Class of MPU9250

Dependencies:   AHRS_fillter mbed

Fork of MPU9250AHRS by BE@R lab

Revision:
6:5665d427bceb
Parent:
5:d31487b34216
Child:
8:928673148b55
--- a/main.cpp	Fri Dec 18 21:21:36 2015 +0000
+++ b/main.cpp	Wed Jan 20 02:34:07 2016 +0000
@@ -29,7 +29,7 @@
 //#include "ST_F401_84MHZ.h"
 //F401_init84 myinit(0);
 #include "mbed.h"
-#include "MPU9250.h"
+#include "AHRS.h"
 //#include "N5110.h"
 
 // Using NOKIA 5110 monochrome 84 x 48 pixel display
@@ -40,341 +40,29 @@
 // pin 6 - LCD reset (RST)
 //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6);
 
-float sum = 0;
-uint32_t sumCount = 0;
-char buffer[14];
 
-MPU9250 mpu9250;
+AHRS mpu9250(D15, D14, SERIAL_TX, SERIAL_RX , 0);
 
 Timer t;
 
 Serial pc(USBTX, USBRX); // tx, rx
-
-//        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
-//N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
-float xmax = -4914.0f;
-float xmin = 4914.0f;
-
-float ymax = -4914.0;
-float ymin = 4914.0f;
+DigitalIn button(USER_BUTTON);
 
-float zmax = -4914.0;
-float zmin = 4914.0f;
-
-float Xsf,Ysf;
-float Xoff,Yoff;
-
-
-//InterruptIn event(PC_13);
-DigitalIn enable(PC_13);
 
 int main()
 {
 
     pc.baud(115200);
 
-    //Set up I2C
-    i2c.frequency(400000);  // use fast (400 kHz) I2C
 
     pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
 
     t.start();
 
-    //lcd.init();
-//  lcd.setBrightness(0.05);
 
-    //mpu9250.resetMPU9250();
-    // Read the WHO_AM_I register, this is a good test of communication
-    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
-    pc.printf("I AM 0x%x\n\r", whoami);
-    pc.printf("I SHOULD BE 0x71\n\r");
-
-    if (whoami == 0x71) { // WHO_AM_I should always be 0x68
-        pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-        pc.printf("MPU9250 is online...\n\r");
-        // lcd.clear();
-        // lcd.printString("MPU9250 is", 0, 0);
-        sprintf(buffer, "0x%x", whoami);
-        // lcd.printString(buffer, 0, 1);
-        // lcd.printString("shoud be 0x71", 0, 2);
-        wait(1);
-
-        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
-        pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
-        pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
-        pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
-        pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
-        pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
-        pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
-        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
-        pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-        pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-        pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-        pc.printf("x accel bias = %f\n\r", accelBias[0]);
-        pc.printf("y accel bias = %f\n\r", accelBias[1]);
-        pc.printf("z accel bias = %f\n\r", accelBias[2]);
-        wait(2);
-        mpu9250.initMPU9250();
-        pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-        mpu9250.initAK8963(magCalibration);
-        pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
-
-        whoami = mpu9250.readByte(AK8963_ADDRESS, WHO_AM_I_AK8963);  // Read WHO_AM_I register for MPU-9250
-        pc.printf("I AM 0x%x\n\r", whoami);
-        pc.printf("I SHOULD BE 0x48\n\r");
-        if(whoami != 0x48) {
-            while(1);
-        }
-        pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-        pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-        wait(1);
-    } else {
-        pc.printf("Could not connect to MPU9250: \n\r");
-        pc.printf("%#x \n",  whoami);
-
-        //lcd.clear();
-        //lcd.printString("MPU9250", 0, 0);
-        //lcd.printString("no connection", 0, 1);
-        sprintf(buffer, "WHO_AM_I 0x%x", whoami);
-        //lcd.printString(buffer, 0, 2);
-
-        while(1) ; // Loop forever if communication doesn't happen
-    }
-
-    mpu9250.getAres(); // Get accelerometer sensitivity
-    mpu9250.getGres(); // Get gyro sensitivity
-    mpu9250.getMres(); // Get magnetometer sensitivity
-    pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
-    pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
-    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-   // pc.printf("Magnetometer[0] adjust sensittivity is %f \n\r", magCalibration[0]);
-   // pc.printf("Magnetometer[1] adjust sensittivity is %f \n\r", magCalibration[1]);
-  //  pc.printf("Magnetometer[2] adjust sensittivity is %f \n\r", magCalibration[2]);
-    // mRes = 10.*1229./4096.; // Conversion from 1229 microTesla full scale (4096) to 12.29 Gauss full scale
-     //mRes = 10.*1229./32760.;
-    // So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically
-    // like the gyro and accelerometer biases
-    //magbias[0] = -5.;   // User environmental x-axis correction in milliGauss
-    //magbias[1] = -95.;  // User environmental y-axis correction in milliGauss
-    //magbias[2] = -260.; // User environmental z-axis correction in milliGauss
-    
-    // magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-    // magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-    // magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
-
-
-
-    pc.printf("START scan mag\n\r\n\r\n\r");
-    //wait(1);
-    for(int i=0; i<800; i++) {
-        mpu9250.readMagData(magCount);
-            
-            if(magCount[0]<xmin)
-                xmin = magCount[0];
-            if(magCount[0]>xmax)
-                xmax = magCount[0];
-
-            if(magCount[1]<ymin)
-                ymin = magCount[1];
-            if(magCount[1]>ymax)
-                ymax = magCount[1];
-
-            if(magCount[2]<zmin)
-                zmin = magCount[2];
-            if(magCount[2]>zmax)
-                zmax = magCount[2];                
-                /*
-            if(mz>zmax)
-                zmax = mz;
-                */
-                
-            wait_ms(10);
-    }
-    pc.printf("FINISH scan\r\n\r\n");
-    pc.printf("Mx Max= %f Min= %f\n\r",xmax,xmin);
-    pc.printf("My Max= %f Min= %f\n\r",ymax,ymin);
-    pc.printf("Mz Max= %f Min= %f\n\r",zmax,zmin);
-
-
-
-//    magbias[0] = ((xmax-xmin)/2.0f - xmax);  // User environmental x-axis correction in milliGauss, should be automatically calculated
-//    magbias[1] = ((ymax-ymin)/2.0f - ymax);  // User environmental x-axis correction in milliGauss
-//    magbias[2] = ((zmax-zmin)/2.0f - zmax);  // User environmental x-axis correction in milliGauss
-
-    magbias[0] = -1.0;
-    magbias[1] = -1.0;
-    magbias[2] = -1.0;
-
-    magCalibration[0] = 2.0f / (xmax -xmin);
-    magCalibration[1] = 2.0f / (ymax -ymin);
-    magCalibration[2] = 2.0f / (zmax -zmin);
-
-    //magbias[0] = (xmin-xmax)/2.0f;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-    //magbias[1] = (ymin-ymax)/2.0f;  // User environmental x-axis correction in milliGauss
-    //magbias[2] = (zmin-zmax)/2.0f;  // User environmental x-axis correction in milliGauss
-     pc.printf("mag[0] %f",magbias[0]);
-     pc.printf("mag[1] %f",magbias[1]);
-     pc.printf("mag[2] %f\n\r",magbias[2]);
-    //     resalt = atan(magY+((yMin-yMax)/2),magX+(xMin-xMax)/2))*180/PI;
-
+    mpu9250.Start();
 
     while(1) {
-
-        // If intPin goes high, all data registers have new data
-        if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
-
-            mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
-            // Now we'll calculate the accleration value into actual g's
-            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-            ay = (float)accelCount[1]*aRes - accelBias[1];
-            az = (float)accelCount[2]*aRes - accelBias[2];
-
-            mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-            // Calculate the gyro value into actual degrees per second
-            gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-            gy = (float)gyroCount[1]*gRes - gyroBias[1];
-            gz = (float)gyroCount[2]*gRes - gyroBias[2];
-
-            mpu9250.readMagData(magCount);  // Read the x/y/z adc values
-            // Calculate the magnetometer values in milliGauss
-            // Include factory calibration per data sheet and user environmental corrections
-         /*   if(magCount[0]<xmin)
-                xmin = magCount[0];
-            if(magCount[0]>xmax)
-                xmax = magCount[0];
-
-            if(magCount[1]<ymin)
-                ymin = magCount[1];
-            if(magCount[1]>ymax)
-                ymax = magCount[1];
-
-            if(magCount[2]<zmin)
-                zmin = magCount[2];
-            if(mz>zmax)
-                zmax = mz;
-            wait_ms(1);
-        */
-           // pc.printf("FINISH scan\r\n\r\n");
-
-//            mx = (float)magCount[0]*mRes*magCalibration[0] + magbias[0];  // get actual magnetometer value, this depends on scale being set
-//            my = (float)magCount[1]*mRes*magCalibration[1] + magbias[1];
-//            mz = (float)magCount[2]*mRes*magCalibration[2] + magbias[2];
-
-            mx = ((float)magCount[0]-xmin)*magCalibration[0] + magbias[0];  // get actual magnetometer value, this depends on scale being set
-            my = ((float)magCount[1]-ymin)*magCalibration[1] + magbias[1];
-            mz = ((float)magCount[2]-zmin)*magCalibration[2] + magbias[2];
-
-            // mx = (float)magCount[0]*1.499389499f - magbias[0];  // get actual magnetometer value, this depends on scale being set
-            // my = (float)magCount[1]*1.499389499f - magbias[1];
-            // mz = (float)magCount[2]*1.499389499f - magbias[2];
-
-
-
-
-        }
-
-        Now = t.read_us();
-        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-        lastUpdate = Now;
-
-        sum += deltat;
-        sumCount++;
-
-//    if(lastUpdate - firstUpdate > 10000000.0f) {
-//     beta = 0.04;  // decrease filter gain after stabilized
-//     zeta = 0.015; // increasey bias drift gain after stabilized
-//   }
-
-        // Pass gyro rate as rad/s
-        mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-        // mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
-
-        // Serial print and/or display at 0.5 s rate independent of data rates
-        delt_t = t.read_ms() - count;
-        if (delt_t > 500) { // update LCD once per half-second independent of read rate
-
-            pc.printf("ax = %f", 1000*ax);
-            pc.printf(" ay = %f", 1000*ay);
-            pc.printf(" az = %f  mg\n\r", 1000*az);
-
-            pc.printf("gx = %f", gx);
-            pc.printf(" gy = %f", gy);
-            pc.printf(" gz = %f  deg/s\n\r", gz);
-
-            pc.printf("mx = %f", mx);
-            pc.printf(" my = %f", my);
-            pc.printf(" mz = %f  mG\n\r", mz);
-
-            whoami = mpu9250.readByte(AK8963_ADDRESS, AK8963_ST2);  // Read WHO_AM_I register for MPU-9250
-            // pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x10\n\r");
-            if(whoami == 0x14) {
-                pc.printf("I AM 0x%x\n\r", whoami);
-                while(1);
-            }
-
-
-            tempCount = mpu9250.readTempData();  // Read the adc values
-            temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-            //pc.printf(" temperature = %f  C\n\r", temperature);
-
-            // pc.printf("q0 = %f\n\r", q[0]);
-            // pc.printf("q1 = %f\n\r", q[1]);
-            // pc.printf("q2 = %f\n\r", q[2]);
-            // pc.printf("q3 = %f\n\r", q[3]);
-
-            // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-            // In this coordinate system, the positive z-axis is down toward Earth.
-            // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-            // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-            // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-            // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-            // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-            // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-            // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
-            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-
-             float Xh = mx*cos(pitch)+my*sin(roll)*sin(pitch)-mz*cos(roll)*sin(pitch);
-            float Yh = my*cos(roll)+mz*sin(roll);           
-
-            float yawmag = atan2(Yh,Xh)+PI;
-            pc.printf("Xh= %f Yh= %f ",Xh,Yh);
-            pc.printf("Yaw[mag]= %f\n\r",yawmag*180.0f/PI);
-
-
-
-            pitch *= 180.0f / PI;
-            yaw   *= 180.0f / PI;
-            yaw   += 180.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-            roll  *= 180.0f / PI;
-
-            pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-            pc.printf("average rate = %f\n\r", (float) sumCount/sum);
-//    sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
-//    lcd.printString(buffer, 0, 4);
-//    sprintf(buffer, "rate = %f", (float) sumCount/sum);
-//    lcd.printString(buffer, 0, 5);
-
-
-
-
-            myled= !myled;
-            count = t.read_ms();
-
-            if(count > 1<<21) {
-                t.start(); // start the timer over again if ~30 minutes has passed
-                count = 0;
-                deltat= 0;
-                lastUpdate = t.read_us();
-            }
-            sum = 0;
-            sumCount = 0;
-        }
+        mpu9250.Run();
     }
 }