * hx) + (hy * hy)); - bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); - - // Estimated direction of gravity and magnetic field - vx = 2.0f * (q2q4 - q1q3); - vy = 2.0f * (q1q2 + q3q4); - vz = q1q1 - q2q2 - q3q3 + q4q4; - wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); - wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); - wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); - - // Error is cross product between estimated direction and measured direction of gravity - ex = (ay * vz - az * vy) + (my * wz - mz * wy); - ey = (az * vx - ax * vz) + (mz * wx - mx * wz); - ez = (ax * vy - ay * vx) + (mx * wy - my * wx); - if (Ki > 0.0f) { - eInt[0] += ex; // accumulate integral error - eInt[1] += ey; - eInt[2] += ez; - } else { - eInt[0] = 0.0f; // prevent integral wind up - eInt[1] = 0.0f; - eInt[2] = 0.0f; - } - - // Apply feedback terms - gx = gx + Kp * ex + Ki * eInt[0]; - gy = gy + Kp * ey + Ki * eInt[1]; - gz = gz + Kp * ez + Ki * eInt[2]; - - // Integrate rate of change of quaternion - pa = q2; - pb = q3; - pc = q4; - q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); - q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); - q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); - q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); - - // Normalise quaternion - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); - norm = 1.0f / norm; - q[0] = q1 * norm; - q[1] = q2 * norm; - q[2] = q3 * norm; - q[3] = q4 * norm; - -} - -void AHRS::TimeStart() -{ - t.start(); -} - -void AHRS::TimeCal() -{ - Now = t.read_us(); - deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update - lastUpdate = Now; - - sum += deltat; - sumCount++; -} - -void AHRS::Run() -{ - ReadRawAccGyroMag(); - TimeCal(); - MadgwickQuaternionUpdate(); - - delt_t = t.read_ms() - count; - if (delt_t > 500) { // update LCD once per half-second independent of read rate - - /*pc2.printf("ax = %f", 1000*ax); - pc2.printf(" ay = %f", 1000*ay); - pc2.printf(" az = %f mg\n\r", 1000*az); - - pc2.printf("gx = %f", gx); - pc2.printf(" gy = %f", gy); - pc2.printf(" gz = %f deg/s\n\r", gz); - - pc2.printf("mx = %f", mx); - pc2.printf(" my = %f", my); - pc2.printf(" mz = %f mG\n\r", mz);*/ - - - //pc2.printf("%f,%f,%f",mx,my,mz); - - whoami = readByte(AK8963_ADDRESS, AK8963_ST2); // Read WHO_AM_I register for MPU-9250 - // pc2.printf("I AM 0x%x\n\r", whoami); pc2.printf("I SHOULD BE 0x10\n\r"); - if(whoami == 0x14) { - printf("I AM 0x%x\n\r", whoami); - while(1); - } - - - readTempData(); - temperature = ((float) temperature) / 333.87f + 21.0f; // Temperature in degrees Centigrade - //pc2.printf(" temperature = %f C\n\r", temperature); - - // pc2.printf("q0 = %f\n\r", q[0]); - // pc2.printf("q1 = %f\n\r", q[1]); - // pc2.printf("q2 = %f\n\r", q[2]); - // pc2.printf("q3 = %f\n\r", q[3]); - - // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. - // In this coordinate system, the positive z-axis is down toward Earth. - // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. - // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. - // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. - // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. - // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be - // applied in the correct order which for this configuration is yaw, pitch, and then roll. - // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. - yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); - pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); - roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); - - Xh = mx*cos(pitch)+my*sin(roll)*sin(pitch)-mz*cos(roll)*sin(pitch); - Yh = my*cos(roll)+mz*sin(roll); - - yawmag = atan2(Yh,Xh)+PI; - //pc2.printf("Xh= %f Yh= %f ",Xh,Yh); - //pc2.printf("Yaw[mag]= %f\n\r",yawmag*180.0f/PI); - //pc2.printf(",%f",yawmag*180.0f/PI); - - - - pitch *= 180.0f / PI; - yaw *= 180.0f / PI; - yaw += 180.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 - roll *= 180.0f / PI; - - //pc2.printf(",%f,%f,%f\n",roll,pitch,yaw); - //pc2.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); - //pc2.printf("average rate = %f\n\r", (float) sumCount/sum); - - myled= !myled; - count = t.read_ms(); - - if(count > 1<<21) { - t.start(); // start the timer over again if ~30 minutes has passed - count = 0; - deltat= 0; - lastUpdate = t.read_us(); - } - sum = 0; - sumCount = 0; - } -} - -void AHRS::PrintRollPitchYaw() -{ - pc2.printf("roll : %f, pitch : %f, yaw : %f\n",roll,pitch,yaw); -} \ No newline at end of file
diff -r 928673148b55 -r a9b0f8540cc6 AHRS.h --- a/AHRS.h Wed Jan 20 02:42:22 2016 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,117 +0,0 @@ -#ifndef _AHRS_ -#define _AHRS_ - -#include "MPU9250.h" - -// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" -// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) -// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute -// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. -// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms -// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! - -class AHRS:public MPU9250 -{ -private: - float roll, pitch, yaw; - float q[4]; // vector to hold quaternion - float eInt[3]; // vector to hold integral error for Mahony method - - // parameters for 6 DoF sensor fusion calculations - float PI; - float GyroMeasError; // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 - float GyroMeasDrift; // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) - float beta; // compute beta - float zeta; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value - - float norm; - float hx, hy, bx, bz; - float vx, vy, vz, wx, wy, wz; - float ex, ey, ez; - float pa, pb, pc; - - float q1, q2, q3, q4; - - // Auxiliary variables to avoid repeated arithmetic - float q1q1; - float q1q2; - float q1q3; - float q1q4; - float q2q2; - float q2q3; - float q2q4; - float q3q3; - float q3q4; - float q4q4; - - float Xh; - float Yh; - float yawmag; - - float deltat; - float delt_t; - float Now; - float sum; - float firstUpdate; - float lastUpdate; - uint32_t sumCount; - int count; - //int16_t tempCount; - - -public: - //MPU9250 imu; - //Serial test; - Timer t; - Serial pc2; - AHRS(PinName sda, PinName scl, PinName tx, PinName rx, int address) : MPU9250(sda,scl,tx,rx,address),pc2(tx,rx) { - for(int i=0; i<=3; i++) { - eInt[i] = 0; - q[i] = 0; // vector to hold quaternion - } - - q[0] = 1.0f; - - PI = 3.14159265358979323846f; - GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 - beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta - GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) - zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value - - //Time - sum = 0; - sumCount = 0; - count = 0; - - delt_t = 0; - lastUpdate = 0; - firstUpdate = 0; - Now = 0; - }; - //void MadgwickQuaternionUpdate(float , float , float , float , float , float , float , float , float , float); - //void MahonyQuaternionUpdate(float , float , float , float , float , float , float , float , float , float); - - void MadgwickQuaternionUpdate(); - void MahonyQuaternionUpdate(); - - float getRoll() { - return roll; - } - float getPitch() { - return pitch; - } - float getYaw() { - return yaw; - } - void PrintRollPitchYaw(); - - void TimeStart(); - void TimeRead() { - t.read_us(); - }; - void TimeCal(); - - void Run(); - -}; -#endif \ No newline at end of file
diff -r 928673148b55 -r a9b0f8540cc6 AHRS_fillter.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/AHRS_fillter.lib Wed Jan 20 15:14:12 2016 +0000 @@ -0,0 +1,1 @@ +https://developer.mbed.org/teams/BEaR-lab/code/AHRS_fillter/#054bfc57f0f9
diff -r 928673148b55 -r a9b0f8540cc6 MPU9250.cpp --- a/MPU9250.cpp Wed Jan 20 02:42:22 2016 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,699 +0,0 @@ -#include "MPU9250.h" - - -MPU9250::MPU9250(PinName sda, PinName scl, PinName tx, PinName rx, int address) : i2c(sda, scl), pc(tx,rx) -{ - if(address == 0) - MPU9250_ADDRESS = MPU9250_ADDRESS_68; - else if(address == 1) MPU9250_ADDRESS = MPU9250_ADDRESS_69; - else { - printf("Wrong Address\n"); - while(1); - } - - i2c.frequency(400000); - - for(int i=0; i<=3; i++) { - magCalibration[i] = 0; - magbias[i] = 0; - gyroBias[i] = 0; - accelBias[i] = 0; - } - Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR -} - -void MPU9250::Start() -{ - whoami = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 - pc.printf("I AM 0x%x\n\r", whoami); - pc.printf("I SHOULD BE 0x71\n\r"); - - if (whoami == 0x71) { // WHO_AM_I should always be 0x68 - pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); - pc.printf("MPU9250 is online...\n\r"); - wait(1); - - resetMPU9250(); // Reset registers to default in preparation for device calibration - MPU9250SelfTest(); // Start by performing self test and reporting values - /*pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); - pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); - pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); - pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); - pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); - pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);*/ - calibrateMPU9250(); // Calibrate gyro and accelerometers, load biases in bias registers - /*pc.printf("x gyro bias = %f\n\r", gyroBias[0]); - pc.printf("y gyro bias = %f\n\r", gyroBias[1]); - pc.printf("z gyro bias = %f\n\r", gyroBias[2]); - pc.printf("x accel bias = %f\n\r", accelBias[0]); - pc.printf("y accel bias = %f\n\r", accelBias[1]); - pc.printf("z accel bias = %f\n\r", accelBias[2]);*/ - wait(2); - initMPU9250(); - pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature - initAK8963(); - pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer - - whoami = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for MPU-9250 - pc.printf("I AM 0x%x\n\r", whoami); - pc.printf("I SHOULD BE 0x48\n\r"); - if(whoami != 0x48) { - while(1); - } - /*pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); - pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); - if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); - if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); - if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); - if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");*/ - wait(1); - } else { - pc.printf("Could not connect to MPU9250: \n\r"); - pc.printf("%#x \n", whoami); - - while(1) ; // Loop forever if communication doesn't happen - } - - - getAres(); // Get accelerometer sensitivity - getGres(); // Get gyro sensitivity - getMres(); // Get magnetometer sensitivity - /*pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); - pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); - pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);*/ - - MagCal(); -} - -void MPU9250::ReadRawAccGyroMag() -{ - // If intPin goes high, all data registers have new data - if(readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt - - readAccelData(); // Read the x/y/z adc values - AccelXYZCal(); - // Now we'll calculate the accleration value into actual g's - /*ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2];*/ - - readGyroData(); // Read the x/y/z adc values - GyroXYZCal(); - // Calculate the gyro value into actual degrees per second - /*gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2];*/ - - readMagData(); // Read the x/y/z adc values - MagXYZCal(); - /*mx = ((float)magCount[0]-xmin)*magCalibration[0] + magbias[0]; // get actual magnetometer value, this depends on scale being set - my = ((float)magCount[1]-ymin)*magCalibration[1] + magbias[1]; - mz = ((float)magCount[2]-zmin)*magCalibration[2] + magbias[2];*/ - } -} - -void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) -{ - char data_write[2]; - data_write[0] = subAddress; - data_write[1] = data; - i2c.write(address, data_write, 2, 0); -} - -char MPU9250::readByte(uint8_t address, uint8_t subAddress) -{ - char data[1]; // `data` will store the register data - char data_write[1]; - data_write[0] = subAddress; - i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, 1, 0); - return data[0]; -} - -void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) -{ - char data[14]; - char data_write[1]; - data_write[0] = subAddress; - i2c.write(address, data_write, 1, 1); // no stop - i2c.read(address, data, count, 0); - for(int ii = 0; ii < count; ii++) { - dest[ii] = data[ii]; - } -} - - -void MPU9250::setMres() -{ - getMres(); - switch (Mscale) { - // Possible magnetometer scales (and their register bit settings) are: - // 14 bit resolution (0) and 16 bit resolution (1) - case MFS_14BITS: - mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss - break; - case MFS_16BITS: - mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss - break; - } -} - - -void MPU9250::setGres() -{ - getGres(); - switch (Gscale) { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case GFS_250DPS: - gRes = 250.0/32768.0; - break; - case GFS_500DPS: - gRes = 500.0/32768.0; - break; - case GFS_1000DPS: - gRes = 1000.0/32768.0; - break; - case GFS_2000DPS: - gRes = 2000.0/32768.0; - break; - } -} - -void MPU9250::setAres() -{ - getAres(); - switch (Ascale) { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - aRes = 2.0/32768.0; - break; - case AFS_4G: - aRes = 4.0/32768.0; - break; - case AFS_8G: - aRes = 8.0/32768.0; - break; - case AFS_16G: - aRes = 16.0/32768.0; - break; - } -} - -void MPU9250::getMres() -{ - Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution -} - - -void MPU9250::getGres() -{ - Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS -} - -void MPU9250::getAres() -{ - Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G -} - -void MPU9250::MagCal() -{ - printf("START scan mag\n\r\n\r\n\r"); - - //Assign random value before calibrate - /*xmax = -4914.0f; - xmin = 4914.0f; - - ymax = -4914.0; - ymin = 4914.0f; - - zmax = -4914.0; - zmin = 4914.0f; - - change=false; - - while(1) { - readMagData(magCount); - - if(magCount[0]<xmin) { - xmin = magCount[0]; - change = true; - } - if(magCount[0]>xmax) { - xmax = magCount[0]; - change = true; - } - - if(magCount[1]<ymin) { - ymin = magCount[1]; - change = true; - } - if(magCount[1]>ymax) { - ymax = magCount[1]; - change = true; - } - - - if(magCount[2]<zmin) { - zmin = magCount[2]; - change = true; - } - if(magCount[2]>zmax) { - zmax = magCount[2]; - change = true; - } - - if(change==true) { - printf("Mx Max= %f Min= %f\n\r",xmax,xmin); - printf("My Max= %f Min= %f\n\r",ymax,ymin); - printf("Mz Max= %f Min= %f\n\r",zmax,zmin); - change=false; - }*/ - - //Out of Calibration loop - /*if(button==1) { - while(button==1); - break; - }*/ - //} - - - xmax = 188.000000; - xmin = -316.000000; - ymax = 485.000000; - ymin = -26.000000; - zmax = 165.000000; - xmin = -230.000000; - - magbias[0] = -1.0; - magbias[1] = -1.0; - magbias[2] = -1.0; - - magCalibration[0] = 2.0f / (xmax -xmin); - magCalibration[1] = 2.0f / (ymax -ymin); - magCalibration[2] = 2.0f / (zmax -zmin); - - printf("mag[0] %f",magbias[0]); - printf("mag[1] %f",magbias[1]); - printf("mag[2] %f\n\r",magbias[2]); -} - -void MPU9250::AccelXYZCal() -{ - ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set - ay = (float)accelCount[1]*aRes - accelBias[1]; - az = (float)accelCount[2]*aRes - accelBias[2]; -} - -void MPU9250::GyroXYZCal() -{ - gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set - gy = (float)gyroCount[1]*gRes - gyroBias[1]; - gz = (float)gyroCount[2]*gRes - gyroBias[2]; -} - -void MPU9250::MagXYZCal() -{ - mx = ((float)magCount[0]-xmin)*magCalibration[0] + magbias[0]; // get actual magnetometer value, this depends on scale being set - my = ((float)magCount[1]-ymin)*magCalibration[1] + magbias[1]; - mz = ((float)magCount[2]-zmin)*magCalibration[2] + magbias[2]; -} - - -void MPU9250::readAccelData() -{ - float destination[3] = {0,0,0}; - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - - for(int i=0; i<=2; i++) - accelCount[i] = (float)destination[i]; -} - -void MPU9250::readGyroData() -{ - float destination[3] = {0,0,0}; - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - - for(int i=0; i<=2; i++) - gyroCount[i] = (float)destination[i]; -} - -void MPU9250::readMagData() -{ - float destination[3] = {0,0,0}; - uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition - if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set - readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array - uint8_t c = rawData[6]; // End data read by reading ST2 register - if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data - destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian - destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; - } - } - - for(int i=0; i<=2; i++) - magCount[i] = (float)destination[i]; -} - -void MPU9250::readTempData() -{ - int16_t destination; - uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array - destination = (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value - destination = ((float) destination) / 333.87f + 21.0f; - temperature = destination; -} - - -void MPU9250::resetMPU9250() -{ - // reset device - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); -} - -void MPU9250::initAK8963() -{ - float destination[3] = {0,0,0}; - // First extract the factory calibration for each magnetometer axis - uint8_t rawData[3]; // x/y/z gyro calibration data stored here - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer - wait(0.01); - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode - wait(0.01); - readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values - destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. - destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; - destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer - wait(0.01); - // Configure the magnetometer for continuous read and highest resolution - // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, - // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates - writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR - wait(0.01); - - for(int i=0; i<=2; i++) - magCalibration[i] = destination[i]; -} - - -void MPU9250::initMPU9250() -{ -// Initialize MPU9250 device -// wake up device - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt - -// get stable time source - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - -// Configure Gyro and Accelerometer -// Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; -// DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both -// Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate - writeByte(MPU9250_ADDRESS, CONFIG, 0x03); - -// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above - -// Set gyroscope full scale range -// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 - uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro - -// Set accelerometer configuration - c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer - -// Set accelerometer sample rate configuration -// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for -// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz - c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz - -// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, -// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting - - // Configure Interrupts and Bypass Enable - // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips - // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); - writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt -} - -// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average -// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. -void MPU9250::calibrateMPU9250() -{ - uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data - uint16_t ii, packet_count, fifo_count; - int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; - -// reset device, reset all registers, clear gyro and accelerometer bias registers - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - wait(0.1); - -// get stable time source -// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); - writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); - wait(0.2); - -// Configure device for bias calculation - writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source - writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP - wait(0.015); - -// Configure MPU9250 gyro and accelerometer for bias calculation - writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - - uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec - uint16_t accelsensitivity = 16384; // = 16384 LSB/g - -// Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) - wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes - -// At end of sample accumulation, turn off FIFO sensor read - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO - readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count - fifo_count = ((uint16_t)data[0] << 8) | data[1]; - packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging - - for (ii = 0; ii < packet_count; ii++) { - int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; - readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging - accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO - accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; - accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; - gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; - gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; - gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; - - accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases - accel_bias[1] += (int32_t) accel_temp[1]; - accel_bias[2] += (int32_t) accel_temp[2]; - gyro_bias[0] += (int32_t) gyro_temp[0]; - gyro_bias[1] += (int32_t) gyro_temp[1]; - gyro_bias[2] += (int32_t) gyro_temp[2]; - - } - accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases - accel_bias[1] /= (int32_t) packet_count; - accel_bias[2] /= (int32_t) packet_count; - gyro_bias[0] /= (int32_t) packet_count; - gyro_bias[1] /= (int32_t) packet_count; - gyro_bias[2] /= (int32_t) packet_count; - - if(accel_bias[2] > 0L) { - accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation - } else { - accel_bias[2] += (int32_t) accelsensitivity; - } - -// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1]/4) & 0xFF; - data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2]/4) & 0xFF; - -/// Push gyro biases to hardware registers - /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); - writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); - writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); - writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); - writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); - writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); - */ - gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction - gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity; - gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity; - -// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain -// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold -// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature -// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that -// the accelerometer biases calculated above must be divided by 8. - - int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases - readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values - accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); - accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); - accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; - - uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers - uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - - for(ii = 0; ii < 3; ii++) { - if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit - } - - // Construct total accelerometer bias, including calculated average accelerometer bias from above - accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) - accel_bias_reg[1] -= (accel_bias[1]/8); - accel_bias_reg[2] -= (accel_bias[2]/8); - - data[0] = (accel_bias_reg[0] >> 8) & 0xFF; - data[1] = (accel_bias_reg[0]) & 0xFF; - data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[2] = (accel_bias_reg[1] >> 8) & 0xFF; - data[3] = (accel_bias_reg[1]) & 0xFF; - data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[4] = (accel_bias_reg[2] >> 8) & 0xFF; - data[5] = (accel_bias_reg[2]) & 0xFF; - data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers - -// Apparently this is not working for the acceleration biases in the MPU-9250 -// Are we handling the temperature correction bit properly? -// Push accelerometer biases to hardware registers - /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); - writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); - writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); - writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); - writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); - writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); - */ -// Output scaled accelerometer biases for manual subtraction in the main program - accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity; - accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity; - accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity; -} - - -// Accelerometer and gyroscope self test; check calibration wrt factory settings -void MPU9250::MPU9250SelfTest() // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass -{ - //float destination[6] = {0,0,0,0,0,0}; - uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; - uint8_t selfTest[6]; - int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; - float factoryTrim[6]; - uint8_t FS = 0; - - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz - writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g - - for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer - - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - - readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - } - - for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings - aAvg[ii] /= 200; - gAvg[ii] /= 200; - } - -// Configure the accelerometer for self-test - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s - //delay(25); // Delay a while to let the device stabilize - - for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer - - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - - readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value - gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; - gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; - } - - for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings - aSTAvg[ii] /= 200; - gSTAvg[ii] /= 200; - } - -// Configure the gyro and accelerometer for normal operation - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); - //delay(25); // Delay a while to let the device stabilize - - // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg - selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results - selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results - selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results - selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results - selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results - selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results - - // Retrieve factory self-test value from self-test code reads - factoryTrim[0] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[0] - (float)1.0) )); // FT[Xa] factory trim calculation - factoryTrim[1] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[1] - (float)1.0) )); // FT[Ya] factory trim calculation - factoryTrim[2] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[2] - (float)1.0) )); // FT[Za] factory trim calculation - factoryTrim[3] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[3] - (float)1.0) )); // FT[Xg] factory trim calculation - factoryTrim[4] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[4] - (float)1.0) )); // FT[Yg] factory trim calculation - factoryTrim[5] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[5] - (float)1.0) )); // FT[Zg] factory trim calculation - -// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response -// To get percent, must multiply by 100 - for (int i = 0; i < 3; i++) { - SelfTest[i] = (float)100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences - SelfTest[i+3] = (float)100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences - } - -} \ No newline at end of file
diff -r 928673148b55 -r a9b0f8540cc6 MPU9250.h --- a/MPU9250.h Wed Jan 20 02:42:22 2016 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,108 +0,0 @@ -#ifndef MPU9250_H -#define MPU9250_H - -#include "mbed.h" -#include "math.h" -#include "register.h" - - -static DigitalOut myled(LED1); - - -class MPU9250 -{ - -protected: - -public: - enum Ascale { - AFS_2G = 0, - AFS_4G, - AFS_8G, - AFS_16G - }; - - enum Gscale { - GFS_250DPS = 0, - GFS_500DPS, - GFS_1000DPS, - GFS_2000DPS - }; - - enum Mscale { - MFS_14BITS = 0, // 0.6 mG per LSB - MFS_16BITS // 0.15 mG per LSB - }; - - MPU9250(PinName sda, PinName scl, PinName tx, PinName rx, int address); - ~MPU9250() {} - - Serial pc; - I2C i2c; - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data); - char readByte(uint8_t address, uint8_t subAddress); - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) ; - - void initMPU9250(); - void calibrateMPU9250(); - - void setMres(); - void setGres(); - void setAres(); - - void getMres(); - void getGres(); - void getAres(); - - void AccelXYZCal(); - void GyroXYZCal(); - void MagXYZCal(); - - void MagCal(); - - void readAccelData(); - void readGyroData(); - void readMagData(); - void readTempData(); - - void resetMPU9250(); - void initAK8963(); - void MPU9250SelfTest(); - - void Start(); - void ReadRawAccGyroMag(); - - float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values - - -protected: - float temperature; - uint8_t whoami; - -private: - uint8_t MPU9250_ADDRESS; - - int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output - int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output - int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output - float magCalibration[3], magbias[3]; // Factory mag calibration and mag bias - float gyroBias[3], accelBias[3]; // Bias corrections for gyro and accelerometer - //int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius - float SelfTest[6]; - - - - //MagCal - float xmax,xmin; - float ymax,ymin; - float zmax,zmin; - bool change; - - uint8_t Ascale; // AFS_2G, AFS_4G, AFS_8G, AFS_16G - uint8_t Gscale; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS - uint8_t Mscale; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution - uint8_t Mmode; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR - float aRes, gRes, mRes; // scale resolutions per LSB for the sensors - -}; -#endif \ No newline at end of file
diff -r 928673148b55 -r a9b0f8540cc6 register.h --- a/register.h Wed Jan 20 02:42:22 2016 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,163 +0,0 @@ -// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in -// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map -// -//AD0 -#define MPU9250_ADDRESS_68 0x68 -#define MPU9250_ADDRESS_69 0x69 - -//Magnetometer Registers -#define AK8963_ADDRESS 0x0C<<1 -#define WHO_AM_I_AK8963 0x00 // should return 0x48 -#define INFO 0x01 -#define AK8963_ST1 0x02 // data ready status bit 0 -#define AK8963_XOUT_L 0x03 // data -#define AK8963_XOUT_H 0x04 -#define AK8963_YOUT_L 0x05 -#define AK8963_YOUT_H 0x06 -#define AK8963_ZOUT_L 0x07 -#define AK8963_ZOUT_H 0x08 -#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 -#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 -#define AK8963_ASTC 0x0C // Self test control -#define AK8963_I2CDIS 0x0F // I2C disable -#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value -#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value -#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value - -#define SELF_TEST_X_GYRO 0x00 -#define SELF_TEST_Y_GYRO 0x01 -#define SELF_TEST_Z_GYRO 0x02 - -/*#define X_FINE_GAIN 0x03 // [7:0] fine gain -#define Y_FINE_GAIN 0x04 -#define Z_FINE_GAIN 0x05 -#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer -#define XA_OFFSET_L_TC 0x07 -#define YA_OFFSET_H 0x08 -#define YA_OFFSET_L_TC 0x09 -#define ZA_OFFSET_H 0x0A -#define ZA_OFFSET_L_TC 0x0B */ - -#define SELF_TEST_X_ACCEL 0x0D -#define SELF_TEST_Y_ACCEL 0x0E -#define SELF_TEST_Z_ACCEL 0x0F - -#define SELF_TEST_A 0x10 - -#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope -#define XG_OFFSET_L 0x14 -#define YG_OFFSET_H 0x15 -#define YG_OFFSET_L 0x16 -#define ZG_OFFSET_H 0x17 -#define ZG_OFFSET_L 0x18 -#define SMPLRT_DIV 0x19 -#define CONFIG 0x1A -#define GYRO_CONFIG 0x1B -#define ACCEL_CONFIG 0x1C -#define ACCEL_CONFIG2 0x1D -#define LP_ACCEL_ODR 0x1E -#define WOM_THR 0x1F - -#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms -#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] -#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms - -#define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 -#define I2C_SLV0_ADDR 0x25 -#define I2C_SLV0_REG 0x26 -#define I2C_SLV0_CTRL 0x27 -#define I2C_SLV1_ADDR 0x28 -#define I2C_SLV1_REG 0x29 -#define I2C_SLV1_CTRL 0x2A -#define I2C_SLV2_ADDR 0x2B -#define I2C_SLV2_REG 0x2C -#define I2C_SLV2_CTRL 0x2D -#define I2C_SLV3_ADDR 0x2E -#define I2C_SLV3_REG 0x2F -#define I2C_SLV3_CTRL 0x30 -#define I2C_SLV4_ADDR 0x31 -#define I2C_SLV4_REG 0x32 -#define I2C_SLV4_DO 0x33 -#define I2C_SLV4_CTRL 0x34 -#define I2C_SLV4_DI 0x35 -#define I2C_MST_STATUS 0x36 -#define INT_PIN_CFG 0x37 -#define INT_ENABLE 0x38 -#define DMP_INT_STATUS 0x39 // Check DMP interrupt -#define INT_STATUS 0x3A -#define ACCEL_XOUT_H 0x3B -#define ACCEL_XOUT_L 0x3C -#define ACCEL_YOUT_H 0x3D -#define ACCEL_YOUT_L 0x3E -#define ACCEL_ZOUT_H 0x3F -#define ACCEL_ZOUT_L 0x40 -#define TEMP_OUT_H 0x41 -#define TEMP_OUT_L 0x42 -#define GYRO_XOUT_H 0x43 -#define GYRO_XOUT_L 0x44 -#define GYRO_YOUT_H 0x45 -#define GYRO_YOUT_L 0x46 -#define GYRO_ZOUT_H 0x47 -#define GYRO_ZOUT_L 0x48 -#define EXT_SENS_DATA_00 0x49 -#define EXT_SENS_DATA_01 0x4A -#define EXT_SENS_DATA_02 0x4B -#define EXT_SENS_DATA_03 0x4C -#define EXT_SENS_DATA_04 0x4D -#define EXT_SENS_DATA_05 0x4E -#define EXT_SENS_DATA_06 0x4F -#define EXT_SENS_DATA_07 0x50 -#define EXT_SENS_DATA_08 0x51 -#define EXT_SENS_DATA_09 0x52 -#define EXT_SENS_DATA_10 0x53 -#define EXT_SENS_DATA_11 0x54 -#define EXT_SENS_DATA_12 0x55 -#define EXT_SENS_DATA_13 0x56 -#define EXT_SENS_DATA_14 0x57 -#define EXT_SENS_DATA_15 0x58 -#define EXT_SENS_DATA_16 0x59 -#define EXT_SENS_DATA_17 0x5A -#define EXT_SENS_DATA_18 0x5B -#define EXT_SENS_DATA_19 0x5C -#define EXT_SENS_DATA_20 0x5D -#define EXT_SENS_DATA_21 0x5E -#define EXT_SENS_DATA_22 0x5F -#define EXT_SENS_DATA_23 0x60 -#define MOT_DETECT_STATUS 0x61 -#define I2C_SLV0_DO 0x63 -#define I2C_SLV1_DO 0x64 -#define I2C_SLV2_DO 0x65 -#define I2C_SLV3_DO 0x66 -#define I2C_MST_DELAY_CTRL 0x67 -#define SIGNAL_PATH_RESET 0x68 -#define MOT_DETECT_CTRL 0x69 -#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP -#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode -#define PWR_MGMT_2 0x6C -#define DMP_BANK 0x6D // Activates a specific bank in the DMP -#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank -#define DMP_REG 0x6F // Register in DMP from which to read or to which to write -#define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 -#define FIFO_COUNTH 0x72 -#define FIFO_COUNTL 0x73 -#define FIFO_R_W 0x74 -#define WHO_AM_I_MPU9250 0x75 // Should return 0x71 -#define XA_OFFSET_H 0x77 -#define XA_OFFSET_L 0x78 -#define YA_OFFSET_H 0x7A -#define YA_OFFSET_L 0x7B -#define ZA_OFFSET_H 0x7D -#define ZA_OFFSET_L 0x7E - - -// Using the MSENSR-9250 breakout board, ADO is set to 0 -// Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 -//mbed uses the eight-bit device address, so shift seven-bit addresses left by one! -/*#define ADO 0 -#if ADO -#define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 -#else -#define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 -#endif*/ \ No newline at end of file