Class of MPU9250

Dependencies:   AHRS_fillter mbed

Fork of MPU9250AHRS by BE@R lab

Committer:
icyzkungz
Date:
Wed Jan 20 02:34:07 2016 +0000
Revision:
6:5665d427bceb
MPU9250-OOP

Who changed what in which revision?

UserRevisionLine numberNew contents of line
icyzkungz 6:5665d427bceb 1 #include "MPU9250.h"
icyzkungz 6:5665d427bceb 2
icyzkungz 6:5665d427bceb 3
icyzkungz 6:5665d427bceb 4 MPU9250::MPU9250(PinName sda, PinName scl, PinName tx, PinName rx, int address) : i2c(sda, scl), pc(tx,rx)
icyzkungz 6:5665d427bceb 5 {
icyzkungz 6:5665d427bceb 6 if(address == 0)
icyzkungz 6:5665d427bceb 7 MPU9250_ADDRESS = MPU9250_ADDRESS_68;
icyzkungz 6:5665d427bceb 8 else if(address == 1) MPU9250_ADDRESS = MPU9250_ADDRESS_69;
icyzkungz 6:5665d427bceb 9 else {
icyzkungz 6:5665d427bceb 10 printf("Wrong Address\n");
icyzkungz 6:5665d427bceb 11 while(1);
icyzkungz 6:5665d427bceb 12 }
icyzkungz 6:5665d427bceb 13
icyzkungz 6:5665d427bceb 14 i2c.frequency(400000);
icyzkungz 6:5665d427bceb 15
icyzkungz 6:5665d427bceb 16 for(int i=0; i<=3; i++) {
icyzkungz 6:5665d427bceb 17 magCalibration[i] = 0;
icyzkungz 6:5665d427bceb 18 magbias[i] = 0;
icyzkungz 6:5665d427bceb 19 gyroBias[i] = 0;
icyzkungz 6:5665d427bceb 20 accelBias[i] = 0;
icyzkungz 6:5665d427bceb 21 }
icyzkungz 6:5665d427bceb 22 Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR
icyzkungz 6:5665d427bceb 23 }
icyzkungz 6:5665d427bceb 24
icyzkungz 6:5665d427bceb 25 void MPU9250::Start()
icyzkungz 6:5665d427bceb 26 {
icyzkungz 6:5665d427bceb 27 whoami = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
icyzkungz 6:5665d427bceb 28 pc.printf("I AM 0x%x\n\r", whoami);
icyzkungz 6:5665d427bceb 29 pc.printf("I SHOULD BE 0x71\n\r");
icyzkungz 6:5665d427bceb 30
icyzkungz 6:5665d427bceb 31 if (whoami == 0x71) { // WHO_AM_I should always be 0x68
icyzkungz 6:5665d427bceb 32 pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
icyzkungz 6:5665d427bceb 33 pc.printf("MPU9250 is online...\n\r");
icyzkungz 6:5665d427bceb 34 wait(1);
icyzkungz 6:5665d427bceb 35
icyzkungz 6:5665d427bceb 36 resetMPU9250(); // Reset registers to default in preparation for device calibration
icyzkungz 6:5665d427bceb 37 MPU9250SelfTest(); // Start by performing self test and reporting values
icyzkungz 6:5665d427bceb 38 /*pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
icyzkungz 6:5665d427bceb 39 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
icyzkungz 6:5665d427bceb 40 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
icyzkungz 6:5665d427bceb 41 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
icyzkungz 6:5665d427bceb 42 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
icyzkungz 6:5665d427bceb 43 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);*/
icyzkungz 6:5665d427bceb 44 calibrateMPU9250(); // Calibrate gyro and accelerometers, load biases in bias registers
icyzkungz 6:5665d427bceb 45 /*pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
icyzkungz 6:5665d427bceb 46 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
icyzkungz 6:5665d427bceb 47 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
icyzkungz 6:5665d427bceb 48 pc.printf("x accel bias = %f\n\r", accelBias[0]);
icyzkungz 6:5665d427bceb 49 pc.printf("y accel bias = %f\n\r", accelBias[1]);
icyzkungz 6:5665d427bceb 50 pc.printf("z accel bias = %f\n\r", accelBias[2]);*/
icyzkungz 6:5665d427bceb 51 wait(2);
icyzkungz 6:5665d427bceb 52 initMPU9250();
icyzkungz 6:5665d427bceb 53 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
icyzkungz 6:5665d427bceb 54 initAK8963();
icyzkungz 6:5665d427bceb 55 pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
icyzkungz 6:5665d427bceb 56
icyzkungz 6:5665d427bceb 57 whoami = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for MPU-9250
icyzkungz 6:5665d427bceb 58 pc.printf("I AM 0x%x\n\r", whoami);
icyzkungz 6:5665d427bceb 59 pc.printf("I SHOULD BE 0x48\n\r");
icyzkungz 6:5665d427bceb 60 if(whoami != 0x48) {
icyzkungz 6:5665d427bceb 61 while(1);
icyzkungz 6:5665d427bceb 62 }
icyzkungz 6:5665d427bceb 63 /*pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
icyzkungz 6:5665d427bceb 64 pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
icyzkungz 6:5665d427bceb 65 if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
icyzkungz 6:5665d427bceb 66 if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
icyzkungz 6:5665d427bceb 67 if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
icyzkungz 6:5665d427bceb 68 if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");*/
icyzkungz 6:5665d427bceb 69 wait(1);
icyzkungz 6:5665d427bceb 70 } else {
icyzkungz 6:5665d427bceb 71 pc.printf("Could not connect to MPU9250: \n\r");
icyzkungz 6:5665d427bceb 72 pc.printf("%#x \n", whoami);
icyzkungz 6:5665d427bceb 73
icyzkungz 6:5665d427bceb 74 while(1) ; // Loop forever if communication doesn't happen
icyzkungz 6:5665d427bceb 75 }
icyzkungz 6:5665d427bceb 76
icyzkungz 6:5665d427bceb 77
icyzkungz 6:5665d427bceb 78 getAres(); // Get accelerometer sensitivity
icyzkungz 6:5665d427bceb 79 getGres(); // Get gyro sensitivity
icyzkungz 6:5665d427bceb 80 getMres(); // Get magnetometer sensitivity
icyzkungz 6:5665d427bceb 81 /*pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
icyzkungz 6:5665d427bceb 82 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
icyzkungz 6:5665d427bceb 83 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);*/
icyzkungz 6:5665d427bceb 84
icyzkungz 6:5665d427bceb 85 MagCal();
icyzkungz 6:5665d427bceb 86 }
icyzkungz 6:5665d427bceb 87
icyzkungz 6:5665d427bceb 88 void MPU9250::ReadRawAccGyroMag()
icyzkungz 6:5665d427bceb 89 {
icyzkungz 6:5665d427bceb 90 // If intPin goes high, all data registers have new data
icyzkungz 6:5665d427bceb 91 if(readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
icyzkungz 6:5665d427bceb 92
icyzkungz 6:5665d427bceb 93 readAccelData(); // Read the x/y/z adc values
icyzkungz 6:5665d427bceb 94 AccelXYZCal();
icyzkungz 6:5665d427bceb 95 // Now we'll calculate the accleration value into actual g's
icyzkungz 6:5665d427bceb 96 /*ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
icyzkungz 6:5665d427bceb 97 ay = (float)accelCount[1]*aRes - accelBias[1];
icyzkungz 6:5665d427bceb 98 az = (float)accelCount[2]*aRes - accelBias[2];*/
icyzkungz 6:5665d427bceb 99
icyzkungz 6:5665d427bceb 100 readGyroData(); // Read the x/y/z adc values
icyzkungz 6:5665d427bceb 101 GyroXYZCal();
icyzkungz 6:5665d427bceb 102 // Calculate the gyro value into actual degrees per second
icyzkungz 6:5665d427bceb 103 /*gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
icyzkungz 6:5665d427bceb 104 gy = (float)gyroCount[1]*gRes - gyroBias[1];
icyzkungz 6:5665d427bceb 105 gz = (float)gyroCount[2]*gRes - gyroBias[2];*/
icyzkungz 6:5665d427bceb 106
icyzkungz 6:5665d427bceb 107 readMagData(); // Read the x/y/z adc values
icyzkungz 6:5665d427bceb 108 MagXYZCal();
icyzkungz 6:5665d427bceb 109 /*mx = ((float)magCount[0]-xmin)*magCalibration[0] + magbias[0]; // get actual magnetometer value, this depends on scale being set
icyzkungz 6:5665d427bceb 110 my = ((float)magCount[1]-ymin)*magCalibration[1] + magbias[1];
icyzkungz 6:5665d427bceb 111 mz = ((float)magCount[2]-zmin)*magCalibration[2] + magbias[2];*/
icyzkungz 6:5665d427bceb 112 }
icyzkungz 6:5665d427bceb 113 }
icyzkungz 6:5665d427bceb 114
icyzkungz 6:5665d427bceb 115 void MPU9250::writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
icyzkungz 6:5665d427bceb 116 {
icyzkungz 6:5665d427bceb 117 char data_write[2];
icyzkungz 6:5665d427bceb 118 data_write[0] = subAddress;
icyzkungz 6:5665d427bceb 119 data_write[1] = data;
icyzkungz 6:5665d427bceb 120 i2c.write(address, data_write, 2, 0);
icyzkungz 6:5665d427bceb 121 }
icyzkungz 6:5665d427bceb 122
icyzkungz 6:5665d427bceb 123 char MPU9250::readByte(uint8_t address, uint8_t subAddress)
icyzkungz 6:5665d427bceb 124 {
icyzkungz 6:5665d427bceb 125 char data[1]; // `data` will store the register data
icyzkungz 6:5665d427bceb 126 char data_write[1];
icyzkungz 6:5665d427bceb 127 data_write[0] = subAddress;
icyzkungz 6:5665d427bceb 128 i2c.write(address, data_write, 1, 1); // no stop
icyzkungz 6:5665d427bceb 129 i2c.read(address, data, 1, 0);
icyzkungz 6:5665d427bceb 130 return data[0];
icyzkungz 6:5665d427bceb 131 }
icyzkungz 6:5665d427bceb 132
icyzkungz 6:5665d427bceb 133 void MPU9250::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
icyzkungz 6:5665d427bceb 134 {
icyzkungz 6:5665d427bceb 135 char data[14];
icyzkungz 6:5665d427bceb 136 char data_write[1];
icyzkungz 6:5665d427bceb 137 data_write[0] = subAddress;
icyzkungz 6:5665d427bceb 138 i2c.write(address, data_write, 1, 1); // no stop
icyzkungz 6:5665d427bceb 139 i2c.read(address, data, count, 0);
icyzkungz 6:5665d427bceb 140 for(int ii = 0; ii < count; ii++) {
icyzkungz 6:5665d427bceb 141 dest[ii] = data[ii];
icyzkungz 6:5665d427bceb 142 }
icyzkungz 6:5665d427bceb 143 }
icyzkungz 6:5665d427bceb 144
icyzkungz 6:5665d427bceb 145
icyzkungz 6:5665d427bceb 146 void MPU9250::setMres()
icyzkungz 6:5665d427bceb 147 {
icyzkungz 6:5665d427bceb 148 getMres();
icyzkungz 6:5665d427bceb 149 switch (Mscale) {
icyzkungz 6:5665d427bceb 150 // Possible magnetometer scales (and their register bit settings) are:
icyzkungz 6:5665d427bceb 151 // 14 bit resolution (0) and 16 bit resolution (1)
icyzkungz 6:5665d427bceb 152 case MFS_14BITS:
icyzkungz 6:5665d427bceb 153 mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
icyzkungz 6:5665d427bceb 154 break;
icyzkungz 6:5665d427bceb 155 case MFS_16BITS:
icyzkungz 6:5665d427bceb 156 mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
icyzkungz 6:5665d427bceb 157 break;
icyzkungz 6:5665d427bceb 158 }
icyzkungz 6:5665d427bceb 159 }
icyzkungz 6:5665d427bceb 160
icyzkungz 6:5665d427bceb 161
icyzkungz 6:5665d427bceb 162 void MPU9250::setGres()
icyzkungz 6:5665d427bceb 163 {
icyzkungz 6:5665d427bceb 164 getGres();
icyzkungz 6:5665d427bceb 165 switch (Gscale) {
icyzkungz 6:5665d427bceb 166 // Possible gyro scales (and their register bit settings) are:
icyzkungz 6:5665d427bceb 167 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
icyzkungz 6:5665d427bceb 168 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
icyzkungz 6:5665d427bceb 169 case GFS_250DPS:
icyzkungz 6:5665d427bceb 170 gRes = 250.0/32768.0;
icyzkungz 6:5665d427bceb 171 break;
icyzkungz 6:5665d427bceb 172 case GFS_500DPS:
icyzkungz 6:5665d427bceb 173 gRes = 500.0/32768.0;
icyzkungz 6:5665d427bceb 174 break;
icyzkungz 6:5665d427bceb 175 case GFS_1000DPS:
icyzkungz 6:5665d427bceb 176 gRes = 1000.0/32768.0;
icyzkungz 6:5665d427bceb 177 break;
icyzkungz 6:5665d427bceb 178 case GFS_2000DPS:
icyzkungz 6:5665d427bceb 179 gRes = 2000.0/32768.0;
icyzkungz 6:5665d427bceb 180 break;
icyzkungz 6:5665d427bceb 181 }
icyzkungz 6:5665d427bceb 182 }
icyzkungz 6:5665d427bceb 183
icyzkungz 6:5665d427bceb 184 void MPU9250::setAres()
icyzkungz 6:5665d427bceb 185 {
icyzkungz 6:5665d427bceb 186 getAres();
icyzkungz 6:5665d427bceb 187 switch (Ascale) {
icyzkungz 6:5665d427bceb 188 // Possible accelerometer scales (and their register bit settings) are:
icyzkungz 6:5665d427bceb 189 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
icyzkungz 6:5665d427bceb 190 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
icyzkungz 6:5665d427bceb 191 case AFS_2G:
icyzkungz 6:5665d427bceb 192 aRes = 2.0/32768.0;
icyzkungz 6:5665d427bceb 193 break;
icyzkungz 6:5665d427bceb 194 case AFS_4G:
icyzkungz 6:5665d427bceb 195 aRes = 4.0/32768.0;
icyzkungz 6:5665d427bceb 196 break;
icyzkungz 6:5665d427bceb 197 case AFS_8G:
icyzkungz 6:5665d427bceb 198 aRes = 8.0/32768.0;
icyzkungz 6:5665d427bceb 199 break;
icyzkungz 6:5665d427bceb 200 case AFS_16G:
icyzkungz 6:5665d427bceb 201 aRes = 16.0/32768.0;
icyzkungz 6:5665d427bceb 202 break;
icyzkungz 6:5665d427bceb 203 }
icyzkungz 6:5665d427bceb 204 }
icyzkungz 6:5665d427bceb 205
icyzkungz 6:5665d427bceb 206 void MPU9250::getMres()
icyzkungz 6:5665d427bceb 207 {
icyzkungz 6:5665d427bceb 208 Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
icyzkungz 6:5665d427bceb 209 }
icyzkungz 6:5665d427bceb 210
icyzkungz 6:5665d427bceb 211
icyzkungz 6:5665d427bceb 212 void MPU9250::getGres()
icyzkungz 6:5665d427bceb 213 {
icyzkungz 6:5665d427bceb 214 Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS
icyzkungz 6:5665d427bceb 215 }
icyzkungz 6:5665d427bceb 216
icyzkungz 6:5665d427bceb 217 void MPU9250::getAres()
icyzkungz 6:5665d427bceb 218 {
icyzkungz 6:5665d427bceb 219 Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G
icyzkungz 6:5665d427bceb 220 }
icyzkungz 6:5665d427bceb 221
icyzkungz 6:5665d427bceb 222 void MPU9250::MagCal()
icyzkungz 6:5665d427bceb 223 {
icyzkungz 6:5665d427bceb 224 printf("START scan mag\n\r\n\r\n\r");
icyzkungz 6:5665d427bceb 225
icyzkungz 6:5665d427bceb 226 //Assign random value before calibrate
icyzkungz 6:5665d427bceb 227 /*xmax = -4914.0f;
icyzkungz 6:5665d427bceb 228 xmin = 4914.0f;
icyzkungz 6:5665d427bceb 229
icyzkungz 6:5665d427bceb 230 ymax = -4914.0;
icyzkungz 6:5665d427bceb 231 ymin = 4914.0f;
icyzkungz 6:5665d427bceb 232
icyzkungz 6:5665d427bceb 233 zmax = -4914.0;
icyzkungz 6:5665d427bceb 234 zmin = 4914.0f;
icyzkungz 6:5665d427bceb 235
icyzkungz 6:5665d427bceb 236 change=false;
icyzkungz 6:5665d427bceb 237
icyzkungz 6:5665d427bceb 238 while(1) {
icyzkungz 6:5665d427bceb 239 readMagData(magCount);
icyzkungz 6:5665d427bceb 240
icyzkungz 6:5665d427bceb 241 if(magCount[0]<xmin) {
icyzkungz 6:5665d427bceb 242 xmin = magCount[0];
icyzkungz 6:5665d427bceb 243 change = true;
icyzkungz 6:5665d427bceb 244 }
icyzkungz 6:5665d427bceb 245 if(magCount[0]>xmax) {
icyzkungz 6:5665d427bceb 246 xmax = magCount[0];
icyzkungz 6:5665d427bceb 247 change = true;
icyzkungz 6:5665d427bceb 248 }
icyzkungz 6:5665d427bceb 249
icyzkungz 6:5665d427bceb 250 if(magCount[1]<ymin) {
icyzkungz 6:5665d427bceb 251 ymin = magCount[1];
icyzkungz 6:5665d427bceb 252 change = true;
icyzkungz 6:5665d427bceb 253 }
icyzkungz 6:5665d427bceb 254 if(magCount[1]>ymax) {
icyzkungz 6:5665d427bceb 255 ymax = magCount[1];
icyzkungz 6:5665d427bceb 256 change = true;
icyzkungz 6:5665d427bceb 257 }
icyzkungz 6:5665d427bceb 258
icyzkungz 6:5665d427bceb 259
icyzkungz 6:5665d427bceb 260 if(magCount[2]<zmin) {
icyzkungz 6:5665d427bceb 261 zmin = magCount[2];
icyzkungz 6:5665d427bceb 262 change = true;
icyzkungz 6:5665d427bceb 263 }
icyzkungz 6:5665d427bceb 264 if(magCount[2]>zmax) {
icyzkungz 6:5665d427bceb 265 zmax = magCount[2];
icyzkungz 6:5665d427bceb 266 change = true;
icyzkungz 6:5665d427bceb 267 }
icyzkungz 6:5665d427bceb 268
icyzkungz 6:5665d427bceb 269 if(change==true) {
icyzkungz 6:5665d427bceb 270 printf("Mx Max= %f Min= %f\n\r",xmax,xmin);
icyzkungz 6:5665d427bceb 271 printf("My Max= %f Min= %f\n\r",ymax,ymin);
icyzkungz 6:5665d427bceb 272 printf("Mz Max= %f Min= %f\n\r",zmax,zmin);
icyzkungz 6:5665d427bceb 273 change=false;
icyzkungz 6:5665d427bceb 274 }*/
icyzkungz 6:5665d427bceb 275
icyzkungz 6:5665d427bceb 276 //Out of Calibration loop
icyzkungz 6:5665d427bceb 277 /*if(button==1) {
icyzkungz 6:5665d427bceb 278 while(button==1);
icyzkungz 6:5665d427bceb 279 break;
icyzkungz 6:5665d427bceb 280 }*/
icyzkungz 6:5665d427bceb 281 //}
icyzkungz 6:5665d427bceb 282
icyzkungz 6:5665d427bceb 283
icyzkungz 6:5665d427bceb 284 xmax = 188.000000;
icyzkungz 6:5665d427bceb 285 xmin = -316.000000;
icyzkungz 6:5665d427bceb 286 ymax = 485.000000;
icyzkungz 6:5665d427bceb 287 ymin = -26.000000;
icyzkungz 6:5665d427bceb 288 zmax = 165.000000;
icyzkungz 6:5665d427bceb 289 xmin = -230.000000;
icyzkungz 6:5665d427bceb 290
icyzkungz 6:5665d427bceb 291 magbias[0] = -1.0;
icyzkungz 6:5665d427bceb 292 magbias[1] = -1.0;
icyzkungz 6:5665d427bceb 293 magbias[2] = -1.0;
icyzkungz 6:5665d427bceb 294
icyzkungz 6:5665d427bceb 295 magCalibration[0] = 2.0f / (xmax -xmin);
icyzkungz 6:5665d427bceb 296 magCalibration[1] = 2.0f / (ymax -ymin);
icyzkungz 6:5665d427bceb 297 magCalibration[2] = 2.0f / (zmax -zmin);
icyzkungz 6:5665d427bceb 298
icyzkungz 6:5665d427bceb 299 printf("mag[0] %f",magbias[0]);
icyzkungz 6:5665d427bceb 300 printf("mag[1] %f",magbias[1]);
icyzkungz 6:5665d427bceb 301 printf("mag[2] %f\n\r",magbias[2]);
icyzkungz 6:5665d427bceb 302 }
icyzkungz 6:5665d427bceb 303
icyzkungz 6:5665d427bceb 304 void MPU9250::AccelXYZCal()
icyzkungz 6:5665d427bceb 305 {
icyzkungz 6:5665d427bceb 306 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
icyzkungz 6:5665d427bceb 307 ay = (float)accelCount[1]*aRes - accelBias[1];
icyzkungz 6:5665d427bceb 308 az = (float)accelCount[2]*aRes - accelBias[2];
icyzkungz 6:5665d427bceb 309 }
icyzkungz 6:5665d427bceb 310
icyzkungz 6:5665d427bceb 311 void MPU9250::GyroXYZCal()
icyzkungz 6:5665d427bceb 312 {
icyzkungz 6:5665d427bceb 313 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
icyzkungz 6:5665d427bceb 314 gy = (float)gyroCount[1]*gRes - gyroBias[1];
icyzkungz 6:5665d427bceb 315 gz = (float)gyroCount[2]*gRes - gyroBias[2];
icyzkungz 6:5665d427bceb 316 }
icyzkungz 6:5665d427bceb 317
icyzkungz 6:5665d427bceb 318 void MPU9250::MagXYZCal()
icyzkungz 6:5665d427bceb 319 {
icyzkungz 6:5665d427bceb 320 mx = ((float)magCount[0]-xmin)*magCalibration[0] + magbias[0]; // get actual magnetometer value, this depends on scale being set
icyzkungz 6:5665d427bceb 321 my = ((float)magCount[1]-ymin)*magCalibration[1] + magbias[1];
icyzkungz 6:5665d427bceb 322 mz = ((float)magCount[2]-zmin)*magCalibration[2] + magbias[2];
icyzkungz 6:5665d427bceb 323 }
icyzkungz 6:5665d427bceb 324
icyzkungz 6:5665d427bceb 325
icyzkungz 6:5665d427bceb 326 void MPU9250::readAccelData()
icyzkungz 6:5665d427bceb 327 {
icyzkungz 6:5665d427bceb 328 float destination[3] = {0,0,0};
icyzkungz 6:5665d427bceb 329 uint8_t rawData[6]; // x/y/z accel register data stored here
icyzkungz 6:5665d427bceb 330 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
icyzkungz 6:5665d427bceb 331 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 332 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
icyzkungz 6:5665d427bceb 333 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
icyzkungz 6:5665d427bceb 334
icyzkungz 6:5665d427bceb 335 for(int i=0; i<=2; i++)
icyzkungz 6:5665d427bceb 336 accelCount[i] = (float)destination[i];
icyzkungz 6:5665d427bceb 337 }
icyzkungz 6:5665d427bceb 338
icyzkungz 6:5665d427bceb 339 void MPU9250::readGyroData()
icyzkungz 6:5665d427bceb 340 {
icyzkungz 6:5665d427bceb 341 float destination[3] = {0,0,0};
icyzkungz 6:5665d427bceb 342 uint8_t rawData[6]; // x/y/z gyro register data stored here
icyzkungz 6:5665d427bceb 343 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
icyzkungz 6:5665d427bceb 344 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 345 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
icyzkungz 6:5665d427bceb 346 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
icyzkungz 6:5665d427bceb 347
icyzkungz 6:5665d427bceb 348 for(int i=0; i<=2; i++)
icyzkungz 6:5665d427bceb 349 gyroCount[i] = (float)destination[i];
icyzkungz 6:5665d427bceb 350 }
icyzkungz 6:5665d427bceb 351
icyzkungz 6:5665d427bceb 352 void MPU9250::readMagData()
icyzkungz 6:5665d427bceb 353 {
icyzkungz 6:5665d427bceb 354 float destination[3] = {0,0,0};
icyzkungz 6:5665d427bceb 355 uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
icyzkungz 6:5665d427bceb 356 if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
icyzkungz 6:5665d427bceb 357 readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
icyzkungz 6:5665d427bceb 358 uint8_t c = rawData[6]; // End data read by reading ST2 register
icyzkungz 6:5665d427bceb 359 if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
icyzkungz 6:5665d427bceb 360 destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 361 destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian
icyzkungz 6:5665d427bceb 362 destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ;
icyzkungz 6:5665d427bceb 363 }
icyzkungz 6:5665d427bceb 364 }
icyzkungz 6:5665d427bceb 365
icyzkungz 6:5665d427bceb 366 for(int i=0; i<=2; i++)
icyzkungz 6:5665d427bceb 367 magCount[i] = (float)destination[i];
icyzkungz 6:5665d427bceb 368 }
icyzkungz 6:5665d427bceb 369
icyzkungz 6:5665d427bceb 370 void MPU9250::readTempData()
icyzkungz 6:5665d427bceb 371 {
icyzkungz 6:5665d427bceb 372 int16_t destination;
icyzkungz 6:5665d427bceb 373 uint8_t rawData[2]; // x/y/z gyro register data stored here
icyzkungz 6:5665d427bceb 374 readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
icyzkungz 6:5665d427bceb 375 destination = (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
icyzkungz 6:5665d427bceb 376 destination = ((float) destination) / 333.87f + 21.0f;
icyzkungz 6:5665d427bceb 377 temperature = destination;
icyzkungz 6:5665d427bceb 378 }
icyzkungz 6:5665d427bceb 379
icyzkungz 6:5665d427bceb 380
icyzkungz 6:5665d427bceb 381 void MPU9250::resetMPU9250()
icyzkungz 6:5665d427bceb 382 {
icyzkungz 6:5665d427bceb 383 // reset device
icyzkungz 6:5665d427bceb 384 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
icyzkungz 6:5665d427bceb 385 wait(0.1);
icyzkungz 6:5665d427bceb 386 }
icyzkungz 6:5665d427bceb 387
icyzkungz 6:5665d427bceb 388 void MPU9250::initAK8963()
icyzkungz 6:5665d427bceb 389 {
icyzkungz 6:5665d427bceb 390 float destination[3] = {0,0,0};
icyzkungz 6:5665d427bceb 391 // First extract the factory calibration for each magnetometer axis
icyzkungz 6:5665d427bceb 392 uint8_t rawData[3]; // x/y/z gyro calibration data stored here
icyzkungz 6:5665d427bceb 393 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
icyzkungz 6:5665d427bceb 394 wait(0.01);
icyzkungz 6:5665d427bceb 395 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
icyzkungz 6:5665d427bceb 396 wait(0.01);
icyzkungz 6:5665d427bceb 397 readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
icyzkungz 6:5665d427bceb 398 destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc.
icyzkungz 6:5665d427bceb 399 destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f;
icyzkungz 6:5665d427bceb 400 destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f;
icyzkungz 6:5665d427bceb 401 writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
icyzkungz 6:5665d427bceb 402 wait(0.01);
icyzkungz 6:5665d427bceb 403 // Configure the magnetometer for continuous read and highest resolution
icyzkungz 6:5665d427bceb 404 // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
icyzkungz 6:5665d427bceb 405 // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
icyzkungz 6:5665d427bceb 406 writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
icyzkungz 6:5665d427bceb 407 wait(0.01);
icyzkungz 6:5665d427bceb 408
icyzkungz 6:5665d427bceb 409 for(int i=0; i<=2; i++)
icyzkungz 6:5665d427bceb 410 magCalibration[i] = destination[i];
icyzkungz 6:5665d427bceb 411 }
icyzkungz 6:5665d427bceb 412
icyzkungz 6:5665d427bceb 413
icyzkungz 6:5665d427bceb 414 void MPU9250::initMPU9250()
icyzkungz 6:5665d427bceb 415 {
icyzkungz 6:5665d427bceb 416 // Initialize MPU9250 device
icyzkungz 6:5665d427bceb 417 // wake up device
icyzkungz 6:5665d427bceb 418 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
icyzkungz 6:5665d427bceb 419 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
icyzkungz 6:5665d427bceb 420
icyzkungz 6:5665d427bceb 421 // get stable time source
icyzkungz 6:5665d427bceb 422 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
icyzkungz 6:5665d427bceb 423
icyzkungz 6:5665d427bceb 424 // Configure Gyro and Accelerometer
icyzkungz 6:5665d427bceb 425 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
icyzkungz 6:5665d427bceb 426 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
icyzkungz 6:5665d427bceb 427 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
icyzkungz 6:5665d427bceb 428 writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
icyzkungz 6:5665d427bceb 429
icyzkungz 6:5665d427bceb 430 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
icyzkungz 6:5665d427bceb 431 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
icyzkungz 6:5665d427bceb 432
icyzkungz 6:5665d427bceb 433 // Set gyroscope full scale range
icyzkungz 6:5665d427bceb 434 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
icyzkungz 6:5665d427bceb 435 uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG);
icyzkungz 6:5665d427bceb 436 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
icyzkungz 6:5665d427bceb 437 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
icyzkungz 6:5665d427bceb 438 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
icyzkungz 6:5665d427bceb 439
icyzkungz 6:5665d427bceb 440 // Set accelerometer configuration
icyzkungz 6:5665d427bceb 441 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
icyzkungz 6:5665d427bceb 442 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
icyzkungz 6:5665d427bceb 443 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
icyzkungz 6:5665d427bceb 444 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
icyzkungz 6:5665d427bceb 445
icyzkungz 6:5665d427bceb 446 // Set accelerometer sample rate configuration
icyzkungz 6:5665d427bceb 447 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
icyzkungz 6:5665d427bceb 448 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
icyzkungz 6:5665d427bceb 449 c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
icyzkungz 6:5665d427bceb 450 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
icyzkungz 6:5665d427bceb 451 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
icyzkungz 6:5665d427bceb 452
icyzkungz 6:5665d427bceb 453 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
icyzkungz 6:5665d427bceb 454 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
icyzkungz 6:5665d427bceb 455
icyzkungz 6:5665d427bceb 456 // Configure Interrupts and Bypass Enable
icyzkungz 6:5665d427bceb 457 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
icyzkungz 6:5665d427bceb 458 // can join the I2C bus and all can be controlled by the Arduino as master
icyzkungz 6:5665d427bceb 459 writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
icyzkungz 6:5665d427bceb 460 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
icyzkungz 6:5665d427bceb 461 }
icyzkungz 6:5665d427bceb 462
icyzkungz 6:5665d427bceb 463 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
icyzkungz 6:5665d427bceb 464 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
icyzkungz 6:5665d427bceb 465 void MPU9250::calibrateMPU9250()
icyzkungz 6:5665d427bceb 466 {
icyzkungz 6:5665d427bceb 467 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
icyzkungz 6:5665d427bceb 468 uint16_t ii, packet_count, fifo_count;
icyzkungz 6:5665d427bceb 469 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
icyzkungz 6:5665d427bceb 470
icyzkungz 6:5665d427bceb 471 // reset device, reset all registers, clear gyro and accelerometer bias registers
icyzkungz 6:5665d427bceb 472 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
icyzkungz 6:5665d427bceb 473 wait(0.1);
icyzkungz 6:5665d427bceb 474
icyzkungz 6:5665d427bceb 475 // get stable time source
icyzkungz 6:5665d427bceb 476 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
icyzkungz 6:5665d427bceb 477 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
icyzkungz 6:5665d427bceb 478 writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
icyzkungz 6:5665d427bceb 479 wait(0.2);
icyzkungz 6:5665d427bceb 480
icyzkungz 6:5665d427bceb 481 // Configure device for bias calculation
icyzkungz 6:5665d427bceb 482 writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
icyzkungz 6:5665d427bceb 483 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
icyzkungz 6:5665d427bceb 484 writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
icyzkungz 6:5665d427bceb 485 writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
icyzkungz 6:5665d427bceb 486 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
icyzkungz 6:5665d427bceb 487 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
icyzkungz 6:5665d427bceb 488 wait(0.015);
icyzkungz 6:5665d427bceb 489
icyzkungz 6:5665d427bceb 490 // Configure MPU9250 gyro and accelerometer for bias calculation
icyzkungz 6:5665d427bceb 491 writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
icyzkungz 6:5665d427bceb 492 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
icyzkungz 6:5665d427bceb 493 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
icyzkungz 6:5665d427bceb 494 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
icyzkungz 6:5665d427bceb 495
icyzkungz 6:5665d427bceb 496 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
icyzkungz 6:5665d427bceb 497 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
icyzkungz 6:5665d427bceb 498
icyzkungz 6:5665d427bceb 499 // Configure FIFO to capture accelerometer and gyro data for bias calculation
icyzkungz 6:5665d427bceb 500 writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
icyzkungz 6:5665d427bceb 501 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
icyzkungz 6:5665d427bceb 502 wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
icyzkungz 6:5665d427bceb 503
icyzkungz 6:5665d427bceb 504 // At end of sample accumulation, turn off FIFO sensor read
icyzkungz 6:5665d427bceb 505 writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
icyzkungz 6:5665d427bceb 506 readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
icyzkungz 6:5665d427bceb 507 fifo_count = ((uint16_t)data[0] << 8) | data[1];
icyzkungz 6:5665d427bceb 508 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
icyzkungz 6:5665d427bceb 509
icyzkungz 6:5665d427bceb 510 for (ii = 0; ii < packet_count; ii++) {
icyzkungz 6:5665d427bceb 511 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
icyzkungz 6:5665d427bceb 512 readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
icyzkungz 6:5665d427bceb 513 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
icyzkungz 6:5665d427bceb 514 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
icyzkungz 6:5665d427bceb 515 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
icyzkungz 6:5665d427bceb 516 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
icyzkungz 6:5665d427bceb 517 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
icyzkungz 6:5665d427bceb 518 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
icyzkungz 6:5665d427bceb 519
icyzkungz 6:5665d427bceb 520 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
icyzkungz 6:5665d427bceb 521 accel_bias[1] += (int32_t) accel_temp[1];
icyzkungz 6:5665d427bceb 522 accel_bias[2] += (int32_t) accel_temp[2];
icyzkungz 6:5665d427bceb 523 gyro_bias[0] += (int32_t) gyro_temp[0];
icyzkungz 6:5665d427bceb 524 gyro_bias[1] += (int32_t) gyro_temp[1];
icyzkungz 6:5665d427bceb 525 gyro_bias[2] += (int32_t) gyro_temp[2];
icyzkungz 6:5665d427bceb 526
icyzkungz 6:5665d427bceb 527 }
icyzkungz 6:5665d427bceb 528 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
icyzkungz 6:5665d427bceb 529 accel_bias[1] /= (int32_t) packet_count;
icyzkungz 6:5665d427bceb 530 accel_bias[2] /= (int32_t) packet_count;
icyzkungz 6:5665d427bceb 531 gyro_bias[0] /= (int32_t) packet_count;
icyzkungz 6:5665d427bceb 532 gyro_bias[1] /= (int32_t) packet_count;
icyzkungz 6:5665d427bceb 533 gyro_bias[2] /= (int32_t) packet_count;
icyzkungz 6:5665d427bceb 534
icyzkungz 6:5665d427bceb 535 if(accel_bias[2] > 0L) {
icyzkungz 6:5665d427bceb 536 accel_bias[2] -= (int32_t) accelsensitivity; // Remove gravity from the z-axis accelerometer bias calculation
icyzkungz 6:5665d427bceb 537 } else {
icyzkungz 6:5665d427bceb 538 accel_bias[2] += (int32_t) accelsensitivity;
icyzkungz 6:5665d427bceb 539 }
icyzkungz 6:5665d427bceb 540
icyzkungz 6:5665d427bceb 541 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
icyzkungz 6:5665d427bceb 542 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
icyzkungz 6:5665d427bceb 543 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
icyzkungz 6:5665d427bceb 544 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
icyzkungz 6:5665d427bceb 545 data[3] = (-gyro_bias[1]/4) & 0xFF;
icyzkungz 6:5665d427bceb 546 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
icyzkungz 6:5665d427bceb 547 data[5] = (-gyro_bias[2]/4) & 0xFF;
icyzkungz 6:5665d427bceb 548
icyzkungz 6:5665d427bceb 549 /// Push gyro biases to hardware registers
icyzkungz 6:5665d427bceb 550 /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
icyzkungz 6:5665d427bceb 551 writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
icyzkungz 6:5665d427bceb 552 writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
icyzkungz 6:5665d427bceb 553 writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
icyzkungz 6:5665d427bceb 554 writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
icyzkungz 6:5665d427bceb 555 writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
icyzkungz 6:5665d427bceb 556 */
icyzkungz 6:5665d427bceb 557 gyroBias[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
icyzkungz 6:5665d427bceb 558 gyroBias[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
icyzkungz 6:5665d427bceb 559 gyroBias[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
icyzkungz 6:5665d427bceb 560
icyzkungz 6:5665d427bceb 561 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
icyzkungz 6:5665d427bceb 562 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
icyzkungz 6:5665d427bceb 563 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
icyzkungz 6:5665d427bceb 564 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
icyzkungz 6:5665d427bceb 565 // the accelerometer biases calculated above must be divided by 8.
icyzkungz 6:5665d427bceb 566
icyzkungz 6:5665d427bceb 567 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
icyzkungz 6:5665d427bceb 568 readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
icyzkungz 6:5665d427bceb 569 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
icyzkungz 6:5665d427bceb 570 readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
icyzkungz 6:5665d427bceb 571 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
icyzkungz 6:5665d427bceb 572 readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
icyzkungz 6:5665d427bceb 573 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
icyzkungz 6:5665d427bceb 574
icyzkungz 6:5665d427bceb 575 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
icyzkungz 6:5665d427bceb 576 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
icyzkungz 6:5665d427bceb 577
icyzkungz 6:5665d427bceb 578 for(ii = 0; ii < 3; ii++) {
icyzkungz 6:5665d427bceb 579 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
icyzkungz 6:5665d427bceb 580 }
icyzkungz 6:5665d427bceb 581
icyzkungz 6:5665d427bceb 582 // Construct total accelerometer bias, including calculated average accelerometer bias from above
icyzkungz 6:5665d427bceb 583 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
icyzkungz 6:5665d427bceb 584 accel_bias_reg[1] -= (accel_bias[1]/8);
icyzkungz 6:5665d427bceb 585 accel_bias_reg[2] -= (accel_bias[2]/8);
icyzkungz 6:5665d427bceb 586
icyzkungz 6:5665d427bceb 587 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
icyzkungz 6:5665d427bceb 588 data[1] = (accel_bias_reg[0]) & 0xFF;
icyzkungz 6:5665d427bceb 589 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
icyzkungz 6:5665d427bceb 590 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
icyzkungz 6:5665d427bceb 591 data[3] = (accel_bias_reg[1]) & 0xFF;
icyzkungz 6:5665d427bceb 592 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
icyzkungz 6:5665d427bceb 593 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
icyzkungz 6:5665d427bceb 594 data[5] = (accel_bias_reg[2]) & 0xFF;
icyzkungz 6:5665d427bceb 595 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
icyzkungz 6:5665d427bceb 596
icyzkungz 6:5665d427bceb 597 // Apparently this is not working for the acceleration biases in the MPU-9250
icyzkungz 6:5665d427bceb 598 // Are we handling the temperature correction bit properly?
icyzkungz 6:5665d427bceb 599 // Push accelerometer biases to hardware registers
icyzkungz 6:5665d427bceb 600 /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
icyzkungz 6:5665d427bceb 601 writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
icyzkungz 6:5665d427bceb 602 writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
icyzkungz 6:5665d427bceb 603 writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
icyzkungz 6:5665d427bceb 604 writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
icyzkungz 6:5665d427bceb 605 writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
icyzkungz 6:5665d427bceb 606 */
icyzkungz 6:5665d427bceb 607 // Output scaled accelerometer biases for manual subtraction in the main program
icyzkungz 6:5665d427bceb 608 accelBias[0] = (float)accel_bias[0]/(float)accelsensitivity;
icyzkungz 6:5665d427bceb 609 accelBias[1] = (float)accel_bias[1]/(float)accelsensitivity;
icyzkungz 6:5665d427bceb 610 accelBias[2] = (float)accel_bias[2]/(float)accelsensitivity;
icyzkungz 6:5665d427bceb 611 }
icyzkungz 6:5665d427bceb 612
icyzkungz 6:5665d427bceb 613
icyzkungz 6:5665d427bceb 614 // Accelerometer and gyroscope self test; check calibration wrt factory settings
icyzkungz 6:5665d427bceb 615 void MPU9250::MPU9250SelfTest() // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
icyzkungz 6:5665d427bceb 616 {
icyzkungz 6:5665d427bceb 617 //float destination[6] = {0,0,0,0,0,0};
icyzkungz 6:5665d427bceb 618 uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
icyzkungz 6:5665d427bceb 619 uint8_t selfTest[6];
icyzkungz 6:5665d427bceb 620 int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
icyzkungz 6:5665d427bceb 621 float factoryTrim[6];
icyzkungz 6:5665d427bceb 622 uint8_t FS = 0;
icyzkungz 6:5665d427bceb 623
icyzkungz 6:5665d427bceb 624 writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
icyzkungz 6:5665d427bceb 625 writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
icyzkungz 6:5665d427bceb 626 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
icyzkungz 6:5665d427bceb 627 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
icyzkungz 6:5665d427bceb 628 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
icyzkungz 6:5665d427bceb 629
icyzkungz 6:5665d427bceb 630 for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
icyzkungz 6:5665d427bceb 631
icyzkungz 6:5665d427bceb 632 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
icyzkungz 6:5665d427bceb 633 aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 634 aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
icyzkungz 6:5665d427bceb 635 aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
icyzkungz 6:5665d427bceb 636
icyzkungz 6:5665d427bceb 637 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
icyzkungz 6:5665d427bceb 638 gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 639 gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
icyzkungz 6:5665d427bceb 640 gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
icyzkungz 6:5665d427bceb 641 }
icyzkungz 6:5665d427bceb 642
icyzkungz 6:5665d427bceb 643 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
icyzkungz 6:5665d427bceb 644 aAvg[ii] /= 200;
icyzkungz 6:5665d427bceb 645 gAvg[ii] /= 200;
icyzkungz 6:5665d427bceb 646 }
icyzkungz 6:5665d427bceb 647
icyzkungz 6:5665d427bceb 648 // Configure the accelerometer for self-test
icyzkungz 6:5665d427bceb 649 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
icyzkungz 6:5665d427bceb 650 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
icyzkungz 6:5665d427bceb 651 //delay(25); // Delay a while to let the device stabilize
icyzkungz 6:5665d427bceb 652
icyzkungz 6:5665d427bceb 653 for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
icyzkungz 6:5665d427bceb 654
icyzkungz 6:5665d427bceb 655 readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
icyzkungz 6:5665d427bceb 656 aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 657 aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
icyzkungz 6:5665d427bceb 658 aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
icyzkungz 6:5665d427bceb 659
icyzkungz 6:5665d427bceb 660 readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
icyzkungz 6:5665d427bceb 661 gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
icyzkungz 6:5665d427bceb 662 gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
icyzkungz 6:5665d427bceb 663 gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
icyzkungz 6:5665d427bceb 664 }
icyzkungz 6:5665d427bceb 665
icyzkungz 6:5665d427bceb 666 for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
icyzkungz 6:5665d427bceb 667 aSTAvg[ii] /= 200;
icyzkungz 6:5665d427bceb 668 gSTAvg[ii] /= 200;
icyzkungz 6:5665d427bceb 669 }
icyzkungz 6:5665d427bceb 670
icyzkungz 6:5665d427bceb 671 // Configure the gyro and accelerometer for normal operation
icyzkungz 6:5665d427bceb 672 writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
icyzkungz 6:5665d427bceb 673 writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
icyzkungz 6:5665d427bceb 674 //delay(25); // Delay a while to let the device stabilize
icyzkungz 6:5665d427bceb 675
icyzkungz 6:5665d427bceb 676 // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
icyzkungz 6:5665d427bceb 677 selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
icyzkungz 6:5665d427bceb 678 selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
icyzkungz 6:5665d427bceb 679 selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
icyzkungz 6:5665d427bceb 680 selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
icyzkungz 6:5665d427bceb 681 selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
icyzkungz 6:5665d427bceb 682 selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
icyzkungz 6:5665d427bceb 683
icyzkungz 6:5665d427bceb 684 // Retrieve factory self-test value from self-test code reads
icyzkungz 6:5665d427bceb 685 factoryTrim[0] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[0] - (float)1.0) )); // FT[Xa] factory trim calculation
icyzkungz 6:5665d427bceb 686 factoryTrim[1] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[1] - (float)1.0) )); // FT[Ya] factory trim calculation
icyzkungz 6:5665d427bceb 687 factoryTrim[2] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[2] - (float)1.0) )); // FT[Za] factory trim calculation
icyzkungz 6:5665d427bceb 688 factoryTrim[3] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[3] - (float)1.0) )); // FT[Xg] factory trim calculation
icyzkungz 6:5665d427bceb 689 factoryTrim[4] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[4] - (float)1.0) )); // FT[Yg] factory trim calculation
icyzkungz 6:5665d427bceb 690 factoryTrim[5] = (float)(2620/1<<FS)*(pow( (float)1.01 , ((float)selfTest[5] - (float)1.0) )); // FT[Zg] factory trim calculation
icyzkungz 6:5665d427bceb 691
icyzkungz 6:5665d427bceb 692 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
icyzkungz 6:5665d427bceb 693 // To get percent, must multiply by 100
icyzkungz 6:5665d427bceb 694 for (int i = 0; i < 3; i++) {
icyzkungz 6:5665d427bceb 695 SelfTest[i] = (float)100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
icyzkungz 6:5665d427bceb 696 SelfTest[i+3] = (float)100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
icyzkungz 6:5665d427bceb 697 }
icyzkungz 6:5665d427bceb 698
icyzkungz 6:5665d427bceb 699 }