Class of MPU9250

Dependencies:   AHRS_fillter mbed

Fork of MPU9250AHRS by BE@R lab

Revision:
3:3e04c1c03cab
Parent:
1:71c319f03fda
Child:
4:1e5db958fd1b
--- a/main.cpp	Tue Aug 05 01:37:23 2014 +0000
+++ b/main.cpp	Fri Dec 18 12:59:56 2015 +0000
@@ -1,17 +1,17 @@
 /* MPU9250 Basic Example Code
  by: Kris Winer
  date: April 1, 2014
- license: Beerware - Use this code however you'd like. If you 
+ license: Beerware - Use this code however you'd like. If you
  find it useful you can buy me a beer some time.
- 
- Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, 
- getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to 
- allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and 
+
+ Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor,
+ getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
+ allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
  Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
- 
+
  SDA and SCL should have external pull-up resistors (to 3.3V).
  10k resistors are on the EMSENSR-9250 breakout board.
- 
+
  Hardware setup:
  MPU9250 Breakout --------- Arduino
  VDD ---------------------- 3.3V
@@ -19,18 +19,18 @@
  SDA ----------------------- A4
  SCL ----------------------- A5
  GND ---------------------- GND
- 
- Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. 
+
+ Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library.
  Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
  We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
  We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
  */
- 
-//#include "ST_F401_84MHZ.h" 
+
+//#include "ST_F401_84MHZ.h"
 //F401_init84 myinit(0);
 #include "mbed.h"
 #include "MPU9250.h"
-#include "N5110.h"
+//#include "N5110.h"
 
 // Using NOKIA 5110 monochrome 84 x 48 pixel display
 // pin 9 - Serial clock out (SCLK)
@@ -44,87 +44,106 @@
 uint32_t sumCount = 0;
 char buffer[14];
 
-   MPU9250 mpu9250;
-   
-   Timer t;
+MPU9250 mpu9250;
+
+Timer t;
 
-   Serial pc(USBTX, USBRX); // tx, rx
+Serial pc(USBTX, USBRX); // tx, rx
+
+//        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
+//N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
+float xmax = -4914.0f;
+float xmin = 4914.0f;
 
-   //        VCC,   SCE,  RST,  D/C,  MOSI,S CLK, LED
-   N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7);
-   
+float ymax = -4914.0;
+float ymin = 4914.0f;
+
+float zmax = -4914.0;
+float zmin = 4914.0f;
 
-        
+float Xsf,Ysf;
+float Xoff,Yoff;
+
+
+//InterruptIn event(PC_13);
+DigitalIn enable(PC_13);
+
 int main()
 {
-  pc.baud(9600);  
+
+    pc.baud(115200);
+
+    //Set up I2C
+    i2c.frequency(400000);  // use fast (400 kHz) I2C
 
-  //Set up I2C
-  i2c.frequency(400000);  // use fast (400 kHz) I2C  
-  
-  pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
-  
-  t.start();        
-  
-  lcd.init();
+    pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
+
+    t.start();
+
+    //lcd.init();
 //  lcd.setBrightness(0.05);
-  
-    
-  // Read the WHO_AM_I register, this is a good test of communication
-  uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
-  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
-  
-  if (whoami == 0x71) // WHO_AM_I should always be 0x68
-  {  
-    pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
-    pc.printf("MPU9250 is online...\n\r");
-    lcd.clear();
-    lcd.printString("MPU9250 is", 0, 0);
-    sprintf(buffer, "0x%x", whoami);
-    lcd.printString(buffer, 0, 1);
-    lcd.printString("shoud be 0x71", 0, 2);  
-    wait(1);
-    
-    mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
-    mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
-    pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
-    pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
-    pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
-    pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
-    pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
-    pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
-    mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
-    pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
-    pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
-    pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
-    pc.printf("x accel bias = %f\n\r", accelBias[0]);
-    pc.printf("y accel bias = %f\n\r", accelBias[1]);
-    pc.printf("z accel bias = %f\n\r", accelBias[2]);
-    wait(2);
-    mpu9250.initMPU9250(); 
-    pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
-    mpu9250.initAK8963(magCalibration);
-    pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
-    pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
-    pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
-    if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
-    if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
-    if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
-    if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
-    wait(1);
-   }
-   else
-   {
-    pc.printf("Could not connect to MPU9250: \n\r");
-    pc.printf("%#x \n",  whoami);
- 
-    lcd.clear();
-    lcd.printString("MPU9250", 0, 0);
-    lcd.printString("no connection", 0, 1);
-    sprintf(buffer, "WHO_AM_I 0x%x", whoami);
-    lcd.printString(buffer, 0, 2); 
- 
-    while(1) ; // Loop forever if communication doesn't happen
+
+    //mpu9250.resetMPU9250();
+    // Read the WHO_AM_I register, this is a good test of communication
+    uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
+    pc.printf("I AM 0x%x\n\r", whoami);
+    pc.printf("I SHOULD BE 0x71\n\r");
+
+    if (whoami == 0x71) { // WHO_AM_I should always be 0x68
+        pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
+        pc.printf("MPU9250 is online...\n\r");
+        // lcd.clear();
+        // lcd.printString("MPU9250 is", 0, 0);
+        sprintf(buffer, "0x%x", whoami);
+        // lcd.printString(buffer, 0, 1);
+        // lcd.printString("shoud be 0x71", 0, 2);
+        wait(1);
+
+        mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+        mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
+        pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
+        pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
+        pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
+        pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
+        pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
+        pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
+        mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
+        pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
+        pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
+        pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
+        pc.printf("x accel bias = %f\n\r", accelBias[0]);
+        pc.printf("y accel bias = %f\n\r", accelBias[1]);
+        pc.printf("z accel bias = %f\n\r", accelBias[2]);
+        wait(2);
+        mpu9250.initMPU9250();
+        pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+        mpu9250.initAK8963(magCalibration);
+        pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
+
+        whoami = mpu9250.readByte(AK8963_ADDRESS, WHO_AM_I_AK8963);  // Read WHO_AM_I register for MPU-9250
+        pc.printf("I AM 0x%x\n\r", whoami);
+        pc.printf("I SHOULD BE 0x48\n\r");
+        if(whoami != 0x48) {
+            while(1);
+        }
+        pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
+        pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
+        if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
+        if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
+        if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
+        if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
+        wait(1);
+    } else {
+        pc.printf("Could not connect to MPU9250: \n\r");
+        pc.printf("%#x \n",  whoami);
+
+        //lcd.clear();
+        //lcd.printString("MPU9250", 0, 0);
+        //lcd.printString("no connection", 0, 1);
+        sprintf(buffer, "WHO_AM_I 0x%x", whoami);
+        //lcd.printString(buffer, 0, 2);
+
+        while(1) ; // Loop forever if communication doesn't happen
     }
 
     mpu9250.getAres(); // Get accelerometer sensitivity
@@ -133,122 +152,215 @@
     pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
     pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
     pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
-    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
-    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
-    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
+   // pc.printf("Magnetometer[0] adjust sensittivity is %f \n\r", magCalibration[0]);
+   // pc.printf("Magnetometer[1] adjust sensittivity is %f \n\r", magCalibration[1]);
+  //  pc.printf("Magnetometer[2] adjust sensittivity is %f \n\r", magCalibration[2]);
+    // mRes = 10.*1229./4096.; // Conversion from 1229 microTesla full scale (4096) to 12.29 Gauss full scale
+     //mRes = 10.*1229./32760.;
+    // So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically
+    // like the gyro and accelerometer biases
+    //magbias[0] = -5.;   // User environmental x-axis correction in milliGauss
+    //magbias[1] = -95.;  // User environmental y-axis correction in milliGauss
+    //magbias[2] = -260.; // User environmental z-axis correction in milliGauss
+    
+    // magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+    // magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
+    // magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
+
+
+
+    pc.printf("START scan mag\n\r\n\r\n\r");
+    //wait(1);
+    for(int i=0; i<800; i++) {
+        mpu9250.readMagData(magCount);
+            
+            if(magCount[0]<xmin)
+                xmin = magCount[0];
+            if(magCount[0]>xmax)
+                xmax = magCount[0];
 
- while(1) {
-  
-  // If intPin goes high, all data registers have new data
-  if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+            if(magCount[1]<ymin)
+                ymin = magCount[1];
+            if(magCount[1]>ymax)
+                ymax = magCount[1];
+
+            if(magCount[2]<zmin)
+                zmin = magCount[2];
+            if(mz>zmax)
+                zmax = mz;
+                
+
+                
+            wait_ms(10);
+    }
+    pc.printf("FINISH scan\r\n\r\n");
+    pc.printf("Mx Max= %f Min= %f\n\r",xmax,xmin);
+    pc.printf("My Max= %f Min= %f\n\r",ymax,ymin);
+    pc.printf("Mz Max= %f Min= %f\n\r",zmax,zmin);
+
+
+
+    magbias[0] = ((xmax-xmin)/2.0f - xmax);  // User environmental x-axis correction in milliGauss, should be automatically calculated
+    magbias[1] = ((ymax-ymin)/2.0f - ymax);  // User environmental x-axis correction in milliGauss
+    magbias[2] = ((zmax-zmin)/2.0f - zmax);  // User environmental x-axis correction in milliGauss
+
+    //magbias[0] = (xmin-xmax)/2.0f;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+    //magbias[1] = (ymin-ymax)/2.0f;  // User environmental x-axis correction in milliGauss
+    //magbias[2] = (zmin-zmax)/2.0f;  // User environmental x-axis correction in milliGauss
+     pc.printf("mag[0] %f",magbias[0]);
+     pc.printf("mag[1] %f",magbias[1]);
+     pc.printf("mag[2] %f\n\r",magbias[2]);
+    //     resalt = atan(magY+((yMin-yMax)/2),magX+(xMin-xMax)/2))*180/PI;
 
-    mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
-    // Now we'll calculate the accleration value into actual g's
-    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
-    ay = (float)accelCount[1]*aRes - accelBias[1];   
-    az = (float)accelCount[2]*aRes - accelBias[2];  
-   
-    mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
-    // Calculate the gyro value into actual degrees per second
-    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
-    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
-    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
-  
-    mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
-    // Calculate the magnetometer values in milliGauss
-    // Include factory calibration per data sheet and user environmental corrections
-    mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
-    my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
-    mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
-  }
-   
-    Now = t.read_us();
-    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
-    lastUpdate = Now;
-    
-    sum += deltat;
-    sumCount++;
-    
+
+    while(1) {
+
+        // If intPin goes high, all data registers have new data
+        if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+
+            mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
+            // Now we'll calculate the accleration value into actual g's
+            ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+            ay = (float)accelCount[1]*aRes - accelBias[1];
+            az = (float)accelCount[2]*aRes - accelBias[2];
+
+            mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
+            // Calculate the gyro value into actual degrees per second
+            gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+            gy = (float)gyroCount[1]*gRes - gyroBias[1];
+            gz = (float)gyroCount[2]*gRes - gyroBias[2];
+
+            mpu9250.readMagData(magCount);  // Read the x/y/z adc values
+            // Calculate the magnetometer values in milliGauss
+            // Include factory calibration per data sheet and user environmental corrections
+         /*   if(magCount[0]<xmin)
+                xmin = magCount[0];
+            if(magCount[0]>xmax)
+                xmax = magCount[0];
+
+            if(magCount[1]<ymin)
+                ymin = magCount[1];
+            if(magCount[1]>ymax)
+                ymax = magCount[1];
+
+            if(magCount[2]<zmin)
+                zmin = magCount[2];
+            if(mz>zmax)
+                zmax = mz;
+            wait_ms(1);
+        */
+           // pc.printf("FINISH scan\r\n\r\n");
+
+            mx = (float)magCount[0]*mRes*magCalibration[0] + magbias[0];  // get actual magnetometer value, this depends on scale being set
+            my = (float)magCount[1]*mRes*magCalibration[1] + magbias[1];
+            mz = (float)magCount[2]*mRes*magCalibration[2] + magbias[2];
+
+            // mx = (float)magCount[0]*1.499389499f - magbias[0];  // get actual magnetometer value, this depends on scale being set
+            // my = (float)magCount[1]*1.499389499f - magbias[1];
+            // mz = (float)magCount[2]*1.499389499f - magbias[2];
+
+
+
+
+        }
+
+        Now = t.read_us();
+        deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+        lastUpdate = Now;
+
+        sum += deltat;
+        sumCount++;
+
 //    if(lastUpdate - firstUpdate > 10000000.0f) {
 //     beta = 0.04;  // decrease filter gain after stabilized
 //     zeta = 0.015; // increasey bias drift gain after stabilized
- //   }
-    
-   // Pass gyro rate as rad/s
-//  mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
-  mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+//   }
+
+        // Pass gyro rate as rad/s
+        mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+        // mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+
+        // Serial print and/or display at 0.5 s rate independent of data rates
+        delt_t = t.read_ms() - count;
+        if (delt_t > 500) { // update LCD once per half-second independent of read rate
+
+            pc.printf("ax = %f", 1000*ax);
+            pc.printf(" ay = %f", 1000*ay);
+            pc.printf(" az = %f  mg\n\r", 1000*az);
 
-    // Serial print and/or display at 0.5 s rate independent of data rates
-    delt_t = t.read_ms() - count;
-    if (delt_t > 500) { // update LCD once per half-second independent of read rate
+            pc.printf("gx = %f", gx);
+            pc.printf(" gy = %f", gy);
+            pc.printf(" gz = %f  deg/s\n\r", gz);
+
+            pc.printf("mx = %f", mx);
+            pc.printf(" my = %f", my);
+            pc.printf(" mz = %f  mG\n\r", mz);
 
-    pc.printf("ax = %f", 1000*ax); 
-    pc.printf(" ay = %f", 1000*ay); 
-    pc.printf(" az = %f  mg\n\r", 1000*az); 
+            whoami = mpu9250.readByte(AK8963_ADDRESS, AK8963_ST2);  // Read WHO_AM_I register for MPU-9250
+            // pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x10\n\r");
+            if(whoami == 0x14) {
+                pc.printf("I AM 0x%x\n\r", whoami);
+                while(1);
+            }
+
+
+            tempCount = mpu9250.readTempData();  // Read the adc values
+            temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
+            //pc.printf(" temperature = %f  C\n\r", temperature);
 
-    pc.printf("gx = %f", gx); 
-    pc.printf(" gy = %f", gy); 
-    pc.printf(" gz = %f  deg/s\n\r", gz); 
-    
-    pc.printf("gx = %f", mx); 
-    pc.printf(" gy = %f", my); 
-    pc.printf(" gz = %f  mG\n\r", mz); 
-    
-    tempCount = mpu9250.readTempData();  // Read the adc values
-    temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
-    pc.printf(" temperature = %f  C\n\r", temperature); 
-    
-    pc.printf("q0 = %f\n\r", q[0]);
-    pc.printf("q1 = %f\n\r", q[1]);
-    pc.printf("q2 = %f\n\r", q[2]);
-    pc.printf("q3 = %f\n\r", q[3]);      
-    
-/*    lcd.clear();
-    lcd.printString("MPU9250", 0, 0);
-    lcd.printString("x   y   z", 0, 1);
-    sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az));
-    lcd.printString(buffer, 0, 2);
-    sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz);
-    lcd.printString(buffer, 0, 3);
-    sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz);
-    lcd.printString(buffer, 0, 4); 
- */  
-  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
-  // In this coordinate system, the positive z-axis is down toward Earth. 
-  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
-  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
-  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
-  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
-  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
-  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
-  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
-    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
-    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
-    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
-    pitch *= 180.0f / PI;
-    yaw   *= 180.0f / PI; 
-    yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
-    roll  *= 180.0f / PI;
+            // pc.printf("q0 = %f\n\r", q[0]);
+            // pc.printf("q1 = %f\n\r", q[1]);
+            // pc.printf("q2 = %f\n\r", q[2]);
+            // pc.printf("q3 = %f\n\r", q[3]);
 
-    pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
-    pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+            // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+            // In this coordinate system, the positive z-axis is down toward Earth.
+            // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+            // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+            // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+            // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+            // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+            // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+            // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+            yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+            pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+            roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+
+             float Xh = mx*cos(pitch)+my*sin(roll)*sin(pitch)-mz*cos(roll)*sin(pitch);
+            float Yh = my*cos(roll)+mz*sin(roll);           
+
+            float yawmag = atan2(Yh,Xh)+PI;
+            pc.printf("Xh= %f Yh= %f ",Xh,Yh);
+            pc.printf("Yaw[mag]= %f\n\r",yawmag*180.0f/PI);
+
+
+
+            pitch *= 180.0f / PI;
+            yaw   *= 180.0f / PI;
+            yaw   += 180.0f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
+            roll  *= 180.0f / PI;
+
+            pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+            pc.printf("average rate = %f\n\r", (float) sumCount/sum);
 //    sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
 //    lcd.printString(buffer, 0, 4);
 //    sprintf(buffer, "rate = %f", (float) sumCount/sum);
 //    lcd.printString(buffer, 0, 5);
-    
-    myled= !myled;
-    count = t.read_ms(); 
+
+
+
+
+            myled= !myled;
+            count = t.read_ms();
 
-    if(count > 1<<21) {
-        t.start(); // start the timer over again if ~30 minutes has passed
-        count = 0;
-        deltat= 0;
-        lastUpdate = t.read_us();
+            if(count > 1<<21) {
+                t.start(); // start the timer over again if ~30 minutes has passed
+                count = 0;
+                deltat= 0;
+                lastUpdate = t.read_us();
+            }
+            sum = 0;
+            sumCount = 0;
+        }
     }
-    sum = 0;
-    sumCount = 0; 
 }
-}
- 
- }
\ No newline at end of file